References

  1. S. Li, Y. Gong, Y. Yang, C. He, L. Hu, L. Zhu, L. Sun, D. Shu, Recyclable CNTs/Fe3O4 magnetic nanocomposites as adsorbents to remove bisphenol A from water and their regeneration, Chem. Eng. J., 260 (2015) 231–239.
  2. B. Pan, B. Xing, Adsorption mechanisms of organic chemicals on carbon nanotubes, Environ. Sci. Technol., 42 (2008) 9005–9013.
  3. C. Ampelli, S. Perathoner, G. Centi, Carbon-based catalysts: opening new scenario to develop next-generation nanoengineered catalytic materials, Chin. J. Catal., 35 (2014) 783–791.
  4. A. Szabó, C. Perri, A. Csató, G. Giordano, D. Vuono, J.B. Nagy, Synthesis methods of carbon nanotubes and related materials, Materials, 3 (2010) 3092–3140.
  5. N.K. Dey, E.M. Hong, K.H. Choi, Y.D. Kim, J.-H. Lim, K.H. Lee, D.C. Lim, Growth of carbon nanotubes on carbon fiber by thermal CVD using Ni nanoparticles as catalysts, Procedia Eng., 36 (2012) 556–561.
  6. M.K. AlOmar, M.A. Alsaadi, M. Hayyan, S. Akib, M.A. Hashim, Functionalization of CNTs surface with phosphonuim based deep eutectic solvents for arsenic removal from water, Appl. Surf. Sci., 389 (2016) 216–226.
  7. K. Hernadi, A. Fonseca, P. Piedigrosso, M. Delvaux, J. Nagy, D. Bernaerts, J. Riga, Carbon nanotubes production over Co/silica catalysts, Catal. Lett., 48 (1997) 229–238.
  8. W.-T. Tsai, H.-C. Hsu, T.-Y. Su, K.-Y. Lin, C.-M. Lin, Adsorption characteristics of bisphenol-A in aqueous solutions onto hydrophobic zeolite, J. Colloid Interface Sci., 299 (2006) 513–519.
  9. S. Salehinia, S.M. Ghoreishi, F. Maya, V. Cerdà, Hydrophobic magnetic montmorillonite composite material for the efficient adsorption and microextraction of bisphenol A from water samples, J. Environ. Chem. Eng., 4 (2016) 4062–4071.
  10. H. Wang, H. Ma, W. Zheng, D. An, C. Na, Multifunctional and recollectable carbon nanotube ponytails for water purification, ACS Appl. Mater. Interfaces, 6 (2014) 9426–9434.
  11. M. Ghaedi, A.G. Nasab, S. Khodadoust, M. Rajabi, S. Azizian, Application of activated carbon as adsorbents for efficient removal of methylene blue: kinetics and equilibrium study, J. Ind. Eng. Chem., 20 (2014) 2317–2324.
  12. S. Bigdeli, S. Fatemi, Fast carbon nanofiber growth on the surface of activated carbon by microwave irradiation: a modified nanoadsorbent for deep desulfurization of liquid fuels, Chem. Eng. J., 269 (2015) 306–315.
  13. D. Chen, K.O. Christensen, E. Ochoa-Fernández, Z. Yu, B. Tøtdal, N. Latorre, A. Monzón, A. Holmen, Synthesis of carbon nanofibers: effects of Ni crystal size during methane decomposition, J. Catal., 229 (2005) 82–96.
  14. W. Cho, M. Schulz, V. Shanov, Growth termination mechanism of vertically aligned centimeter long carbon nanotube arrays, Carbon, 69 (2014) 609–620.
  15. D. Lopez, I.Y. Abe, I. Pereyra, Temperature effect on the synthesis of carbon nanotubes and core–shell Ni nanoparticle by thermal CVD, Diamond Relat. Mater., 52 (2015) 59–65.
  16. N.T. Abdel-Ghani, G.A. El-Chaghaby, F.S. Helal, Individual and competitive adsorption of phenol and nickel onto multiwalled carbon nanotubes, J. Adv. Res., 6 (2015) 405–415.
