References

  1. K. Bani-Melhem, M. Elektorowicz, Performance of the submerged membrane electro-bioreactor (SMEBR) with iron electrodes for wastewater treatment and fouling reduction, J. Membr. Sci., 379 (2011) 434–439.
  2. M.Y.A. Mollah, R. Schennach, J.R. Parga, D.L. Cocke, Electrocoagulation (EC)—science and applications, J. Hazard. Mater., 84 (2001) 29–41.
  3. J.-P. Chen, C.-Z. Yang, J.-H. Zhou, X.-Y. Wang, Study of the influence of the electric field on membrane flux of a new type of membrane bioreactor, Chem. Eng. J., 128 (2007) 177–180.
  4. B.M.B. Ensano, L. Borea, V. Naddeo, V. Belgiorno, M.D.G. de Luna, F.C. Ballesteros, Combination of electrochemical processes with membrane bioreactors for wastewater treatment and fouling control: A Review, Front. Environ. Sci., 4 (2016).
  5. K. Akamatsu, W. Lu, T. Sugawara, S.-i. Nakao, Development of a novel fouling suppression system in membrane bioreactors using an intermittent electric field, Water Res., 44 (2010) 825–830.
  6. K. Bani-Melhem, M. Elektorowicz, Development of a novel submerged membrane electro-bioreactor (SMEBR): performance for fouling reduction, Environ. Sci. Tech., 44 (2010) 3298–3304.
  7. S.W. Hasan, M. Elektorowicz, J.A. Oleszkiewicz, Correlations between trans-membrane pressure (TMP) and sludge properties in submerged membrane electro-bioreactor (SMEBR) and conventional membrane bioreactor (MBR), Bioresour. Technol., 120 (2012) 199–205.
  8. M. Hosseinzadeh, G.N. Bidhendi, A. Torabian, N. Mehrdadi, M. Pourabdullah, A new flat sheet membrane bioreactor hybrid system for advanced treatment of effluent, reverse osmosis pretreatment and fouling mitigation, Bioresour. Technol., 192 (2015) 177–184.
  9. K. Bani-Melhem, E. Smith, Grey water treatment by a continuous process of an electrocoagulation unit and a submerged membrane bioreactor system, Chem. Eng. J., 198–199 (2012) 201–210.
  10. A. Giwa, S.W. Hasan, Theoretical investigation of the influence of operating conditions on the treatment performance of an electrically-induced membrane bioreactor, J. Water Process. Eng., 6 (2015) 72–82.
  11. M.A. Barakat, New trends in removing heavy metals from industrial wastewater, Arab. J. Chem., 4 (2011) 361–377.
  12. Secondary Drinking Water Standards: Guidance for Nuisance Chemicals, in: U.E.P. Agency Ed., 2013.
  13. EPA Secondary Maximum Contaminant Levels: A Strategy for Drinking Water Quality and Consumer Acceptability in: P.W.D. Water Research Foundation Ed., 2015.
  14. S. Vasudevan, J. Jayaraj, J. Lakshmi, G. Sozhan, Removal of iron from drinking water by electrocoagulation: Adsorption and kinetics studies, Korean J. Chem. Eng., 26 (2009) 1058– 1064.
  15. H.J. Mansoorian, A.H. Mahvi, A.J. Jafari, Removal of lead and zinc from battery industry wastewater using electrocoagulation process: Influence of direct and alternating current by using iron and stainless steel rod electrodes, Sep. Purif. Technol., 135 (2014) 165–175.
  16. S. Chaturvedi, P.N. Dave, Removal of iron for safe drinking water, Desalination, 303 (2012) 1–11.
  17. E.O. Sommerfield, Iron and Manganese Removal Handbook, American Water Works Assoc., Denver, US, 1999.
  18. A.G. Tekerlekopoulou, I.A. Vasiliadou, D.V. Vayenas, Physico- chemical and biological iron removal from potable water, Biochem. Eng. J., 31 (2006) 74–83.
  19. I. Zinicovscaia, G. Duca, L. Cepoi, T. Chiriac, L. Rudi, T. Mitina, M.V. Frontasyeva, S. Pavlov, S.F. Gundorina, Biotechnology of metal removal from industrial wastewater: zinc case study, Clean – Soil, Air, Water, 43 (2015) 112–117.
  20. H.M. Zwain, M. Vakili, I. Dahlan, Waste material adsorbents for zinc removal from wastewater: a comprehensive review, Int. J. Chem. Eng., (2014).
  21. G. Borbély, E. Nagy, Removal of zinc and nickel ions by complexation– membrane filtration process from industrial wastewater, Desalination, 240 (2009) 218–226.
