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ABSTRACT

Monitoring reverse osmosis (RO) membrane conditions is an important task because it helps
reduce the operation and maintenance cost in the RO membrane desalination systems by
achieving long membrane lifetime and energy saving. As biological interactions between the
membrane itself and microorganism cause the rapid degradation of membrane performance,
it is crucial to identify and quantify potential biofoulants that are sensitive to each specific
RO membrane. This study proposed a biofouling prediction method that indirectly quantifies
the degree of biofouling by comparing the fluorescence excitation-emission matrix (EEM) of
foulants sampled on the fully fouled RO membrane and those of brine samples from cur-
rently operating RO system. The experiment showed that the similarity distance measured
from the comparison between the two fluorescence EEMs tends to increase when brine
samples were secured from relatively clean RO membranes.

Keywords: Similarity measuring; Biofouling; Reverse osmosis membrane; Fluorescence excita-
tion-emission matrix; Principal component analysis

1. Introduction

Reverse osmosis (RO) desalination plants have
nowadays played a significant role in water supply
not only to compensate the water shortage caused by
environmental contamination, but also to meet the
fresh-water demand arising from growing population.

Even though RO membrane system is recognized as
one of the leading desalination technologies, it has
some economical issues to be resolved such as low
energy efficiency and membrane replacement costs.

Membrane biofouling, which occasionally occurs as
time elapses due to the developed biofilms, has been
considered as a significant problem that affects the
overall RO system performance because it causes a
drop of permeate flux, which requires more energy to*Corresponding author.
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generate more pressure for keeping the same flux of
potable water, and shortens the membrane lifetime
leading to an increase in the replacement cost of RO
membranes. Timely membrane treatments such as
chemical cleaning can prevent an abrupt performance
degradation of RO membranes and effectively defer
membrane replacement due to fouling, scaling, and
degradation, resulting in operation and maintenance
cost reduction of RO systems [1]. To perform cost-effec-
tive membrane treatments, the development of a foul-
ing index that represents the degree of membrane
fouling is crucial. Conventionally, membrane autopsy
was performed for investigation of the characteristics of
foulants on membrane; however, it is an expensive
method because damage of the membrane is inevitable
for the examination [2]. Instead, several indirect fouling
prediction methods such as silt density index (SDI),
modified fouling index (MFI), ultrasonic time-domain
reflectometry (UTDR), and membrane fouling simula-
tor (MFS) were developed as an alternative to the direct
and destructive method. SDI, which is the most com-
monly used method of the indirect and non-destructive
measurements of membrane fouling, is used as an indi-
cator representing the amount of particles related to the
membrane fouling. It is based on the ratio of the time it
takes for 500ml feed water to flow through a membrane
filter with a pore size of 0.45 lm and 47mm in diameter
at a certain pressure to the time it takes for the same
amount of feed water to flow through the same filter
after 15min. However, it has been reported that SDI is
not suitable for the fouling indicator of RO membranes
with a pore size smaller than 0.45lm because it does
not consider the particulate matter less than 0.45lm [3].
MFI has been thought to be an upgraded version of
SDI. However, because it uses the same membrane fil-
ter as that of SDI, it has the same problem in represent-
ing the degree of membrane fouling [4]. UTDR
monitors the development and growth of fouling layer
in real-time by exploiting the amplitudes and arrival
time differences of the ultrasonic waves reflected from
the membrane surface and the layer of foulants on the
membrane [5]. MFS is a miniaturized testing device
made of the same material as spiral-wound RO mem-
branes, which allows detecting the pressure drop,
observing the membrane surface through the window,
and analyzing the coupons of the MFS membrane [6].
Since these previous approaches try to evaluate the
fouling potential capacity of the feed water before pass-
ing the RO membrane, it is hard to estimate the fouling
state of RO membrane itself.