  17. S. Amelinckx, X. Zhang, D. Bernaerts, X. Zhang, V. Ivanov, J. Nagy, A formation mechanism for catalytically grown helixshaped graphite nanotubes, Opt. Commun., 2664 (1994) 977.
  18. N. Sankararamakrishnan, M. Jaiswal, N. Verma, Composite nanofloral clusters of carbon nanotubes and activated alumina: an efficient sorbent for heavy metal removal, Chem. Eng. J., 235 (2014) 1–9.
  19. M.A. AlSaadi, A. Al Mamun, M.Z. Alam, M.K. Amosa, M.A. Atieh, Removal of cadmium from water by CNT–PAC composite: effect of functionalization, Nano, 11 (2016) 1650011.
  20. K. Hernadi, A. Fonseca, J.B. Nagy, A. Siska, I. Kiricsi, Production of nanotubes by the catalytic decomposition of different carboncontaining compounds, Appl. Catal., A, 199 (2000) 245–255.
  21. A. Abo-Hamad, M.A. AlSaadi, M. Hayyan, I. Juneidi, M.A. Hashim, Ionic liquid-carbon nanomaterial hybrids for electrochemical sensor applications: a review, Electrochim. Acta, 193 (2016) 321–343.
  22. S. Zheng, Z. Sun, Y. Park, G.A. Ayoko, R.L. Frost, Removal of bisphenol A from wastewater by Ca-montmorillonite modified with selected surfactants, Chem. Eng. J., 234 (2013) 416–422.
  23. M.H. Dehghani, M. Ghadermazi, A. Bhatnagar, P. Sadighara, G. Jahed-Khaniki, B. Heibati, G. McKay, Adsorptive removal of endocrine disrupting bisphenol A from aqueous solution using chitosan, J. Environ. Chem. Eng., 4 (2016) 2647–2655.
  24. J. Xu, L. Wang, Y. Zhu, Decontamination of bisphenol A from aqueous solution by graphene adsorption, Langmuir, 28 (2012) 8418–8425.
  25. M. Song, X. Tang, J. Xu, L. Yu, Y. Wei, The formation of novel carbon/carbon composite by chemical vapor deposition: an efficient adsorbent for enhanced desulfurization performance, J. Anal. Appl. Pyrolysis, 118 (2016) 34–41.
  26. A.S. Adeleye, J.R. Conway, K. Garner, Y. Huang, Y. Su, A.A. Keller, Engineered nanomaterials for water treatment and remediation: costs, benefits, and applicability, Chem. Eng. J., 286 (2016) 640–662.
  27. M. de la Luz-Asunción, V. Sánchez-Mendieta, A. Martínez- Hernández, V. Castaño, C. Velasco-Santos, Adsorption of phenol from aqueous solutions by carbon nanomaterials of one and two dimensions: kinetic and equilibrium studies, J. Nanomater., 16 (2015) 422.
  28. J. Kwon, B. Lee, Bisphenol A adsorption using reduced graphene oxide prepared by physical and chemical reduction methods, Chem. Eng. Res. Des., 104 (2015) 519–529.
  29. M.K. AlOmar, M.A. Alsaadi, M. Hayyan, S. Akib, M. Ibrahim, M.A. Hashim, Allyl triphenyl phosphonium bromide based DES-functionalized carbon nanotubes for the removal of mercury from water, Chemosphere, 167 (2017) 44–52.
  30. Y.B. Onundi, A. Mamun, M. Al Khatib, M. Al Saadi, A. Suleyman, Heavy metals removal from synthetic wastewater by a novel nano-size composite adsorbent, Int. J. Environ. Sci. Technol., 8 (2011) 799.
  31. M. Hussein, S. Zakarya, S. Sarijo, Z. Zainal, Parameter optimisation of carbon nanotubes synthesis via hexane decomposition over minerals generated from Anadara granosa shells as the catalyst support, J. Nanomater., 2012 (2012) 90.
  32. M.A. AlSaadi, A. Al-Mamun, S.A. Muyibi, M.Z. Alam, I. Sopyan, M.A. Atieh, Y.M. Ahmed, Synthesis of various carbon nanomaterials (CNMs) on powdered activated carbon, Afr. J. Biotechnol., 10 (2011) 18892–18905.
