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ABSTRACT

Reverse osmosis (RO) membrane process has been considered a promising technology for
water treatment and desalination. However, it is difficult to predict the performance of pilot-
or full-scale RO systems because numerous factors are involved in RO performance, includ-
ing membrane scaling, fouling, and deterioration. This study was intended to develop a
practical model for the analysis of pilot-scale RO processes. A genetic programming (GP)
technique was applied to correlate key operating parameters and RO permeability statisti-
cally. The GP model was trained using a set of experimental data from a RO pilot plant with
a capacity of 1,000m3/day and then used to predict its performance. The comparison of the
GP model calculations with the experiment results revealed that the GP model was a useful
tool for predicting the efficiency of pilot-scale RO systems. The GP model also allowed the
in-depth analysis of RO system performance even under unsteady conditions.
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1. Introduction

Reverse osmosis (RO) processes have been the
technology of choice for seawater desalination and
wastewater reclamation [1,2] due to their many
advantages including low energy requirements, small
footprint, modular design, and low water production
costs. However, the loss of permeability caused by
membrane fouling is still a serious problem in design-
ing and operating RO processes. In addition, mem-

brane deterioration due to irreversible damage of the
active layer of the membrane is also a critical problem.
Therefore, understanding the causes of RO membrane
fouling/deterioration and developing strategies for
fouling control are of paramount importance for suc-
cessful application of RO technology.

Many theoretical techniques have been attempted
to analyze RO fouling and found to be successful to
investigate fouling mechanisms in laboratory-scale RO
systems [3–5]. Nevertheless, they seem to be less use-
ful to predict RO performance in pilot- and full-scale
plants. Unlike fouling phenomena in bench-scale RO
systems, RO fouling and deterioration in large-scale*Corresponding author.

The 4th International Desalination Workshop (IDW4), 16–18 November 2011, Jeju Island, South Korea

Desalination and Water Treatment
www.deswater.com

1944-3994/1944-3986 � 2012 Desalination Publications. All rights reserved
doi: 10.1080/19443994.2012.672201

43 (2012) 281–290

April



plants are complicated and hard to be understood
based on mechanistic models.

Accordingly, this research was intended to develop
a model for the analysis of the performance of RO
processes in pilot-scale systems. A genetic program-
ming (GP) technique was applied to correlate key
operating parameters and RO permeability statisti-
cally. The GP model was trained using a set of experi-
mental data from a RO pilot plant with a capacity of
1,000m3/day and then used to predict its perfor-
mance. The GP model calculations were compared
with the experiment results to examine the usefulness
of the GP model for predicting the efficiency of pilot-
scale RO systems.

2. Theoretical approach

2.1. Mathematical model for RO performance prediction

Effective operation and maintenance of RO plants
requires the analysis of current data and the predic-

tion of future data. Although many rigorous models
for RO simulation have been developed, they are not
very useful to apply to pilot- or full-scale plants due
to the restriction of key parameters for the model cal-
culation. Accordingly, semi-empirical or empirical
models based on simple mathematical equations are
preferred in pilot or full plants.

In this work, a simple form of the mathematical
model was applied to fit the pilot plant data [3]:

J ¼ Lp

1þ aV
ðDP� DpÞ ð1Þ

where J is the permeate flux; Lp is the water perme-
ability of the membrane; DP is the applied pressure;
Dp is the osmotic pressure; a is the empirical constant
for fouling or membrane degradation; and V is the
total permeate volume before membrane cleaning. The
model parameters, a and Lp, were obtained by fitting
the model calculations to the experimental data using
the following equation:
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Fig. 1. Schematic diagram of the SWRO desalination pilot plant in Gijang, Korea.

Table 1
Summary of the SWRO desalination pilot plant

Intake Pretreatment RO

Open intake Coagulation +DAF DMF First RO Second RO

Maximum: 3,000m3/
day

Capacity: 2,500m3/
day

Capacity: 2,400m3/
day

Capacity: 500m3/day Capacity: 500m3/
day

TDS: 35,000 ppm Turbidity: 0.1NTU Recovery: 40–50% Recovery: 40–50%

Temperature: 4–25�C SDI: less than three RO: 16 inch RO: 16 inch

ERD: pressure
exchanger

ERD: turbo charger
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s ¼ ðDP� DpÞ
J

¼ 1þ aV
Lp

ð2Þ

Thus, the linear regression of V and s gives the slope
(=a/Lp) and the intersection (=Lp).

The effect of temperature (T) was considered by
introducing the concept of temperature correction fac-
tor (TCF):

TCF ¼ e 2640 1
298:15� 1

Tþ273:15ð Þð Þ ð3Þ

Lp ¼ Lp;0TCF ð4Þ

Where Lp,0 is the water permeability of the membrane
at 273.15K.

