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ABSTRACT

In general, the operation conditions of water treatment plants happen to be affected by exter-
nal environmental variations such as temperature, viscosity, and loading changes. They
sometimes result in bad treatment performance due to fouling or sludge decay and some
process faults. Therefore, when designing a process model, negative effects of the external
variables are needed to be incorporated. The purposes of this study are to propose a new
external fuzzy partial least squares method (eFPLS) and apply it to predict the treatment per-
formance of a pilot-scale membrane bioreactor (MBR). The proposed eFPLS model can repre-
sent an interpretability of the original FPLS of the inner and outer relationship with the
viewpoint of physical meaning as well as keeping the capability of the original FPLS with
handling the nonlinear correlation between inputs and outputs, while incorporating opera-
tion condition changes by the external analysis. It was used to predict the transmembrane
pressure and the removal rates of chemical oxygen demand (COD) and total nitrogen in the
MBR as well as to monitor the fouling progress. The prediction performance of the eFPLS
model is compared with the other models of linear PLS and original FPLS. The results
obtained in this study confirm that the eFPLS model with external analysis could improve
not only the prediction efficiency but also the monitoring performance since it can efficiently
remove the effects of external variables.

Keywords: Membrane bioreactor; Fuzzy partial least squares; External analysis; External fuzzy
partial least squares; Partial least squares

1. Introduction

Partial least squares (PLS) method which captures
the linear relationship between independent variables
and response variables has proven to be a popular
and effective approach to problems in many scientific
and engineering fields [1]. The PLS model has some

advantages such as collinearity removal, statistical
interpretability, and graphical representation ability.
But the algorithms of PLS have some limitations such
as overfitting, nonlinearity, and so on [2]. Since many
practical data are inherently nonlinear, it needs to be
built a robust method that can model the nonlinear
relation [3].

Recently, studies on the nonlinear PLS (NLPLS)
models have been focused on the algorithm develop-
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ments and applications. Baffi et al. [4] proposed neural
networks PLS (NNPLS) that uses neural networks inner
models. Centner et al. [5] developed locally weighted
regression PLS (LWR-PLS) that uses linear PLS (LPLS)
as a regression method to make a locally weighted
model for every data. However, the results of several
NLPLS models go through overfitting or local minima.
To solve these problems, Bang et al. [3] proposed the
fuzzy PLS (FPLS) method that combines the PLS
method with the Takagi-Sugeno-Kang (TSK) fuzzy
model. The FPLS is an effective general nonlinear
regression modeling approach, since it can capture the
nonlinearity while maintaining the good interpretabil-
ity of LPLS.

On the other hand, the operation changes of feed
flow rate and set-point change of controllers are
expected to be external effects to the process and
should be distinguished from process faults. To tackle
the problem of external variables, several researches
have been suggested in the literature [6–8]. Kano et al.
[6] proposed a novel method for multimode process
monitoring which is based on external analysis. Ge
et al. [7] proposed a robust online monitoring approach
based on nonlinear external analysis for monitoring
multimode processes. Kim [8] applied external analysis
to monitor the indoor air quality in the subway station.
In this study, to remove external effect, the new predic-
tion strategy of FPLS considering external information
was proposed.

Note that the transmembrane pressure (TMP) in
membrane bioreactor (MBR) is directly proportional to
flux and the flux is strongly influenced by the temper-
ature. The temperature has an effect on nitrification
and denitrification efficiency of microorganism in the
biological reaction, since microbial enzymes are easily
susceptable by the variations of surrounding tempera-
ture. Hence, removal efficiencies of chemical oxygen
demand (COD) and nitrogen are strongly influenced
by surrounding temperature. Therefore, temperature
as an external information should be incorporated
when developing a prediction model of TMP, COD,
and nitrogen removal rate. Also, the monitoring
model needs to remove the effect of temperature
when designing the monitoring model.

This study consists of two main components: (1)
development of a new prediction model by combining
FPLS and external analysis; (2) application of eFPLS to
a pilot-scale MBR. The LPLS, original FPLS, external
LPLS (eLPLS), and external FPLS (eFPLS) have been
compared with the performances of the prediction
and the monitoring.

The remaining parts of this paper are organized as
follows. The first section introduces the basic theories
and algorithms of FPLS and external analysis. Then, the

eFPLS method is proposed in the materials and methods
section. The results and discussion are presented with
the MBR pilot plant. Finally, the conclusions are given.

