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ABSTRACT

The multi-objective genetic algorithm (MOGA), aiming at determining the optimal set points
for controllers existed in the supervisory control layer, is developed to enhance the treatment
performance of a combined biological nitrogen and phosphorus removal wastewater treat-
ment process (i.e. an anaerobic-anoxic-oxic process). Firstly, a cascade ammonia controller that
consists of a primary proportional-integral (PI) controller and a secondary PI controller is set
up and tuned using the internal model control tuning rule. The primary controller is used to
control the ammonia concentration in the effluent and the secondary controller is used to con-
trol the dissolved oxygen concentration in the last reactor. This cascade controller could lead
to better set point tracking and disturbance rejection control performance. Then, the multi-
objective optimization (MOO) of the effluent ammonia controller set point and the nitrate con-
troller set point in the fourth reactor is performed using the MOGA. The two conflicting opti-
mization objectives are (1) effluent quality index which is a function of various main effluent
loads and (2) energy consumption which is the sum of aeration energy consumption and
pumping energy consumption. The MOO results indicate that the optimal set points for the
effluent ammonia concentration and the nitrate concentration in the fourth reactor are both
about 1.1 gN/m3. The cascade controller with the optimal set points has the capability of
enhancing the effluent quality and the energy-saving performance simultaneously.

Keywords: Multi-objective optimization; Genetic algorithm; Cascade control; Anaerobic-
anoxic-oxic process

1. Introduction

Due to the more stringent effluent quality stan-
dards in biological wastewater treatment processes
(WWTP), modeling, control, monitoring, and optimi-
zation issues have gained an increasing public

awareness during the last two decades [1,2]. The main
control objectives for the biological WWTP are: (1) to
meet the effluent quality requirement, (2) to maintain
the controlled variables at their set points for counter-
acting the effects of the changing loads and distur-
bances, and (3) to minimize the energy consumption
[3]. As one of the advanced control strategies, cascade
control has the advantages as follows. On the one
hand, this control structure is more effective to
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eliminate the strong disturbances that existed in the
influent in WWTP. On the other hand, identification
task could become easier because the unstable or
excessively slow process dynamics are stabilized or
made faster by the regulatory loop [4]. As a conse-
quence, cascade controllers have excited great interest
for improving the control performance of WWTP. Cho
et al. [5] developed a cascade controller to control the
nitrate concentrations in the predenitrifying process
using the external carbon dosage as a manipulated
variable. Furthermore, Liu and Yoo [6] proposed a
cascade model predictive control (MPC) strategy to
improve the effluent quality in a biological wastewater
treatment plant. It should be noted that the advanced
cascade control strategy which contains two control
loops is structurally a little more complicated com-
pared to the simple proportional-integral-derivative
(PID) control strategy.

In recent years, the benchmark simulation models
including BSM1 and BSM2 have become standard
simulation platforms for testing new control strategies
in the field of WWTP. These models can be used for
modeling the biological nitrogen (N) removal process
successfully [7,8]. However, they have the structural
limitation of not considering the phosphorus (P)
removal process, which should be taken into account
for achieving a more realistic simulation model in the
anaerobic-anoxic-oxic (AAO) process. To evaluate the
influence of control strategies on the AAO process,
Gernaey and Jorgensen [9] have developed a new sim-
ulation benchmark model that defines a default plant
layout, a biological process model with detailed model
parameters, realistic influent disturbances, and plant
performance indices. Since then, this AAO benchmark
model has aroused wide interest. For example, imple-
mented in the modified AAO benchmark platform,
the effluent quality controllers [10] were designed to
reduce the operating costs for the AAO process.

Controller set points could have significant
impacts on the performance of highly complex and
nonlinear WWTP. One straightforward approach to
determining the optimal set points is to construct the
operational maps that could find optimal set point
values by evenly changing the controller set points
within their normal bounds [11]. Although this
method is simple and easy to implement, it may fail
to find the best solutions for controller set points
because of the highly complex and nonlinear feature
of WWTP. Therefore, the optimization of controller set
points is necessary. A model-based set point optimiza-
tion method for the improvement of an AAO control
system was proposed [12]. This approach could obtain
better results compared with the operational map
approach, but it could not be applied to the control

system where multiple controllers’ set points need to
be optimized.