  22. M.E.K. Bani-Melhem, J. Oleszkiewics, Submerged membrane electro-bioreactor (SMEBR) reduces membrane fouling and achieves phosphorous removal, in: WEFTEC, 2009.
  23. H.A.T.A.A.H. Al-Yazouri, Industrial wastewater treatment using local natural soil in Abu Dhabi, UAE, Am. J. Environ. Sci., 1 (2005) 190–193.
  24. P.K. Holt, G.W. Barton, C.A. Mitchell, The future for electrocoagulation as a localised water treatment technology, Chemosphere, 59 (2005) 355–367.
  25. Ş. İrdemez, N. Demircioğlu, Y.Ş. Yıldız, Z. Bingül, The effects of current density and phosphate concentration on phosphate removal from wastewater by electrocoagulation using aluminum and iron plate electrodes, Sep. Purif. Technol., 52 (2006) 218–223.
  26. U. Tezcan Un, A.S. Koparal, U. Bakir Ogutveren, Fluoride removal from water and wastewater with a bach cylindrical electrode using electrocoagulation, Chem. Eng. J., 223 (2013) 110–115.
  27. N. Daneshvar, A.R. Khataee, A.R. Amani Ghadim, M.H. Rasoulifard, Decolorization of C.I. Acid Yellow 23 solution by electrocoagulation process: Investigation of operational parameters and evaluation of specific electrical energy consumption (SEEC), J. Hazard. Mater., 148 (2007) 566–572.
  28. İ.A. Şengil, M. Özacar, The decolorization of C.I. Reactive Black 5 in aqueous solution by electrocoagulation using sacrificial iron electrodes, J. Hazard. Mater., 161 (2009) 1369–1376.
  29. F. Akbal, S. Camcı, Copper, chromium and nickel removal from metal plating wastewater by electrocoagulation, Desalination, 269 (2011) 214–222.
  30. I. Heidmann, W. Calmano, Removal of Zn(II), Cu(II), Ni(II), Ag(I) and Cr(VI) present in aqueous solutions by aluminium electrocoagulation, J. Hazard. Mater., 152 (2008) 934–941.
  31. M. Al-Shannag, Z. Al-Qodah, K. Bani-Melhem, M.R. Qtaishat, M. Alkasrawi, Heavy metal ions removal from metal plating wastewater using electrocoagulation: Kinetic study and process performance, Chem. Eng. J., 260 (2015) 749–756.
  32. D. Ghosh, H. Solanki, M.K. Purkait, Removal of Fe(II) from tap water by electrocoagulation technique, J. Hazard. Mater., 155 (2008) 135–143.
  33. S. Bayar, Y.Ş. Yıldız, A.E. Yılmaz, Ş. İrdemez, The effect of stirring speed and current density on removal efficiency of poultry slaughterhouse wastewater by electrocoagulation method, Desalination, 280 (2011) 103–107.
  34. I. Ben Hariz, A. Halleb, N. Adhoum, L. Monser, Treatment of petroleum refinery sulfidic spent caustic wastes by electrocoagulation, Sep. Purif. Technol., 107 (2013) 150–157.
  35. A.A. Bukhari, Investigation of the electro-coagulation treatment process for the removal of total suspended solids and turbidity from municipal wastewater, Bioresour. Technol., 99 (2008) 914–921.
  36. B. Merzouk, B. Gourich, A. Sekki, K. Madani, M. Chibane, Removal turbidity and separation of heavy metals using electrocoagulation–electroflotation technique: A case study, J. Hazard. Mater., 164 (2009) 215–222.
  37. M.Y.A. Mollah, P. Morkovsky, J.A.G. Gomes, M. Kesmez, J. Parga, D.L. Cocke, Fundamentals, present and future perspectives of electrocoagulation, J. Hazard. Mater., 114 (2004) 199– 210.
  38. M. Kobya, O.T. Can, M. Bayramoglu, Treatment of textile wastewaters by electrocoagulation using iron and aluminum electrodes, J. Hazard. Mater., 100 (2003) 163–178.
  39. A. Giwa, I. Ahmed, S.W. Hasan, Enhanced sludge properties and distribution study of sludge components in electrically- enhanced membrane bioreactor, J. Environ. Manage., 159 (2015) 78–85.
  40. I. Kabdaşlı, I. Arslan-Alaton, T. Ölmez-Hancı, O. Tünay, Electrocoagulation applications for industrial wastewaters: a critical review, Environ. Technol. Rev., 1 (2012) 2–45.
  41. M. Panizza, A. Barbucci, M. Delucchi, M.P. Carpanese, A. Giuliano, M. Cataldo-Hernández, G. Cerisola, Electro-Fenton degradation of anionic surfactants, Sep. Purif. Technol., 118 (2013) 394.