2. External analysis

Changes in operating conditions which need to be
distinguished from faults or malfunctions are assumed
to be driven from the external effects [6]. Thus, the
monitored variables can be classified into three groups:
external variables, main variables, and other variables.
The main variables are affected by external variables
and other unmeasured variables. Hence, changes of
external variables and their effects on main variables
should be distinguished from faults. The main vari-
ables can be subdivided into two groups: the first
group is explained by external variables and the sec-
ond group is explained by the other variables [9]. The
concept of external analysis is shown in Fig. 1.

In external analysis, data matrix X can be expressed
as combination of main and external variables.

X ¼ ½GH� ð1Þ

where G is the matrix of external variables data and H
is the matrix of main variables data. The main matrix
H can be subdivided into two groups: GC, which is a
group affected by external variables; and E, which is a
group affected by other variables [6]. The regression
coefficient matrix C can be determined as sum of
squared errors.

C ¼ ðGTGÞ�1GTH ð2Þ

E ¼ H � GC ð3Þ

In this study, we focused on the error matrix E,
which can be obtained by getting rid of the effect of
changes of temperature as external variables in MBR
process. Because the temperature influences microbial
activity and TMP in MBR, the temperature should be
removed for improving the quality of the prediction
as well as the monitoring performance.

3. Fuzzy partial least square (FPLS)

Since many practical data are inherently nonlinear
in the MBR process, there is a need for a nonlinear
PLS modeling method that can attain the robust
regression property of the LPLS method as well as
represent any nonlinear relationship. Therefore, FPLS
method as a nonlinear modeling method is proposed
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in this study. The FPLS method combines the PLS
method with the TSK fuzzy model. The PLS outer
projection is used to decrease the dimension, and the
TSK fuzzy inner model is used to take the nonlinear-
ity in the projected latent space [3]. By using TSK
fuzzy model, it also has robust nonlinear regression
property and local interpretability. Fig. 2 shows a
structure of the basic FPLS method. Score vectors
(th and uh) are presented to train the TSK fuzzy inner
model fh(�), which follows Eq. (4).

uh ¼ fhðthÞ þ eh ð4Þ

where eh represents the regression error. The compo-
nents of fh(�) need to be decided to minimize the
regression error without overfitting.

4. Materials and methods

4.1. Proposed method

It is well known that the treatment performance of
MBR is dependent on the biological reactions with

nonlinear kinetics of microbiology and the tempera-
ture. The prediction model of MBR plants should be
incorporated with the information of temperature
effect on the microbiological reaction kinetics. A new
external FPLS (eFPLS) which combines the FPLS
method with external analysis is proposed in this
paper. It can represent an interpretability of the origi-
nal FPLS of the inner and outer relationship with the
viewpoint of physical meaning and the capability of
the original FPLS with handling the nonlinear correla-
tion between inputs and outputs, while incorporating
operation condition changes by the external analysis.

The integrated scheme the eFPLS model is
shown in Fig. 3. First, the measured data of MBR
process are collected and preprocessed. The second
step is to detect for outliers missing value imputa-
tion. The next step is to select the external variable
for external analysis in MBR process. TMP is
strongly influenced by temperature as external infor-
mation in MBR process. Hence, temperature is
selected as external variable. After the temperature
which is an external variable is removed from the
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Fig. 2. The structure of FPLS method.

Fig. 1. The concept of external analysis.
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overall process by external analysis, this idea is
combined with FPLS and applied to modeling and
monitoring as eFPLS in the MBR process. In this
study, input variables were consisted of tempera-
ture, flux, air flow rate, and mixed liquor suspended
solid (MLSS) and response variables were consisted
of TMP, COD removal rate, and N removal rate. To
raise the efficiency of prediction, input variables of
the influent information that are in yesterday and
the day before yesterday (TMPt-1, TMPt-2, COD
removal rate and N removal rate on yesterday) are
added. Then the response variables are predicted
using the eFPLS model in the MBR process.

To check the prediction ability of the eFPLS model,
eFPLS is compared with linear PLS, external PLS, and
conventional FPLS. For the predictive accuracy of
these comparisons, a root mean squared error (RMSE)
is calculated in Eq. (5).

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 ðYi � Yi
^ Þ2

n� 1

s
ð5Þ

where Yi is the real value, Ŷi is the predicted value,
and n is the number of observations.

