References

  1. K. Hashimoto, H. Irie, A. Fujishima, TiO2 photocatalysis: a historical overview and future prospects, JPN. J. Appl. Phys. Part 1: Regular Papers, Brief Commun., Rev. Papers 44 (2005) 8269–8285.
  2. K. Nakata, A. Fujishima, TiO2 photocatalysis: design and applications, J. Photochem. Photobiol., C, 13 (2012) 169–189.
  3. C.G. Feng, Y.Z. Li, X. Liu, Photocatalytic degradation of imidacloprid by phosphotungstic acid supported on a mesoporous sieve MCM-41, Chin. J. Chem., 30 (2012) 127–132.
  4. M.A. Schwegler, P. Vinke, M. Van der Eijk, H. Van Bekkum, Activated carbon as a support for heteropolyanion catalysts, Appl. Catal., A, 80 (1992) 41–57.
  5. L. Zhao, Y. Chi, Q. Yuan, N. Li, W.F. Yan, X.T. Li, Phosphotungstic acid anchored to amino-functionalized core-shell magnetic mesoporous silica microspheres: a magnetically recoverable nanocomposite with enhanced photocatalytic activity, J. Colloid Interface Sci., 390 (2013) 70–77.
  6. S.Y. Tao, Y.C. Wang, Y.X. Yu, Y.L. An, W.P. Shi, Hierarchically porous tungstophosphoric acid/silica hybrid for high performance vis-light photocatalysis, J. Environ. Chem. Eng. 1 (2013) 719–727.
  7. J. Thomas, S. Radhika, M.J. Yoon, Nd3+-doped TiO2 nanoparticles incorporated with heteropoly phosphotungstic acid: a novel solar photocatalyst for degradation of 4-chlorophenol in water, J. Mol. Catal., A, 411 (2016) 146–156.
  8. Q. Deng, W.H. Zhou, X.M. Li, Z.S. Peng, S.L. Jiang, M. Yue, T.J. Cai, Microwave radiation solid-phase synthesis of phosphotungstate nanoparticle catalysts and photocatalytic degradation of formaldehyde, J. Mol. Catal., A., 262 (2007) 149–155.
  9. K. Sahiro, Y. Ide, T. Sano, M. Sadakane, One-pot synthesis of microporous and mesoporous (NH4)3PW12O40 by reaction of in-situ generated PW12O403− with NH4+ in a strongly acidic solution, Mater. Res. Bull., 48 (2013) 4157–4162.
  10. T.H. Li, Q.G. Li, J.Y. Yan, F. Li, Photocatalytic degradation of organic dyes by La3+/Ce3+-H3PW12O40 under different light irradiation, Dalton Trans., 43 (2014) 9061–9069.
  11. C.N.R. Rao, A.K. Sood, K.S. Subrahmanyam, A. Govindaraj, Graphene: the new two-dimensional nanomaterial, Angew. Chem. Int., 48 (2009) 7752–7777.
  12. J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, S. Roth, The structure of suspended graphene sheets, Nature, 446 (2007) 60–63.
  13. T.V. Khai, D.S. Kwak, Y.J. Kwon, H.Y. Cho, T.N. Huan, H. Chung, H. Ham, C. Lee, N.V. Dan, N.T. Tung, H.W. Kim, Direct production of highly conductive graphene with a low oxygen content by a microwave-assisted solvothermal method, Chem. Eng. J., 232 (2013) 346–355.
  14. J. Xu, L. Wang, Y. Zhu, Decontamination of bisphenol A from aqueous solution by graphene adsorption, Langmuir 28 (2012) 8418–8425.
  15. H. Zhang, X.J. Lv, Y.M. Li, Y. Wang, J.H. Li, P25-graphene composite as a high performance photocatalyst, ACS Nano, 4 (2010) 380–386.
  16. Y.H. Zhang, Z.R. Tang, X.Z. Fu, Y.J. Xu, TiO2-graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: is TiO2-graphene truly different from other TiO2-carbon composite materials? ACS Nano, 4 (2010) 7303–7314.
  17. Y.H. Yang, E.Z. Liu, H.Z. Dai, L.M. Kang, H.T. Wu, J.F. Fan, X.Y. Hu, H.C. Liu, Photocatalytic activity of Ag-TiO2-graphene ternary nanocomposites and application in hydrogen evolution by water splitting, Int. J. Hydrogen Energy, 39 (2014) 7664–7671.
  18. Q.J. Xiang, J.G. Yu, M. Jaroniec, Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles, J. Am. Chem. Soc., 134 (2012) 6575–6578.
  19. S. William, W.S. Hummers, Preparation of graphitic oxide, J. Am. Chem. Soc., 80 (1958) 1339–1339.
  20. S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials, Nature, 442 (2006) 282–286.
  21. Y.H. Zhang, Z. R. Tang, X.Z. Fu, Y.J. Xu, TiO2-graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: is TiO2-graphene truly different from other TiO2-carbon composite materials? ACS Nano, 4 (2010) 7303–7314.
  22. S.D. Perera, R.G. Mariano, K. Vu, N. Nour, O. Seitz, Y. Chabal, K.J. Balkus, Hydrothermal synthesis of graphene-TiO2 nanotube composites with enhanced photocatalytic activity, ACS Catal., 2 (2012) 949–956.
  23. D. Huang, Y.J. Wang, L.M. Yang, G.S. Luo, Direct synthesis of mesoporous TiO2 modified with phosphotungstic acid under template-free condition, Micropor. Mesopor. Mater., 96 (2006) 301–306.
  24. E. Lee, J.Y. Hong, H. Kang, J. Jang, Synthesis of TiO2 nanorod-decorated graphene sheets and their highly efficient photocatalytic activities under visible-light irradiation, J. Hazard. Mater., 219–220 (2012) 13–18.
  25. W.L. Zhang, H.J. Choi, Silica-graphene oxide hybrid composite particles and their electroresponsive characteristics, Langmuir, 28 (2012) 7055–7062.
  26. Y. Yan, S.F. Sun, Y. Song, X. Yan, W.S. Guan, X.L. Liu, W.D. Shi, Microwave-assisted in situ synthesis of reduced graphene oxide-BiVO4 composite photocatalysts and their enhanced photocatalytic performance for the degradation of ciprofloxacin, J. Hazard. Mater., 250–251 (2013) 106–114.