Alternatively, multi-objective optimization (MOO)
technique having the advantage that it can simulta-
neously optimize more than one conflicting objective
functions has been successfully applied to a good
deal of engineering applications [13–15]. Although the
MOO technique [16] has been applied to the BSM1,
to our knowledge, there is no literature about the
MOO of the AAO wastewater treatment process.
Therefore, the main contribution of this study is to
improve the control performance and reduce the
energy consumption simultaneously for the AAO pro-
cess using the MOO technique. To achieve this pur-
pose, an extra cascade controller was designed firstly,
followed by the MOO of the set points of two tuned
PI controllers.

The remainder of this paper is organized as fol-
lows. In the Material and methods section, we briefly
describe the AAO plant layout and the proposed cas-
cade control structure. Then, we explain the Pareto
front and list the key optimization parameters. Two
optimization objectives are also explained in this part.
A procedure showing the main steps to achieve a glo-
bal MOO is highlighted at the end of this section. In
the Results and discussion section, we evaluate the
control performance of the tuned cascade controller
based on an identified process model. The optimal set
points are obtained using the MOO technique. Finally,
we draw the conclusions.

2. Material and methods

2.1. AAO process

The basic AAO plant layout used for simulation is
similar to the one suggested by Gernaey and Jorgensen
[9]. The proposed cascade control structure for the con-
trol and optimization of a biological nitrogen and phos-
phorus removal process is shown in Fig. 1. This process
mainly consists of seven biological reactors with a total
volume of 6,749m3 and one settler with a volume of
6,000m3. The first two reactors used for phosphorus
removal are anaerobic reactors, the following two reac-
tors are anoxic reactors where the denitrification is per-
formed, and the last three reactors are oxic reactors
where the nitrification of ammonia to nitrate is happen-
ing. The activated sludge model No. 2d (ASM2d) [17],
which has the capability of modeling the biological
phosphorus removal process, was implemented. The
settler model was developed using the Takacs’s double
exponential settling velocity model [18].

In the simulated AAO process, the main measured
variables are the liquid flow rates in the pipes of
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influent, effluent, wastage, internal and external
recycles; air flow rates to the last three oxic reactors;
dissolved oxygen (DO) concentrations in the last three
oxic reactors; nitrate ðSNO3

Þ, ammonia ðSNH4
Þ, phos-

phate ðSPO4
Þ, and total suspended solids (TSS) concen-

trations in Reactors 2, 4, and effluent. The influent
disturbance has important effects on optimization and
control performance in AAO process. Fig. 2 shows the
diurnal variations of the dry weather influent data [9]
for influent flow rate (Qin), SNH4

concentration, and
SPO4

concentration. To improve the control perfor-

mance of the effluent ammonia concentration, a cas-
cade controller was designed and applied in the AAO
process. This controller consists of a primary PI
controller to control the ammonia concentration in
effluent and a secondary PI controller to control DO
concentration in the last reactor (Fig. 1).

2.2. Multi-objective optimization

Several well-known multi-objective genetic algo-
rithms, such as the vector evaluated genetic algorithm

Fig. 1. Schematic of the AAO process with a cascade controller and MOGA.

Fig. 2. Diurnal variations of the three influent disturbance variables under dry weather condition.
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(VEGA), the strength Pareto evolutionary algorithm
(SPEA), and the Pareto envelope-based selection algo-
rithm (PESA), have been developed to search for the
Pareto front [19]. The concept of Pareto front is shown
in Fig. 3 where points A and B correspond to non-
dominated solutions and point C corresponds to a
solution that is dominated by at least one of the solu-
tions corresponding to the Pareto front. As a mature
MOO technique, the non-dominated sorting genetic
algorithm II (NSGA-II) [20] was used in the current
work. Specifically, the population size and the number
of running generations were 30 individuals and 60,
respectively. The choice of these two parameters is
based on authors’ knowledge due to the shortage of
theoretical approach to determine them. The values
for the crossover and mutation probability related to
NSGA-II were set to 0.95 and 0.05, respectively.