Clearly, mathematical models such as Eqs. (1)–(4)
allow better understanding of RO systems. However,
it is difficult to consider complex phenomena in pilot-
or full-scale systems, leading to poor prediction of
operation data using these models. Moreover, the
model parameters, which are empirically determined,

may be changed with time. This is why data-driven
models are required to predict the operation data in
pilot or full RO plants.

2.2. Application of GP

GP is an evolutionary algorithm-based methodol-
ogy inspired by biological evolution to find computer
programs that perform a user-defined task [6]. GP
evolves computer programs represented in memory as
tree structures, which can be easily evaluated in a
recursive manner. Every tree node has an operator
function and every terminal node has an operand,
making mathematical expressions easy to evolve and
evaluate.

Using GP, a model to predict the complicated phe-
nomena can be developed if experimental data are
enough to evolve (or train) it. On the other hand, it is
difficult to find physical meaning of model structures.
Thus, GP models may not be used for fundamental
studies but process control and simulation. The fol-
lowing steps are involved for developing the optimum
model based on GP algorithm:

1. Initialize the population: A GP system (a software
tool to make GP models) creates a population of
programs randomly.

2. Run a tournament: The GP system picks four pro-
grams randomly out of the population of pro-
grams. It compares them and picks two winners
and two losers based on fitness.

3. Apply the search operators: The GP system then
applies search operators like crossover and muta-
tion to the winners and produces two “Children”
or “Offspring.”

4. Replace the losers: After the search operators have
been applied to the copies of the winners (the off-
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Fig. 2. Characteristics of feed water for the SWRO pilot
plant. (a) pH and temperature and (b) conductivity, ORP,
and recovery.
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Fig. 3. Flux and transmembrane pressure for the SWRO
pilot plant.
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spring), these offspring replace the two losers in
the tournament. The winners of the tournament
are unchanged.

5. Repeat until termination: The GP system then
repeats steps 2–4 until the run is terminated.

In this study, the GPLAB (ECOS, Portugal) was
used to make models for simulating membrane per-
meability in RO systems [7].

3. Materials and methods

3.1. Pilot plant

A schematic diagram of the pilot plant used for the
field tests is shown in Fig. 1. The system consists of an
intake facility, pretreatment process, and RO units.
Coagulation combined with dissolved air floatation
and dual media filter was used as the pretreatment to
RO. Suspended solids and colloidal substances are
agglomerated by dosing coagulant (Alum) upstream of

Fig. 4. Relations between V/A and S. (a) early stage and (b) late stage.
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the dissolved air flotation (DAF). Turbidity, algae, floc-
culated colloidal matters, and suspended solids were
removed in DAF and dual media filter (DMF), with
targets below 0.1 nephelometric turbidity units (NTU)
and silt density index (SDI) of 4.

The RO units were comprised of two pressure ves-
sels containing 16 inch RO elements. Each vessel had
eight RO elements, allowing 1,000m3/day of maxi-
mum permeate flow from the pilot plant. The first

and second RO units used different RO membranes
from different manufacturers and the energy recovery
devices were different. Table 1 summarised the key
design parameters for the pilot plant.

3.2. Data acquisition and analysis

All the data from the instruments in the pilot plant
were automatically stored in a database. Water quality

Fig. 5. Comparison of mathematical model fits with pilot plant data. (a) Transmembrane pressure and (b) Membrane
permeability (—: pilot plant data; –: mathematical model fitted to the early-stage data; � � �: mathematical model fitted to
the late-stage data).
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parameters such as conductivity, pH, oxidation reduc-
tion potential (ORP) and temperature were obtained
from these online sensors. Flux and transmembrane
pressure were determined from the readings of pres-
sure sensors and flow meters. The data were con-
verted as an Excel file for convenient handing. The
analysis was carried out using the operation data dur-
ing 24days.

4. Results and discussion

4.1. Feed water characteristics and operation data

The information on the feed water quality is sum-
marized in Fig. 2. The pH ranges from 7.3 to 8.0 and

the temperature ranges from 12 to 16�C. There were
no significant variations in the feed water conductivity
and ORP. At the same period, the permeate flux
ranges from 16L/m2-h to 21 L/m2-h due to unstable
operations by the worker (Fig. 3). This led to varia-
tions in the permeate recovery. Transmembrane pres-
sure was changed from 47 to 52 bar. It should be
noted that the flux and transmembrane pressure
showed different trends. For example, on the fourth
day, the flux decreased but the transmembrane pres-
sure increased. On the 21st day, however, the flux
increased but the transmembrane pressure decreased.
This suggests that the membrane permeability was
not constant during the operation.

