References

  1. M. Moradi, M. Soltanian, M. Pirsaheb, K. Sharafi, S. Soltanian, A. Mozafari, The efficiency study of pumice powder to lead removal from the aquatic environment: isotherms and kinetics of the reaction, J. Mazandaran Univ. Med. Sci., 23 (2014) 65–75.
  2. M. Pirsaheb, Z. Rezai, A.M. Mansouri, A. Rastegar, A. Alahabadi, A.R. Sani, K. Sharafi. Preparation of the activated carbon from India shrub wood and their application for methylene blue removal: modeling and optimization, Desal. Water Treat., 57 (2016) 5888–5902.
  3. K. Sharafi, A.M. Mansouri, A.A. Zinatizadeh, M. Pirsaheb, Adsorptive removal of methylene blue from aqueous solutions by pumice powder: process modelling and kinetic evaluation, Environ. Eng. Manage. J., 14 (2015) 1067–1078.
  4. P.K. Arora, A. Sharma, R. Mehta, B.D. Shenoy, A. Srivastava, V.P. Singh, Metabolism of 4-chloro-2-nitrophenol in a grampositive bacterium, Exiguobacterium sp. PMA, Microb. Cell. Fact., 11 (2012) 150.
  5. P.K. Arora, Ch. Sasikala, Ch.V. Ramana, Degradation of chlorinated nitroaromatic compounds, Appl. Microbiol. Biotechnol., 93 (2012) 2265–2277.
  6. M. Karimaei, K. Sharafi, M. Moradi, H.R. Ghaffari, H. Biglari, H. Arfaeinia, N. Fattahi, Optimization of a methodology for simultaneous determination of twelve chlorophenols in environmental water samples using in situ derivatization and continuous sample drop flow microextraction combined with gas chromatography–electron–capture detection, Anal. Methods, 9 (2017) 2865–2872.
  7. P.K. Arora, RK. Jain, Biotransformation of 4-chloro-2-nitrophenol into 5-chloro-2-methylbenzoxazole by a marine Bacillus sp. strain MW–1, Biodegradation, 23 (2012) 325–331.
  8. P. Saritha, C. Aparna, V. Himabindu, Y. Anjaneyulu. Comparison of various advanced oxidation processes for the degradation of 4-chloro-2 nitrophenol, J. Hazard. Mater., 149 (2007) 609–614.
  9. P. Gharbani, M. Khosravi, S. Tabatabaii, K. Zare, S. Dastmalchi, A. Mehrizad, Degradation of trace aqueous 4-chloro-2-nitrophenol occurring in pharmaceutical industrial wastewater by ozone, Int. J. Environ. Sci. Tech., 7 (2010) 377–384.
  10. A .Maleki, A Mahvi, F.V.R. Nabizadeh, Ultrasonic degradation of phenol and determination of the oxidation by-products toxicity, J. Environ. Health. Sci., 2 (2005) 201–216.
  11. M. Palma, J. Paiva, M. Zilli, A. Converti, Batch phenol removal from methyl isobutyl ketone by liquid-liquid extraction with chemical reaction, Chen. Eng. Process, 46 (2007) 764–768.
  12. S.H. Borji, S. Nasseri, R.N. Nodehi, A. Mahvi, A. Javadi, Photocatalytic degradation of phenol in aqueous solutions by Fe (III)–doped TiO2/UV Process, Iran. J. Health. Environ., 3 (2011) 369–380.
  13. F.J. Benitez, J. Beltrán-Heredia, J.L. Acero, F.J. Rubio, Rate constants for the reactions of ozone with chlorophenols in aqueous solutions, J. Hazard. Mater., 79 (2000) 271–285.
  14. M. Farrokhi, A. Mesdaghinia, A. Yazdanbakhsh, S. Nasseri. Characteristics of Fenton’s oxidation of 2, 4, 6 trichlorophenol, J. Environ. Health. Sci., 1 (2004) 12–18.
  15. B. Legube, N.K.V. Leitner, Catalytic ozonation: a promising advanced oxidation technology for water treatment, Catal. today, 53 (1999) 61–72.
  16. J. Nawrocki, B. Kasprzyk-Hordern, The efficiency and mechanisms of catalytic ozonation, Appl. Catal. B-Environ., 99 (2010) 27–42.
  17. B. Kasprzyk-Hordern, M. Ziółek, J. Nawrocki, Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment, Appl. Catal. B-Environ., 46 (2003) 639–669.
  18. L. Sanchez, J. Peral, X. Domenech, Aniline degradation by combined photocatalysis and ozonation, Appl. Catal. B-Environ., 19 (1998) 59–65.
  19. J. Xiao, Y. Xie, H. Cao, Organic pollutants removal in wastewater by heterogeneous photocatalytic ozonation, Chemosphere, 121 (2015) 1–17.