  33. Q. Sui, J. Huang, Y. Liu, X. Chang, G. Ji, S. Deng, T. Xie, G. Yu, Rapid removal of bisphenol A on highly ordered mesoporous carbon, J. Environ. Sci., 23 (2011) 177–182.
  34. Y. Dong, D. Wu, X. Chen, Y. Lin, Adsorption of bisphenol A from water by surfactant-modified zeolite, J. Colloid Interface Sci., 348 (2010) 585–590.
  35. M. Amini, H. Younesi, N. Bahramifar, A.A.Z. Lorestani, F. Ghorbani, A. Daneshi, M. Sharifzadeh, Application of response surface methodology for optimization of lead biosorption in an aqueous solution by Aspergillus niger, J. Hazard. Mater., 154 (2008) 694–702.
  36. L.A. Ramírez-Montoya, V. Hernández-Montoya, M.A. Montes-Morán, Optimizing the preparation of carbonaceous adsorbents for the selective removal of textile dyes by using Taguchi methodology, J. Anal. Appl. Pyrolysis, 109 (2014) 9–20.
  37. V. Angulakshmi, N. Sivakumar, S. Karthikeyan, Response surface methodology for optimizing process parameters for synthesis of carbon nanotubes, J. Environ. Nanotechnol., 1 (2012) 40–45.
  38. A. Khuri, J. Cornell, Response Surfaces: Designs and Analyses, Marcel Dekker Inc., New York (1987).
  39. K. Kalantari, M.B. Ahmad, H.R. Fard Masoumi, K. Shameli, M. Basri, R. Khandanlou, Rapid and high capacity adsorption of heavy metals by Fe3O4/montmorillonite nanocomposite using response surface methodology: preparation, characterization, optimization, equilibrium isotherms, and adsorption kinetics study, J. Taiwan Inst. Chem. Eng., 49 (2015) 192–198.
  40. M. Roosta, M. Ghaedi, A. Daneshfar, R. Sahraei, A. Asghari, Optimization of the ultrasonic assisted removal of methylene blue by gold nanoparticles loaded on activated carbon using experimental design methodology, Ultrason. Sonochem., 21 (2014) 242–252.
  41. J.C. Lazo-Cannata, A. Nieto-Márquez, A. Jacoby, A.L. Paredes- Doig, A. Romero, M.R. Sun-Kou, J.L. Valverde, Adsorption of phenol and nitrophenols by carbon nanospheres: effect of pH and ionic strength, Sep. Purif. Technol., 80 (2011) 217–224.
  42. G. Bayramoglu, M.Y. Arica, G. Liman, O. Celikbicak, B. Salih, Removal of bisphenol A from aqueous medium using molecularly surface imprinted microbeads, Chemosphere, 150 (2016) 275–284.
  43. G. Liu, J. Ma, X. Li, Q. Qin, Adsorption of bisphenol A from aqueous solution onto activated carbons with different modification treatments, J. Hazard. Mater., 164 (2009) 1275–1280.
  44. L. Joseph, Q. Zaib, I.A. Khan, N.D. Berge, Y.-G. Park, N.B. Saleh, Y. Yoon, Removal of bisphenol A and 17α-ethinyl estradiol from landfill leachate using single-walled carbon nanotubes, Water Res., 45 (2011) 4056–4068.
  45. F. Zhou, Q. Liu, W. Zhang, J. Gu, S. Zhu, D. Zhang, Fabrication of 3D carbon nanotube/porous carbon hybrid materials, J. Mater. Sci., 49 (2014) 548–557.
  46. G. Allaedini, S.M. Tasirin, P. Aminayi, Synthesis of Fe–Ni– Ce trimetallic catalyst nanoparticles via impregnation and co-precipitation and their application to dye degradation, Chem. Pap., 70 (2015) 231–242.
  47. Y.C. Jung, B. Bhushan, Mechanically durable carbon nanotube−composite hierarchical structures with superhydrophobicity, self-cleaning, and low-drag, ACS Nano, 3 (2009) 4155–4163.