  42. P. Cañizares, F. Martínez, C. Jiménez, J. Lobato, M.A. Rodrigo, Comparison of the aluminum specification in chemical and electrochemical dosing processes, Ind. Eng. Chem. Res., 45 (2006) 8749–8756.
  43. F.M. Tack, O.W.J.J. Callewaert, M.G. Verloo, Metal solubility as a function of pH in a contaminated, dredged sediment affected by oxidation, Environ. Pollut., 91 (1996) 199–208.
  44. M. Panizza, A. Barbucci, M. Delucchi, M.P. Carpanese, A. Giuliano, M. Cataldo-Hernández, et al., Electro-Fenton degradation of anionic surfactants, Sep. Purif. Technol. 118 (2013) 394–398.
  45. M. Zhao, Y. Xu, C. Zhang, H. Rong, G. Zeng, New trends in removing heavy metals from wastewater, Appl. Microbiol. Biotechnol., 100 (2016) 6509–6518.
  46. P.K. Holt, G.W. Barton, M. Wark, C.A. Mitchell, A quantitative comparison between chemical dosing and electrocoagulation, Colloids Surf A Physicochem., Eng Asp., 211 (2002) 233–248.
  47. X.U. Qiyong, G.E. Jiaoju, Reduction of CO2 emission using bioreactor technology for waste management in China, Energy Procedia, 5 (2011) 1026–1031.
  48. M.A. Hanson, X. Ge, Y. Kostov, K.A. Brorson, A.R. Moreira, G. Rao, Comparisons of optical pH and dissolved oxygen sensors with traditional electrochemical probes during mammalian cell culture, Biotechnol. Bioeng., 97 (2007) 833–841.
  49. K. Akamatsu, Y. Yoshida, T. Suzaki, Y. Sakai, H. Nagamoto, S.-i. Nakao, Development of a membrane–carbon cloth assembly for submerged membrane bioreactors to apply an intermittent electric field for fouling suppression, Sep. Purif. Technol., 88 (2012) 202–207.
  50. D.W. Smith, Ionic hydration enthalpies, J. Chem. Educ., 54 (1977) 540.
  51. E. Kálmán, T. Radnai, G. Pálinkás, F. Hajdu, A. Vértes, Hydration of iron(II) ion in aqueous solutions, Electrochim. Acta, 33 (1988) 1223–1228.
  52. J.D. Hem, Chemical equilibria diagrams for ground-water systems: Les graphiques de l’équilibre chimique pour les systèmes des eaux souterrainnes, International Association of Scientific Hydrology, 5(3) (1960) 45–53.
  53. W.W. Rudolph, C. C. Pye, Zinc(II) hydration in aqueous solution. A Raman spectroscopic investigation and an ab-initio molecular orbital study, Phys. Chem. Chem. Phys., 1 (1999) 4583–4593.
  54. S.W. Hasan, M. Elektorowicz, J.A. Oleszkiewicz, Start-up period investigation of pilot-scale submerged membrane electro- bioreactor (SMEBR) treating raw municipal wastewater, Chemosphere, 97 (2014) 71–77.
  55. I.A. Elham Abdulkarem, M. Abu Zahra, S.W Hasan, Electrokinetic pretreatment of seawater to decrease the Ca2+, Mg2+, SO42− and bacteria contents in membrane desalination applications, Desalination, 1 (2016).
  56. G. Haberhauer, B. Rafferty, F. Strebl, M.H. Gerzabek, Comparison of the composition of forest soil litter derived from three different sites at various decompositional stages using FTIR spectroscopy, Geoderma, 83 (1998) 331–342.
  57. F. Nejatzadeh-Barandozi, S.T. Enferadi, FT-IR study of the polysaccharides isolated from the skin juice, gel juice, and flower of Aloe vera tissues affected by fertilizer treatment, Org. Med. Chem. Lett., 2 (2012) 33.
  58. L. Zhu, H.-Y. Qi, M.-l. Lv, Y. Kong, Y.-W. Yu, X.-Y. Xu, Component analysis of extracellular polymeric substances (EPS) during aerobic sludge granulation using FTIR and 3D-EEM technologies, Bioresour. Technol., 124 (2012) 455–459.
  59. E.J. Martínez, J. Fierro, J.G. Rosas, A. Lobato, M. Otero, X. Gómez, Assessment of cationic dye biosorption onto anaerobic digested sludge: Spectroscopic characterization, Environ. Prog. Sustain. Energy, 35 (2016) 1330–1337.