Membrane foulants can be classified as inorganic
compounds, colloidal or particulate matter, dissolved
organics, chemical reactants, and microorganisms. Bio-
fouling caused by microorganism is thought to be the

major problem because all other foulants can usually be
removed by pre-treatment steps, and it only requires a
few colonies to be present to develop into a biofilm.
Furthermore, microorganisms are ubiquitous in most
water systems and tend to adhere to surfaces and mul-
tiply on any surface in contact with the water treatment
system. Once attached to the membrane surface, micro-
organisms can then grow and rapidly increase the
amount of extracellular polymeric substances (EPS)
(polysaccharides together with proteins and com-
pounds such as DNA derivatives) in order to survive
and form a mature biofilm [7]. These EPS compounds
are high-molecular weight complexes, and include car-
bohydrates, proteins, nucleic acids, lipids, and other
polymeric compounds that can be secreted by microor-
ganisms into their aggregates [8]. It has also been
reported that the proteins and humic-like substances of
these compounds generate fluorescence signals because
they contain a large aromatic structure with functional
groups [9]. This fluorescence, emission spectra when
molecules re-emit absorbed light at a different wave-
length, can be measured via fluorescence spectroscopy.
In previous studies, fluorescence spectroscopy has been
shown to be very sensitive and hence has been widely
used to identify the structure and type of dissolved
organic matter (DOM) in fields such as marine and
fresh water environments [10]. Indeed, a great deal of
research has been conducted in attempts to classify and
characterize the DOM type using a fluorescence excita-
tion emission matrix (EEM), in which regions respond
to different types of DOM functional groups. As time
passed, the RO membrane is covered with foulants that
might detach from or attach to the RO membrane;
therefore, the fluorescence EEM changes in the brine
are closely related to foulants directly affecting the RO
membrane. For this reason, we propose an online and
non-intrusive method to predict the condition of RO
membranes by comparing the fluorescence EEM of
brine and that of foulants sampled on fouled RO mem-
branes. This method takes the fluorescence EEM of
sampled foulants as a reference since fluorescence EEM
of foulants on RO membrane directly shows the
affected materials on the membrane, and quantifies the
similarity change between the reference and
the fluorescence EEM of brine sampled during RO
operation.

2. Materials

2.1. Samples collection and treatment

The water samples were collected from a local
plant using an RO membrane system plant located
close to the Yellow Sea in South Korea. In this system,
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raw seawater was treated using a three-stage filtration
process: (1) a multimedia filter, (2) a microfiltration
(MF) membrane filter, and (3) an RO membrane
module. Samples were collected at the following
stages: raw seawater (R) in the storage tank, feed
water of the RO membrane (F) that was treated by
multilayer and MF membrane filtration, permeate (P)
that passes through the RO membrane, and finally the
brine (B), which is concentrated; a schematic of the
system is shown in Fig. 1. The water samples were
stored in sampling bottles at 4�C and measured
within 3days after sampling; the pH of the water
samples was not adjusted.

The specifications of RO membrane were a
polyamide thin-film composite, 8.0 inch (203mm) in
size. The RO membrane was replaced due to a decline
in membrane performance. At that time, the feed side
of the fouled RO membrane was collected because it
was seriously fouled. To obtain small fractions, the
fouled RO membrane was cut into pieces; 10 frag-
ments (1� 1 cm) were extracted at a clean bench and
then immersed in 20mL deionized water. These frag-
ments were treated with ultrasound pulses for 1-min
periods, which were repeated 10 times to avoid gener-
ating heat. To detach the remaining foulants from the
membrane fragments, the treated fragments were
rinsed with 30mL deionized water.

2.2. Fluorescence analysis

The water samples and treated fouled RO
membrane were analyzed by a fluorescence spectro-
photometer (F-2500 FL spectrophotometer, Hitachi
High-Technologies Corporation, Japan) at room tem-
perature (�22�C). The fluorescence EEM data of the
samples were then modeled at an excitation wave-
length ranging from 220 to 490 nm and emission wave-
length from 220 to 490 nm, with 10 nm sampling
intervals. The excitation and emission slits were main-
tained at 5 nm and the scanning speed was set at

3,000 nm/min. The voltage of the photomultiplier tube
was 700V. During the fluorescence analyses, the Raman
scattering peak intensity recorded for deionized water
at Ex/Em=348/397nm was examined in order to con-
firm there were no significant fluctuations in the perfor-
mance of the spectrophotometer lamp or other
hardware; deionized water was used as the blank
sample.