To evaluate the control performance of the AAO
benchmark simulation model, two performance crite-
ria [9] including the effluent quality index (EQI)
which is the function of the effluent loads and the
energy consumption index (ECI) which is the sum of
the aeration energy consumption and the pumping
energy consumption are defined as follows:

EQI ¼ 1

1000ðtf � t0Þ
Z tf

t0

bTSS � TSSðtÞ þ bCOD � CODðtÞ þ bBOD � BODðtÞ
þbTKN � TKNðtÞ þ bNO3

�NO3ðtÞ þ bPtot
� PtotðtÞ

" #
QeðtÞdt

ð1Þ

ECI ¼ aAEAEþ aPEPE ð2Þ

where t0 and tf stand for the starting and ending
times; Qe is the effluent flow rate; COD, BOD, TKN,
NO3, and Ptot stand for chemical oxygen demand,
biochemical oxygen demand, total organic nitrogen,
nitrate, and total phosphorus concentrations in the
effluent, respectively, and these concentrations can be
calculated using the mathematical expressions
explained in more detail in [9]; AE and PE represent
the aeration energy and pumping energy, respectively;
b in Eq. (1) is the weighing factor, and a in Eq. (2) is
the cost factor.

The weighting factors together with some other
sources of uncertainties such as influent disturbances,
kinetics, and stoichiometry parameters have signifi-
cant impacts on the performance of the AAO process.
These uncertainties could be dealt with using sensitiv-
ity analysis and Monte-Carlo simulations [21]. Because
this work aimed at pursuing the optimal set points of
the involved controllers using the MOO technique, the
typical values of the weighting factors (bTSS = 2,
bCOD= 1, bBOD= 2, bTKN= 20, bNO3

¼ 20, bPtot
¼ 20,

aAE= 25, and aPE = 25) were used in this study, which
are in accordance with the ones proposed by Gernaey
and Jorgensen [9]. These two conflicting indices were
used as objective functions for the MOO.

2.3. Procedure for a global MOO

The whole procedure for fulfilling the MOO of the
proposed cascade control structure in the AAO pro-
cess is shown in Fig. 4. The AAO process model was
implemented using Matlab/Simulink S-functions.
Besides the two basic PI controllers (nitrate controller
and DO controller), the cascade control structure was
suggested and implemented to further improve the
effluent ammonia control performance. There are two
basic control loops in the cascade control: an inner
DO control loop and an outer effluent ammonia con-
trol loop. The process model for effluent ammonia
concentration was obtained through the system identi-
fication step. In this step, the pseudo-random binary
sequence (PRBS) test signal which is widely used for
the identification process in industry [22] was chosen
as the exciting input signal. After getting the excited
process measurements, the identification approach of
prediction error method (PEM) [23] was adopted to
identify a linear process model. Then, the internal
model control (IMC) tuning rule that is one of the
most widely used PI controller tuning methods [24]
was used to get the controller parameters. Finally, the
MOO was used to determine the optimal set points of
the nitrate controller and the effluent ammonia con-
troller.

Fig. 3. Schematic of the Pareto front for a two objective
function optimization problem.
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3. Results and discussion

3.1. Identification and cascade controller tuning

There are three PI controllers needed to be tuned
in Fig. 1. Because the IWA BSM1 suggests a set of

controller parameters for the nitrate PI controller and
the secondary DO controller, these parameters were
determined and modified just by trial and error. The
primary ammonia PI controller was tuned using the
model-based IMC tuning rule. The process identifica-

Fig. 4. Flowchart of the control system design in the AAO process.

Fig. 5. PRBS test signals for identifying effluent ammonia concentration dynamics.
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tion was carried out to obtain a system model for tun-
ing controller parameters.

To capture the dynamic properties of the process,
the sampling time of identification was chosen to be
15min. Besides, considering the energy cost of input
equipments (such as pumps) and persistent excitation
[22] during the identification test, the magnitude of
the PRBS test signal should be determined appropri-
ately. A high value of PRBS magnitude will unneces-
sarily increase the energy consumption or even cause
the process to be unstable if this value is set too high.
On the other hand, a too low value of the PRBS mag-
nitude will not provide persistent excitation for the
identification. Therefore, the PRBS magnitude was set
to 10% of the steady-state value in this study.