  60. A.R. Badireddy, S. Chellam, P.L. Gassman, M.H. Engelhard, A.S. Lea, K.M. Rosso, Role of extracellular polymeric substances in bioflocculation of activated sludge microorganisms under glucose-controlled conditions, Water Res., 44 (2010) 4505–4516.
  61. S.K. Das, A.R. Das, A.K. Guha, Adsorption behavior of mercury on functionalized aspergillus versicolor mycelia: atomic force microscopic study, Langmuir, 25 (2009) 360–366.
  62. A. Akbar, S. Riaz, R. Ashraf, S. Naseem, Magnetic and magnetization properties of iron oxide thin films by microwave assisted sol–gel route, J. Solgel Sci. Technol., 74 (2015) 320–328.
  63. L. Tang, G.-D. Yang, G.-M. Zeng, Y. Cai, S.-S. Li, Y.-Y. Zhou, Y. Pang, Y.-Y. Liu, Y. Zhang, B. Luna, Synergistic effect of iron doped ordered mesoporous carbon on adsorption-coupled reduction of hexavalent chromium and the relative mechanism study, Chem. Eng. J., 239 (2014) 114–122.
  64. L. Panda, B. Das, D.S. Rao, Studies on removal of lead ions from aqueous solutions using iron ore slimes as adsorbent, Korean J. Chem. Eng., 28 (2011) 2024.
  65. W. Stumm, J.J. Morgan, Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, Wiley, New York, 1996.
  66. T. Suponik, A. Winiarski, J. Szade, Processes of removing zinc from water using zero-valent iron, Water Air Soil Pollut., 226 (2015) 360.
  67. M. Zeyoudi, E. Altenaiji, L.Y. Ozer, I. Ahmed, A.F. Yousef, S.W. Hasan, Impact of continuous and intermittent supply of electric field on the function and microbial community of wastewater treatment electro-bioreactors, Electrochim. Acta, 181 (2015) 271–279.
  68. A. Giwa, Modelling and Experimental Investigation of Membrane Bio-Electro-reactor [MBER] for Masdar City Wastewater Treatment, in: Water and Environmental Engineering, Masdar Institute of Science and Technology 2014.
  69. Keerthi, V. Suganthi, M. Mahalakshmi, N. Balasubramanian, Development of hybrid membrane bioreactor for tannery effluent treatment, Desalination, 309 (2013) 231–236.
  70. X.-G. Li, H.-B. Cao, J.-C. Wu, K.-T. Yu, Inhibition of the metabolism of nitrifying bacteria by direct electric current, Biotechnol. Lett., 23 (2001) 705–709.
  71. N.J. Ashbolt, Microbial Contamination of drinking water and human health from community water systems, Curr. Environ. Health Rep., 2 (2015) 95–106.
  72. D.S. Francy, E.A. Stelzer, R.N. Bushon, A.M.G. Brady, A.G. Williston, K.R. Riddell, M.A. Borchardt, S.K. Spencer, T.M. Gellner, Comparative effectiveness of membrane bioreactors, conventional secondary treatment, and chlorine and UV disinfection to remove microorganisms from municipal wastewaters, Water Res., 46 (2012) 4164–4178.
  73. J. Radjenović, M. Matošić, I. Mijatović, D. Barceló, Membrane Bioreactor (MBR) as an Advanced Wastewater Treatment Technology, Springer Berlin Heidelberg, Berlin, Heidelberg, 2008, pp. 37–101.
  74. C. Ricordel, C. Miramon, D. Hadjiev, A. Darchen, Investigations of the mechanism and efficiency of bacteria abatement during electrocoagulation using aluminum electrode, Desal. Water Treat., 52 (2014) 5380–5389.
  75. M. Li, J.H. Qu, Y.Z. Peng, Sterilization of Escherichia coli cells by the application of pulsed magnetic field, J. Environ. Sci., 16 (2004) 348–352.
  76. S. Ibeid, M. Elektorowicz, J.A. Oleszkiewicz, Novel electrokinetic approach reduces membrane fouling, Water Res., 47 (2013) 6358–6366.
  77. S. Zhang, R. van Houten, D.H. Eikelboom, H. Doddema, Z. Jiang, Y. Fan, J. Wang, Sewage treatment by a low energy membrane bioreactor, Bioresour. Technol., 90 (2003) 185–192.
  78. J.A. Gil, L. Túa, A. Rueda, B. Montaño, M. Rodríguez, D. Prats, Monitoring and analysis of the energy cost of an MBR, Desalination, 250 (2010) 997–1001.
  79. S.W.H.A. Giwa, Statistical correlation analysis and energy consumption of electrically-enhanced membrane bioreactor for wastewater treatment, Desal. Water Treat., 68 (2017) 60–69.