2.3. Fluorescence data pretreatment and determination of
membrane fouling indicator

Obtained fluorescence EEM was pretreated for
investigation of Rayleigh and Raman light scattering
regions using MATLAB 7.9.0 with EEMcut [11]. First,
the fluorescence EEM of feed water is subtracted from
that of brine in order to exclude the feed-specific effects.
In other words, we can eliminate the feed-specific char-
acteristics through the relative differences between the
fluorescence EEM of feed water and brine.

3. Proposed algorithm

We propose a principal component analysis
(PCA)-based method that quantitatively shows how
much the fluorescence EEM of brine is correlated to
that of fouled membrane in order to indirectly predict
the degree of fouling developed in the RO mem-
branes. The PCA is a very powerful technique to
extract a set of characteristic features from a large data
by dimension reduction [12]. Our method aims to
quantify the similarity change of the fluorescence
EEM of brine samples from the reference fluorescence
EEM of fouled membrane over time. We generate a
set of multiple synthetic data from the reference fluo-
rescence EEM and use it for the training process of
PCA technique. The synthetic data (C1 and C2 data in
Fig. 2) are generated by selecting peak points in the
fluorescence EEM data and applying the Gaussian
filter to the original data (R in Fig. 2) at each selected

Fig. 1. Schematic of desalination system using an RO membrane (1: raw seawater storage tank; 2: feed pump; 3: multimedia
filter; 4: 1st and 2nd micro filter; 5: high pressure pump; 6: RO membrane module; 7: brine; 8: permeate). The circles indicate
the sampling point of water samples: R-raw seawater; F-feed water for RO membrane; P-permeate, and B-brine.
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peak point. Note that peaks of fluorescence EEM in a
wavelength range indicate the existence of particular
substances that can cause the biofouling of RO mem-
brane [13]. Therefore, each synthetic data can be con-
sidered as an emphasized variation of the reference
fluorescence EEM data for the corresponding fouling
substances. The eigenvectors can be obtained in the
same manner as done in conventional approaches.
Then, the feature vector for a fluorescence EEM data
is obtained by projecting the data onto the eigenvec-
tors. The similarity between the fluorescence EEM of
the reference and a brine sample is finally computed
by calculating the Euclidean distance between two
corresponding feature vectors.

Algorithm 1. Generating the multiple synthetic data

Require: A two-dimensional M�M matrix R of inten-
sity value. hd indicates the minimum distance. N is the
number of peak points to be selected. j means covari-

ance
j 0
0 j

� �
. Both x and y are an N� 1 column vector

for representation of the x- and y-coordinate of the
selected peak point, respectively. Gi is the M�M Gauss-
ian distribution matrix with the mean of [xi, yi] and the
covariance j. Ci is the M�M matrix generated by ele-
ment-by-element multiplication of Gi and R.

1: [x, y]  FindPeak(R, hd, N);

2: for i=1 to N do

3: Gi  GaussianDistribution([xi, yi], j);
4: Ci = Gi � R;
5: end for

Algorithm 2. Computing the eigenvectors

Require: M�M synthetic data Ci for i = 1, . . ., N. SVD
(�) is the singular value decomposition function. k is the
number of the chosen column vectors of V.

1: for i=1 to N do

2: si  vectorized Ci;

3: end for

4: �s  PN
i¼1 si=N;

5: for i=1 to N do

6: /i  si � �s;

7: end for

8: W  PN
i¼1 /i � /T

i =N;

9: [U,S,V]  SVD(W);

10: Store the first k columns of V.