The data used for the process identification are
shown in Fig. 5. A fourth-order PEM model could
result in a satisfactory accuracy as shown in Fig. 6.
This PEM model was validated using a different set of

validation data. Over 95% fitting accuracy to the vali-
dation data was observed by using the PEM method.
So the accuracy of the model achieved was satisfac-
tory and this identified model can be used for the con-
troller tuning. Finally, all the parameters of three PI
controllers obtained are shown in Table 1.

Set point tracking and disturbance rejection experi-
ments were conducted to test the control performance
of tuned PI controllers. The process control response
to the set point change is shown in Fig. 7(a). The pro-
posed cascade controller exhibits the faster response
and the overshoot to the set point change is small.
Therefore, the closed-loop response for a set point
change is satisfactory. By using an inner loop and two
feedback PI controllers, cascade control can improve
the response to a set point change effectively.

As we know, WWTP happens to confront various
influent changes with respect to the changing loads
and the toxic load. It is of great interest to study how

Fig. 6. Comparison between the identified model data and the measured data.

Table 1
Tuned parameters of PI controllers in the AAO plant

PI controller parameters Cascade controller Nitrate PI controller

Secondary PI controller Primary PI controller

Proportional gain, Kp 100 �4 10,000

Integral time constant, Ti, d 0.002 0.02 0.015

Anti-windup time constant, Tt, d 0.001 0.01 0.01
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Fig. 7. Control performance of the tuned cascade controller: (a) set point tracking performance, (b) disturbance rejection
performance using the dry weather data.
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the controller performs under influent disturbances.
The simulation result in Fig. 7(b) demonstrates
that the proposed controller compensates for the
dry weather disturbance in a proper manner. By
employing a secondary control loop and a secondary
feedback controller, the cascade control strategy can
significantly improve the dynamic response to distur-
bances. The cascade controller could capture the pro-

cess characteristics and tackle the problem of influent
loading variations effectively.

3.2. MOO of controller set points

Effluent quality and energy consumption are two
important aspects when designing or modifying the
structure of the wastewater treatment plant. Aiming

Fig. 8. (a) Pareto front curve obtained using MOGA. (b) Box plot of the final population.
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at simultaneously optimizing these two plant perfor-
mance indices, the MOO technique was performed to
study the impact of the controller set points on plant
performance.

Before optimization, some detailed implementation
should be provided for a clear understanding of the
results. Firstly, the two design variables were con-
strained between 0.8 and 4 gN/m3 for the effluent
ammonia controller, and between 0.2 and 4 gN/m3

for the nitrate controller. These ranges span the nor-
mal operation periods for the set points of the con-
cerned controllers. Besides, limiting the ranges of
design variables could reduce computational load
when applying the proposed MOO technique in the
real plant. Secondly, for the open-loop instance, the
oxygen transfer coefficients of last three reactors were
set to 240, 240, and 150d�1, respectively. These values
are reasonable and widely accepted by the WWTP
simulation community. For the closed-loop instance,
the set points of the nitrate and DO controllers were
both set to 1 gN/m3 and 2 g (–COD)/m3, respectively.
It should be noted that the default parameters for the
open-loop and closed-loop simulations are the same
as the values suggested by Gernaey and Jorgensen [9]
for the comparison purpose.

As expected, the Pareto front curve in Fig. 8(a)
shows that the optimal solutions have better effluent
quality and lower energy consumption compared to
the open-loop and closed-loop cases. The performance
of closed-loop scenario is quite similar to that of the
Pareto front solutions, but the performance of open-
loop scenario is unsatisfactory in the sight of the large
EQI and energy consumption value. Among all the
optimal solutions, the one around the arrow mark in
Fig. 8(a) is a suggested compromise between the two
objectives of effluent quality and energy consumption.
Furthermore, the MOO results indicate that one set of
optimal set points from the Pareto curve (i.e. about
1.1 gN/m3 for the set point of effluent ammonia con-
centration and about 1.1 gN/m3 for the set point of

nitrate concentration in the fourth reactor) could
simultaneously reduce the energy consumption and
improve the effluent quality especially when com-
pared to the open-loop scenario.