  48. S.-P. Chai, K.-Y. Lee, S. Ichikawa, A.R. Mohamed, Synthesis of carbon nanotubes by methane decomposition over Co–Mo/Al2O3: process study and optimization using response surface methodology, Appl. Catal., A, 396 (2011) 52–58.
  49. J.I. Villacampa, C. Royo, E. Romeo, J.A. Montoya, P. Del Angel, A. Monzon, Catalytic decomposition of methane over Ni-Al2O3 coprecipitated catalysts: reaction and regeneration studies, Appl. Catal., A, 252 (2003) 363–383.
  50. F. Taleshi, A. Hosseini, M. Mohammadi, M. Pashaee, Effect of hydrocarbon gas on synthesis and diameter of carbon nanotubes, Indian J. Phys., 87 (2013) 873–877.
  51. W. Li, H. Zhang, C. Wang, Y. Zhang, L. Xu, K. Zhu, S. Xie, Raman characterization of aligned carbon nanotubes produced by thermal decomposition of hydrocarbon vapor, Appl. Phys. Lett., 70 (1997) 2684–2686.
  52. M.K. AlOmar, M.A. Alsaadi, M.M. Aljumaily, S. Akib, T.M. Jassam, M.A. Hashim, N,N-Diethylethanolammonium chloride-based DES-functionalized carbon nanotubes for arsenic removal from aqueous solution, Desal. Wat. Treat., 74 (2017) 163–173.
  53. J. Ziebro, I. Łukasiewicz, E. Borowiak-Palen, B. Michalkiewicz, Low temperature growth of carbon nanotubes from methane catalytic decomposition over nickel supported on a zeolite, Nanotechnology, 21 (2010) 145308.
  54. S. Takenaka, S. Kobayashi, H. Ogihara, K. Otsuka, Ni/SiO2 catalyst effective for methane decomposition into hydrogen and carbon nanofiber, J. Catal., 217 (2003) 79–87.
  55. W. Qian, T. Liu, F. Wei, Z. Wang, Y. Li, Enhanced production of carbon nanotubes: combination of catalyst reduction and methane decomposition, Appl. Catal., A, 258 (2004) 121–124.
  56. A. Hruzewicz-Kołodziejczyk, V.P. Ting, N. Bimbo, T.J. Mays, Improving comparability of hydrogen storage capacities of nanoporous materials, Int. J. Hydrogen Energy, 37 (2012) 2728–2736.
  57. D. Bom, R. Andrews, D. Jacques, J. Anthony, B. Chen, M.S. Meier, J.P. Selegue, Thermogravimetric analysis of the oxidation of multiwalled carbon nanotubes: evidence for the role of defect sites in carbon nanotube chemistry, Nano Lett., 2 (2002) 615–619.
  58. J.R. Koduru, L.P. Lingamdinne, J. Singh, K.-H. Choo, Effective removal of bisphenol A (BPA) from water using a goethite/activated carbon composite, Process Saf. Environ. Prot., 103 (2016) 87–96.
  59. C. Jung, A. Son, N. Her, K.-D. Zoh, J. Cho, Y. Yoon, Removal of endocrine disrupting compounds, pharmaceuticals, and personal care products in water using carbon nanotubes: a review, J. Ind. Eng. Chem., 27 (2015) 1–11.
  60. K.A. Shah, B.A. Tali, Synthesis of carbon nanotubes by catalytic chemical vapour deposition: a review on carbon sources, catalysts and substrates, Mater. Sci. Semicond. Process., 41 (2016) 67–82.
  61. B. Bestani, N. Benderdouche, B. Benstaali, M. Belhakem, A. Addou, Methylene blue and iodine adsorption onto an activated desert plant, Bioresour. Technol., 99 (2008) 8441–8444.
  62. T. Hiraoka, T. Kawakubo, J. Kimura, R. Taniguchi, A. Okamoto, T. Okazaki, T. Sugai, Y. Ozeki, M. Yoshikawa, H. Shinohara, Selective synthesis of double-wall carbon nanotubes by CCVD of acetylene using zeolite supports, Chem. Phys. Lett., 382 (2003) 679–685.