Algorithm 3. Computing the Euclidean distance

Require: k columns of V. M2� 1vectorized reference r
and test data t. vi denotes the i-th column vector of V.
ED(�,�) symbolizes the function for measuring the
Euclidean distance.

1: for i=1 to k do

2: ui  ðr � �sÞ � vi;
3: wi  ðt � �sÞ � vi;
4: end for

5: distance  ED(u,w);

3.1. Generating the multiple synthetic data

Let R denote the fluorescence EEM of the fou-
lants on a fully fouled RO membrane, which is a
two-dimensional M�M matrix. From the reference
R, we generate N synthetic data (i.e. Ci for i= 1, . . . ,
N). In order to make each synthetic data Ci represent
excitation-emission pair of the i-th dominant foulants,
we first select the i-th largest peak points and apply
the Gaussian filter, which can filter out all the mea-
surement data except the points near the selected
peak point. During the peak selection procedure, it is
very important to mitigate the effect of local minima

Fig. 2. Procedure of the proposed algorithm (R: fluorescence EEM of fouled membrane, C1 and C2: synthetic fluorescence
EEM generated from R, T: fluorescence EEM of brine sample to be evaluated, ~X: eigenvectors extracted from synthetic
fluorescence EEMs).
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due to measurement noises of fluorescence EEMs.
The selected peak points need to be away from each
other by more than a minimum distance hd. Staring
from the largest peak, we select N peak points. If the
i-th peak point candidate is within hd from the j-th
peaks with j< i, we ignore the peak point candidate
and select the next largest one as the candidate
point. It can prevent insignificant peaks that are close
to each other from being selected. Then, Ci is
obtained by applying multivariate Gaussian distribu-
tion centered at the i-th peak point to R. Each multi-
variate Gaussian distribution has the mean of the
corresponding peak point and the covariance of

j 0
0 j

� �
. The detailed procedures are shown in

Algorithm 1.

3.2. Extracting the eigenvectors from the training set

In order to obtain the principal components of R,
we apply PCA to the synthetic data-set. First, we con-
vert Ci into si in an M2� 1 vector format, which
serves as a training set of PCA. Then, si is centerized
by extracting the average of the training set in order
to remove a positional bias of the training set as fol-
lows: /i ¼ si ��s where �s ¼PN

i¼1 si=N. The covariance
matrix W ¼PN

i¼1 /i � /T
i =N is obtained to capture the

variation among the training set. By using SVD, the
eigenvectors of the training set are obtained. The
eigenvectors are the principal components that can
efficiently represent the training data-set. In order to
exclude a trivial variation of the training set, we select
the most significant k eigenvectors, which are denoted
by vi for i= 1, . . . , k. A symbolic description is pro-
vided in Algorithm 2.

3.3. Calculating the euclidean distance using feature
vectors

Given the eigenvectors of the training data-set, we
obtain the feature vector of fluorescence EEM data-set
by projecting the data-set onto the eigenvectors. The
vectorization of fluorescence EEMs of the reference R
and the test data T is centered and projected onto r
and t, respectively, as follows:

u ¼ ½u1;u2; . . . ; uk�
w ¼ ½w1;w2; :::;wk�

where

ui  ðr � �sÞ � vi
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Fig. 3. (a) Fluorescence EEM of the foulants on the fouled
RO membrane and its vectorization. (b) Eight synthetic
fluorescence EEMs generated from (a) and their
vectorizations.
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wi  ðt � �sÞ � vi;

where r and t are the vectorization of R and T, respec-
tively.

The similarity distance between u and w is
obtained by calculating the Euclidean distance of each
feature vector as shown in Algorithm 3.