  20. R.R. Giri, H. Ozaki, T. Ishida, R. Takanami, S. Taniguchi. Synergy of ozonation and photocatalysis to mineralize low concentration 2, 4-dichlorophenoxyacetic acid in aqueous solution, Chemosphere, 66 (2007) 1610–1617.
  21. M. Mehrjouei, S. Müller, D. Möller, Degradation of oxalic acid in a photocatalytic ozonation system by means of Pilkington Active™ glass, J. Photoch. Photobio. A., 217 (2011) 417–424.
  22. S. Pekárek, J. Mikeš, J. Krýsa, Comparative study of TiO2 and ZnO photocatalysts for the enhancement of ozone generation by surface dielectric barrier discharge in air, Appl. Catal. A-Gen., 502 (2015) 122–128.
  23. D. Chen, D. Wang, Q. Ge, G. Ping, M. Fan, L. Qin, L. Bai, C. Lv, K. Shu, Graphene-wrapped ZnO nanospheres as a photocatalyst for high performance photocatalysis, Thin. Solid. Films, 574 (2015) 1–9.
  24. M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann. Environmental applications of semiconductor photocatalysis, Chem. Rev., 95 (1995) 69–96.
  25. H. Fu, T. Xu, S. Zhu, Y. Zhu, Photocorrosion inhibition and enhancement of photocatalytic activity for ZnO via hybridization with C60, Environ. Sci. Technol., 42 (2008) 8064– 8069.
  26. K. Woan, G. Pyrgiotakis, W. Sigmund, Photocatalytic carbonnanotube-TiO2 composites, Adv Mater., 21 (2009) 2233–2239.
  27. M. Pirsaheb, Z. Rezai, A. Mansouri, A. Rastegar, A. Alahabadi, A.R. Sani, K. Sharafi, Preparation of the activated carbon from India shrub wood and their application for methylene blue removal: modeling and optimization, Desal. Water Treat., 57 (2016) 5888–5902.
  28. M. Shirzad-Siboni, A. Khataee, B. Vahid, S.W. Joo, Synthesis, characterization and immobilization of ZnO nanosheets on scallop shell for photocatalytic degradation of an insecticide, Sci. Adv. Mater., 7 (2015) 806–814.
  29. R. Darvishi Cheshmeh Soltani, A. Rezaee, A. Khataee, Combination of carbon black-ZnO/UV process with an electrochemical process equipped with a carbon black-PTFE-coated gas-diffusion cathode for removal of a textile dye. Ind. Eng. Chem. Res., 5(2) (2013) 14133–14142.
  30. G. Liao, D. Zhu, J. Zheng, J. Yin, B. Lan, L. Li, Efficient mineralization of bisphenol A by photocatalytic ozonation with TiO2-graphene hybrid, J. Taiwan Inst. Chem. Eng., 67 (2016) 300–305.
  31. V. Gaur, A. Sharma, N. Verma, Catalytic oxidation of toluene and m–xylene by activated carbon fiber impregnated with transition metals, Carbon, 43 (2005) 3041–3053.
  32. H. Arfaeinia, K. Sharafi, S. Banafshehafshan, S. Hashemi, Degradation and biodegradability enhancement of chloramphenicol and azithromycin in aqueous solution using heterogeneous catalytic ozonation in the presence of MGO nanocrystalin comparison with single ozonation, Int. J. Pharm. Tech., 8 (2016) 10931–10948.
  33. S. Esplugas, P. Yue, M.I. Pervez, Degradation of 4-chlorophenol by photolytic oxidation, Water Res., 28 (1994) 1323–1328.
  34. D. Vogna, R. Marotta, A. Napolitano, R. Andreozzi, M. d’Ischia, Advanced oxidation of the pharmaceutical drug diclofenac with UV/H2O2 and ozone, Water Res., 38 (2004) 414–422.
  35. C.C. Cheng, A. Scherer. Fabrication of photonic band-gap crystals, J. Vac. Sci. Technol. B., 13 (1995) 2696–2700.
  36. C. Orge, J. Faria, M. Pereira, Photocatalytic ozonation of aniline with TiO2-carbon composite materials, J. Environ. Manage., 195 (2017) 208–215.
  37. T.E. Agustina, H.M. Ang, V.K. Vareek, A review of synergistic effect of photocatalysis and ozonation on wastewater treatment, J. Photoch. Photobiol. C., 6 (2005) 264–273.
  38. G. Jiang, Z. Lin, C. Chen, L. Zhu, Q. Chang, N. Wang, et al., TiO2 nanoparticles assembled on graphene oxide nanosheets with high photocatalytic activity for removal of pollutants, Carbon, 49 (2011) 2693–2701.
  39. P.K. Arora, A. Srivastava, V.P. Singh, Diversity of 4-chloro-2-nitrophenol-degrading bacteria in a waste water sample, J. Chem., (2016) Article ID 7589068.
  40. P.K. Arora, H. Bae, Biotransformation and chemotaxis of 4-chloro-2-nitrophenol by Pseudomonas sp. JHN, Microb. Cell. Fact., 13 (2014) 110.