  63. Y.-S. Ho, G. McKay, Pseudo-second order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  64. F. Cao, P. Bai, H. Li, Y. Ma, X. Deng, C. Zhao, Preparation of polyethersulfone–organophilic montmorillonite hybrid particles for the removal of bisphenol A, J. Hazard. Mater., 162 (2009) 791–798.
  65. L. Joseph, J. Heo, Y.-G. Park, J.R.V. Flora, Y. Yoon, Adsorption of bisphenol A and 17α-ethinyl estradiol on single walled carbon nanotubes from seawater and brackish water, Desalination, 281 (2011) 68–74.
  66. W.J. Weber, J.C. Morris, Kinetics of adsorption on carbon from solution, J. Sanit. Eng. Div., 89 (1963) 31–60.
  67. M.M. Nassar, Y.H. Magdy, A.E.H. Daifullah, H. Kelany, Mass transfer and adsorption kinetics of phenolic compounds onto activated carbon prepared from rice husk, Adsorpt. Sci. Technol., 26 (2008) 157–167.
  68. C.-Y. Kuo, Comparison with as-grown and microwave modified carbon nanotubes to removal aqueous bisphenol A, Desalination, 249 (2009) 976–982.
  69. Y. Zhou, L. Chen, P. Lu, X. Tang, J. Lu, Removal of bisphenol A from aqueous solution using modified fibric peat as a novel biosorbent, Sep. Purif. Technol., 81 (2011) 184–190.
  70. B. Hameed, A. Ahmad, N. Aziz, Isotherms, kinetics and thermodynamics of acid dye adsorption on activated palm ash, Chem. Eng. J., 133 (2007) 195–203.
  71. K.-L. Chang, J.-F. Hsieh, B.-M. Ou, M.-H. Chang, W.-Y. Hseih, J.-H. Lin, P.-J. Huang, K.-F. Wong, S.-T. Chen, Adsorption studies on the removal of an endocrine-disrupting compound (Bisphenol A) using activated carbon from rice straw agricultural waste, Sep. Sci. Technol., 47 (2012) 1514–1521.
  72. D. Lin, B. Xing, Adsorption of phenolic compounds by carbon nanotubes: role of aromaticity and substitution of hydroxyl groups, Environ. Sci. Technol., 42 (2008) 7254–7259.
  73. O.G. Apul, T. Karanfil, Adsorption of synthetic organic contaminants by carbon nanotubes: a critical review, Water Res., 68 (2015) 34–55.
  74. I. Bautista-Toledo, M. Ferro-Garcia, J. Rivera-Utrilla, C. Moreno- Castilla, F. Vegas Fernandez, Bisphenol A removal from water by activated carbon. Effects of carbon characteristics and solution chemistry, Environ. Sci. Technol., 39 (2005) 6246–6250.
  75. Y. Park, Z. Sun, G.A. Ayoko, R.L. Frost, Bisphenol A sorption by organo-montmorillonite: implications for the removal of organic contaminants from water, Chemosphere, 107 (2014) 249–256.
  76. W. Guo, W. Hu, J. Pan, H. Zhou, W. Guan, X. Wang, J. Dai, L. Xu, Selective adsorption and separation of BPA from aqueous solution using novel molecularly imprinted polymers based on kaolinite/Fe3O4 composites, Chem. Eng. J., 171 (2011) 603–611.
  77. H. Yamasaki, Y. Makihata, K. Fukunaga, Efficient phenol removal of wastewater from phenolic resin plants using crosslinked cyclodextrin particles, J. Chem. Technol. Biotechnol., 81 (2006) 1271–1276.
  78. F.-X. Qin, S.-Y. Jia, Y. Liu, H.-Y. Li, S.-H. Wu, Adsorptive removal of bisphenol A from aqueous solution using metalorganic frameworks, Desal. Wat. Treat., 54 (2015) 93–102.
  79. Z. Jin, X. Wang, Y. Sun, Y. Ai, X. Wang, Adsorption of 4-n-nonylphenol and bisphenol-A on magnetic reduced graphene oxides: a combined experimental and theoretical studies, Environ. Sci. Technol., 49 (2015) 9168–9175.