EDðu;wÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk

i¼1
ðui � wiÞ2

vuut :

4. Results

In order to evaluate our proposed algorithm, we
prepared a reference fluorescence EEM data of foulants

on fully fouled RO membrane and performed the pre-
processing, which is explained in detail in the previous
section 2. The reference fluorescence EEM has the vec-
tor with a dimension of 784 as shown in Fig. 3(a). We
selected eight peak points from the reference data and
generated the corresponding synthetic reference data
for the training set. Those generated data Ci and the
corresponding vector si are depicted in Fig. 3(b). After
performing a PCA on the training set, we chose the
eigenvectors corresponding to the first five largest
eigenvalues that account for almost 100% of the total
variance of 784 eigenvalues. Fig. 4 shows the fluores-
cence EEM data of brine sampled at a different time
from RO membrane, which correspond to different
fouling conditions, i.e. fully fouled state, clean state
after membrane replacement, after a two-month opera-
tion, and after chemical treatment, as well as the fluo-
rescence EEM of the foulants on fully fouled RO
membrane. Once those data were projected onto the
selected five eigenvectors, each data can be represented
as a set of five features. Table 1 shows the features of
the corresponding fluorescence EEM spectra in Fig. 4.
The Euclidean distance between the feature vector of
brine sample and that of foulants is shown in Fig. 5. We
observed that the fluorescence EEM of brine sampled
from (a) had the smallest value when comparing with
(e). It implies that they are closely correlated with each
other. The distance for (b) and (e) apparently increased
due to the membrane replacement. After the time
elapse, the difference between the fluorescence EEM of
(e) and (c) decreased as the membrane was being con-
taminated. When the chemical treatment was per-
formed, the distance between (e) and (d) increased
again. This indicates that the membrane at (d) became
considerably clearer than (c).

4.1. Brief description of the application

The software implementing the proposed algo-
rithm was developed with Java programming lan-
guage of Java development kit (JDK) 1.7.0. Fig. 6
shows a snapshot of the graphic user interface

Fig. 4. Fluorescence EEM spectra of brine sampled at (a) fully fouled RO membrane, (b) clean state after membrane
replacement, (c) intermediate state after a two-month operation, (d) refreshed state after chemical cleaning, and (e)
fluorescence EEM of foulants sampled from (a).
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Fig. 5. Euclidean distance between the feature vector of
foulants on RO membrane and that of brine samples
obtained from different fouling conditions in Table 1.

Table 1
The first five features of each fluorescence EEM spectra

(a) (b) (c) (d) (e)

PC1 326.39 356.93 373.11 304.84 �45.34
PC2 35.20 �35.33 �1.22 �106.75 182.98

PC3 29.38 13.14 38.39 22.01 �164.24
PC4 �96.47 �93.88 �74.78 �113.75 25.35

PC5 32.43 61.06 29.19 129.29 �111.71
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(GUI). We provide a brief explanation for the GUI
of the developed software as follows: Part (a)
includes the controls for creating a new project or
opening an existing project of a certain membrane
module. In part (b), there are three buttons for load-
ing the fluorescence EEMs of foulants taken from
the RO membrane, brine, and feed water, respec-
tively. As the data-sets are stored in an MS Excel
file format, we implemented the data I/O functions
with JExcelApi or a JAVA library. Part (c) enables us to
calculate the distance by applying the proposed algo-
rithm to the loaded data, and then to save the similarity
distance results in an XML format. Note that XML is a
well-designed and standardized textual format for
structured documents to be readable over the Internet,
and has been used in a wide variety of applications
thanks to its simplicity, generality, and usability. Part
(d) shows the overall information about the current
project. Parts (e) and (f) illustrate the 3-dimensional
plots for fluorescence EEM spectra of the reference and
brine samples and a trend of variation in distance,
respectively.

5. Conclusion

In this study, a novel method to evaluate the
degree of biofouling of currently operating RO mem-
brane was developed. Unlike several previous indirect
and nondestructive methods that measure fouling
potential based on feed water, this proposed method
can predict the membrane condition based not only
on feed water and brine samples, but also on foulants
on fouled RO membranes. Experimental results sup-
port our hypothesis that the far distance appears in
the case of comparing with the brine sampled from
the relatively clean RO membrane. This approach can
be used for assessment of the cleaning performance
and extended to other applications related to the
membrane biofouling as well.
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