The box plot contains information about the loca-
tion, spread, and skewness of the univariate variable.
So it is a useful tool to compare the distribution of
several data sets in one graph visually. The box plot
of the final population in Fig. 8(b) shows that (1) the
major population are gathering around 1 gN/m3 for
the set point of effluent ammonia concentration and
(2) the major population are gathering around
0.5 gN/m3 for the set point of nitrate concentration in
the fourth reactor.

The plant performances of the three control strate-
gies including the open-loop case, the closed-loop
case, and the optimal set points case are listed in
Table 2, where the performance criteria are EQI, AE,
PE, average daily sludge production for disposal
(Psludge), average ammonia, nitrate, total nitrate, and
total COD concentrations in the effluent. Because EQI
represents the levies or fines to be paid due to the dis-
charge of pollution, a good control strategy should
have small EQI from the strict regulation point of
view. Compared to the open-loop and closed-loop
cases, the case with optimal set points determined by
MOO could obtain the smallest EQI, AE, and Psludge,
which further validates the effectiveness of MOO tech-
nique.

4. Conclusions

A detailed procedure containing several key steps
for determining the optimal set points has been imple-
mented in the combined biological nitrogen and phos-
phorus removal wastewater treatment process. A
novel cascade control has been designed and properly
tuned using the IMC controller tuning rule to improve
the control performance of the effluent ammonia con-
centration. Then, the MOO based on the genetic algo-

Table 2
Comparison of the plant performances using dry weather disturbance influent data

Performance index Open-loop case
(KLa7 = 150)

Closed-loop case
(DO=2; SNO3

¼ 1)
Optimal set points case
(SNH4

¼ 1:1; SNO3
¼ 1:1)

EQI (kg poll.units/d) 14,153.2286 13,410.3196 13,326.0846

AE (kWh/d) 4,915.0000 4,728.0359 4,713.5333

PE (kWh/d) 241.3520 355.9424 326.6570

Psludge (kg/d) 3,286.3893 3,051.7281 3,020.0243

Effluent average ammonia conc. (g N/m3) 8.2533 4.4991 3.9211

Effluent average nitrate conc. (g N/m3) 10.4183 9.7277 10.9036

Effluent average total nitrate conc. (g N/m3) 19.7216 15.2821 15.8810

Effluent average total COD conc. (g COD/m3) 46.1026 46.1709 46.1825
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rithm was proposed and implemented. Finally, one
set of optimal set points for the effluent ammonia con-
centration and the nitrate concentration was deter-
mined. The integrated technique could result in a
satisfactory performance of effluent discharge and
energy saving.
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Nomenclature

AAO anaerobic-anoxic-
oxic

PESA Pareto envelope-
based selection
algorithmAE aeration energy

consumption rate PI proportional
integralASM2d activated sludge

model
No. 2d

PRBS pseudo-random
binary sequence

BOD biochemical
oxygen demand

Psludge average daily
sludge production
for disposalBSM1 benchmark

simulation model
No. 1

Ptot total phosphorus
concentration

BSM2 benchmark
simulation model
No. 2

Qin influent flow rate

DO dissolved oxygen

SNH4
ammonia
concentration

ECI energy
consumption
index

SNO3
nitrate
concentration

EQI effluent quality
index

SPO4
phosphate
concentration

IMC internal model
control

SPEA strength Pareto
evolutionary
algorithm

MOGA multi-objective
genetic algorithm

TKN total organic
nitrogen

MOO multi-objective
optimization

TSS total suspended
solids

MPC model predictive
control

VEGA vector evaluated
genetic algorithm

N nitrogen
WWTP wastewater

treatment process

NSGA-II non-dominated
sorting genetic
algorithm II

Greek

P phosphorus

a cost factor

PE pumping energy

b weighing factor

PEM prediction error
method
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