4.2. A pilot-scale MBR process

MBR process combines the biological degradation
process with a direct solid–liquid separation by mem-
brane filtration [10]. MBR offers major advantages
over conventional activated sludge (CAS) system: a
smaller footprint, less sludge production, and better
effluent quality [11]. Hence, it becomes the important
wastewater treatment technology.

MBR plant used in this study locates at Y-city,
Korea. It consists of four reactors: anoxic 1, aerobic,
anoxic 2, and a membrane bioreactor with capacities
of 38, 63.8, 38, and 24.3m3, respectively (Fig. 4).
This MBR plant has been operated at a constant-
flux (or constant-flow rate) mode. The membrane
flux of the pilot-scale MBR varied from 17.5 to 25.7
L/(m2-h), with a suction cycle of nine minutes fol-
lowed by one-minute relaxation (no suction). The
operation temperature was from 15.5 to 25.6�C.
Sludge retention time (SRT) was set to more than
9d, and TMP was kept within the period of 18 to
23 kPa. The periodic coarse bubble was supplied to
the membrane to minimize the membrane fouling
[12,13].

The samples were analyzed for biochemical oxy-
gen demand (BOD), COD, total nitrogen (TN) and

Fig. 3. The integrated scheme of the proposed eFPLS model.
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total phosphorus (TP), and total suspended solids
(TSS). All influent concentration measurements of
BOD, COD, TN, TP, and TSS were conducted gravi-
metrically in accordance with Standard Methods [14].
Table 1 shows the average influent concentrations of
BOD, COD, TN, and TP for one year in Y-city.

5. Results and discussion

The total data set from an MBR pilot plant in Y-
city, Korea is used from 1 December 2008 to 25 April
2009 with a number of 107 observations. In this study,
the data-set is divided as period of cleaning in MBR
plant, since TMP is changed by period of the chemical
cleaning of the membrane. The first 61 observations
are used to develop the prediction model as a training
data-set which presents before the cleaning in the
MBR plant. The remaining 46 observations after
the chemical cleaning are used as test data-set to see
the validation capability of the model.

5.1. External analysis

The preliminary study has been done to see the
effect of external variable on the treatment perfor-
mance. The effect of temperature which is an external
variable in MBR plant was removed from the overall
process. Fig. 5 shows the loading plots obtained for

original data and treated data using external analysis
and explains the correlation among the variables.
Fig. 5(a) presents two clusters in the loading plot. The
first cluster contains TMPt�1, TMPt�2, and one previ-
ous day’s N removal rate. The second cluster is
related to MLSS, flux, air flow rate, and one previous
day’s COD removal rate. On the other hand, there is
only one cluster in the loading plot of external data as
shown Fig. 5(b). The cluster in Fig. 5(b) contains air
flow rate, COD removal rate on yesterday, TMPt�1,
TMPt�2, and N removal rate on one day before. It
means that the effect of temperature as the external
variable was removed from the MBR process by
applying external analysis. The effect of air flow rate
on TMP, COD, and N removal rate was more signifi-
cant rather than previous result. After the external
analysis, we need to analyze the removed parts for
better prediction model of MBR process.

5.2. External FPLS (eFPLS)

Fig. 6 shows the fuzzy PLS inner relation model in
the third and fourth latent factors. The scatter points
represent nonlinear trends in these plots. The linear
PLS cannot cope with this situation which is pre-
sented as nonlinear data. However, the FPLS can give
a direct and interactive way of treating such nonlin-
earities [3]. The score plots in third and fourth factor
suggest that the inner relation may be caused by a
combination of three trends. Hence, three fuzzy rules
were chosen to model this relation. And score plots in
other factors show the similar nonlinearity (not
shown). To know the superiority of FPLS over linear-
PLS (LPLS) in terms of nonlinear prediction ability,
the predictive results obtained using FPLS and LPLS
are compared. In addition, the prediction results
obtained using external prediction methods (eFPLS
and eLPLS) are compared with those obtained using
FPLS and LPLS.

Table 1
Influent conditions in a pilot-scale MBR process [12]

Measurements Mean concentration

Flow 25m3/d

COD 301 g COD/m3

BOD 166 g O2/m
3

TN 38 g N/m3

TP 6.4 g P/m3

Fig. 4. Layout of a pilot-scale MBR plant [12].
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Fig. 7 shows the prediction results of TMP, COD,
and N removal rate using eFPLS and eLPLS models.
As shown in Fig. 7(a), the prediction performances of
both eFPLS and eLPLS on TMP are quite good since
temperature effect was removed from the original
data-set by applying external analysis. In Fig. 7(b) and
(c), prediction performances of COD and N removal
rates are worse than those of TMP, since the flux and
air flow rate appropriate variables for predicting COD
and N removal rates among the used X variables are

not. On the other hand, other independent variables
of flux and air flow rate cannot predict the removal
rate of COD and nitrogen. COD and N removal rate
could not be predicted accurately by eFPLS.