X4

X4

X4

X4

  cos

  plus

  sin

X4

  cos

  plus

  sin

  plus

  cos

  plus

X4

  cos

  plus

X4

  cos

  plus

X4

X4 X4

  plus

  plus

X4

  cos

  plus

  cos

  plus

X4

  cos

  plus

X5

  sin

  mylog

  sin

  mylog

X4

  sin
X4

  plus

  plus

X4

  mylog

X6

  mylog

  sin

  times

X4

  cos

  cos

  mylog

  plus

  cos

  cos

X2

  cos

  cos

  cos

  plus

X7

X3

  cos

  plus

  sin

  cos

  sin

  sin

  sin

  cos

X6

  mylog

  cos

X1

  cos

  plus

  sin

  cos

  sin

  plus

(a) (b)

(c) (d)

Fig. 6. Structures of GP models. (a) GP model fitted for transmembrane pressure data in the early stage, (b) GP model
fitted for transmembrane pressure data in the late stage, (c) GP model fitted for membrane permeability data in the early
stage, and (d) GP model fitted for membrane permeability data in the late stage.
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4.2. Application of mathematical model

To begin, the empirical model based on the
mathematical model for RO transport was applied.
Since the early-stage and the late-stage showed dif-
ferent trends of the flux and transmembrane pres-
sure, the model fits were obtained using the early-
stage data (0–5days) and the late-stage data (20–

24 days). Fig. 4 shows the model fits to determine
the empirical parameters for the mathematical
models. For the first fit, Lp and a were determined
as 1.31 L/m2-h-bar and 1.66� 10�5, respectively.
For the second fit, Lp and a were determined as
5.85� 10�1 L/m2-h-bar and �9.24� 10�6, respec-
tively.

Fig. 7. Comparison of GP model fits with pilot plant data. (a) transmembrane pressure and (b) membrane permeability.
(—: pilot plant data; –: mathematical model fitted to the early-stage data; � � �: mathematical model fitted to the late-stage
data).
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As demonstrated in Fig. 5, the mathematical model
cannot fit the pilot plant data. In case of the first
model fit, the early-stage operation data can be
explained but the late-stage operation data could not
be matched with the model calculations. The second
model fit failed to interpret the early-stage operation
data and exhibited large deviations from the pilot
plant data. Both transmembrane pressure and mem-
brane permeability showed similar trends for these
mathematical model fits.

4.3. Application of GP model

Instead of the mathematical modeling approach, GP
model was applied to match the complicated pilot plant
data. The models were trained using two different
operation data, including the early-stage data (0–5days)
and the late-stage data (20–24days). Thus, two kinds of

GP models were obtained for predicting transmem-
brane pressure and membrane permeability. Although
the data are not shown, the fitness functions for the GP
model fits reached stable values after 30 generations.
Fig. 6 illustrates the structures of equations determined
by the GP model fits. As a result of this procedure, four
equations were obtained.

The comparisons of the GP model fits with pilot
plant data are illustrated in Fig. 7. The GP models
match the pilot plant data well. Although there are
deviations between the model calculations and
experimental data, the overall trends in the trans-
membrane pressure and membrane permeability
were successfully predicted by the GP models.
Moreover, the GP model showed better fits to the
membrane permeability than the transmembrane
pressure.

Fig. 8 compares the GP model fits with the mathe-
matical model fits. The deviations between the mathe-
matical models and the pilot plant data were
substantial. On the other hand, the GP models
showed closed fits to the pilot plant data. This implies
that the GP model is more useful than the simple
mathematical models for the prediction and analysis
of pilot or full plant operation data.

4.4. Sensitivity analysis for GP model

Fig. 9 shows the sensitivity of the GP model on
input variables. The first GP model, which was fitted
to the early-stage data, has large sensitivity to conduc-
tivity, flux, and ORP. On the contrary, the second GP
model, which was fitted to the late-stage data, is sensi-
tive to temperature, recovery, time, and ORP.
Although it is not clear how the sensitivity results are
correlated with the importance of input variables at
this point, further works would allow to access infor-
mation on the plant operation using the GP modeling
approach.

5. Conclusions

In this work, a GP-based model was suggested
to analyze the operation data of a pilot plant for
seawater desalination. It was demonstrated that
the GP model is useful to understand the behav-
ior of pilot-scale systems. Accordingly, the GP
model appears to be a better tool for RO systems
under fluctuating conditions than mathematical or
mechanistic models. Moreover, the GP model fit
to the membrane permeability was better than
that to the transmembrane pressure, suggesting
that the combination of GP model and mathemati-
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Fig. 8. Comparison of GP models with mathematical
models. (a) Transmembrane pressure and (b) membrane
permeability. Math models #1 and #2 were fitted to the
early-and late-stage pilot plant data, respectively. GP
models #1 and #2 were fitted to the early-and late-stage
pilot plant data, respectively.
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cal model can improve the accuracy of the model
prediction.
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