The RMSE values of TMP, COD, and nitrogen
removal rates obtained using LPLS, FPLS, eLPLS and
eFPLS are compared in Table 2. It represents that
four models have significantly different RMSE values.
First, to model TMP, COD, and N removal rate, the
RMSE values obtained LPLS are 0.46, 0.82, and 0.94,
respectively; those obtained using FPLS are 0.32,
0.66, and 0.86, respectively; those obtained using
eLPLS are 0.40, 0.73, and 0.90, respectively; those
obtained using eFPLS are 0.28, 0.63, and 0.79, respec-
tively. As summarizing these results, it confirms that
the FPLS and eFPLS models could predict more
accurately than the LPLS and eLPLS, since the non-
linear relationship was embedded in most indepen-
dent variables. Note that the TMP is directly
proportional to flux in MBR process and the flux is
strongly influenced by external temperature. The
COD and N removal rates are also strongly influ-
enced by temperature, since the temperature influ-
ences on nitrification and denitrification efficiency of
microorganism in the biological reaction [13]. Hence,
when the effects of external variable were removed
by external analysis, it is clear that eLPLS and eFPLS
prediction models have for predicting the response
variables (especially TMP) superiority over LPLS and
FPLS models. On the other hand, it represents that
both LPLS and eLPLS models could not predict more

Fig. 5. Loading plots of (a) original data and (b) external data.

Fig. 6. FPLS scores of (a) third and (b) fourth latent factor.
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accurately than the original FPLS model, even
though external analysis was carried out. Therefore,
it confirms that FPLS can predict well for nonlinear
data, where MBR data have strong nonlinearity.

6. Conclusions

The eFPLS model was suggested to monitor the
effect of temperature on biological process reaction as
well as to predict the TMP and the treatment perfor-
mance in an MBR process. The results in a pilot-scale
MBR plant show that the proposed eFPLS model
could improve the prediction accuracy as well as the
monitoring accuracy of MBR process than the original
LPLS and FPLS. It confirms that external variable of
wastewater temperature influences the operation
change and treatment performance of MBR. Moreover,
our ongoing research is focused to develop a new
dynamic nonlinear external model, which uses the
dynamic external analysis model for external variable
modeling purposes and the nonlinear neural network
model for monitoring unexpected process faults.
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Nomenclature

BOD — biochemical oxygen demand, g O2/m
3

C — regression coefficient matrix

CAS — conventional activated sludge system

COD — chemical oxygen demand, g COD/m3

eh — regression error

E — error matrix

eFPLS — external fuzzy partial least squares

eLPLS — external linear partial least squares

fh(�) — inner TSK fuzzy model

FPLS — fuzzy partial least squares

G — matrix of external variables data

GC — group affected by external variables

H — matrix of main variables data

LPLS — linear partial least squares

LWRPLS — locally weighted regression partial least
squares

MBR — membrane bioreactor

MLSS — mixed liquor suspended solid, g /m3

n — number of observations

TN — total nitrogen, g N/m3
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Fig. 7. Prediction performance of eFPLS and eLPLS for (a) TMP, (b) COD removal rate, and (c) N removal rate.

Table 2
RMSEs of LPLS, FPLS, eLPLS, and eFPLS

RMSE LPLS FPLS eLPLS eFPLS

TMP (kPa) 0.46 0.32 0.40 0.28

COD removal rate (g COD/
m3)

0.82 0.66 0.73 0.63

N removal rate (g N/m3) 0.94 0.86 0.90 0.79
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NLPLS — nonlinear partial least squares

NNPLS — neural networks partial least squares

PLS — partial least squares

RMSE — root mean squared error

SRT — sludge retention time, d

th — input score vector

TMP — transmembrane pressure, kPa

TP — total phosphorus, g P/m3

TSK — Takagi-Sugeno-Kang

TSS — total suspended solids, g /m3

uh — output score vector

X — data matrix

Yi — real value

Ŷi — predicted value
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