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ABSTRACT

Artificial neural networks (ANNs) were used to predict dynamically the permeate flux and
total hydraulic resistance through the crossflow nanofiltration (NF) of waste brine. The ANN
was fed with three inputs: transmembrane pressure (TMP), temperature and time. It was
found that ANN with 1 hidden layer comprising nine neurons gives the best fitting with the
experimental data, which made it possible to predict flux and total hydraulic resistance with
high correlation coefficients (0.96 and 0.98, respectively). The effect of TMP and temperature
on the recovery of useable brine from waste brine was also investigated by using polyamide
tubular NF membrane. High reduction in salt and water consumption was achieved in this
study. In addition, experimental results showed that the flux was increased significantly with
increase in pressure and temperature (p< 0.01), whereas fouling and NaCl rejection increased
considerably as the pressure and temperature increased, respectively. With an increase in
TMP and temperature, it was observed that total hydraulic resistance, gel layer resistance
and concentration polarization resistance were increased. Pressure was the most sensitive
factor for prediction of both flux and total hydraulic resistance.
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1. Introduction

At some sugar refineries, removal of color from
sugar liquor using anion exchange resin is practiced.
The colorants are first adsorbed onto the resins and
then released from the regenerated resin into alkaline
100 g/l sodium chloride solution, producing a stream
characterized by high salinity, high amount of colored
organic matter and high COD (13,000mg/l) [1–2]. This
waste brine stream usually poses a disposal problem.
The organic matter in the regeneration effluent con-

sists of natural sugarcane pigments (mostly phenolic
compounds) and colorants that are formed during the
cane juice processing. The molar mass of the com-
pounds ranges from less than 500 g/mol to more than
20,000 g/mol, with most of the color being due to the
compounds in the 5,000–20,000 g/mol range. The com-
pounds are mostly negatively charged, with up to six
or more functional groups conveying the negative
charges on each species [3].

Membrane separation process in water treatment
has gradually gained popularity because it effectively
removes a variety of contaminants from raw waters.
While microfiltration (MF) and ultrafiltration (UF)*Corresponding author.
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membranes can mainly remove suspended particles
and macromolecules, nanofiltration (NF) membranes
are an effective technology to remove dissolved
organic contaminants with molecular weights (MW)
larger than 200Da and about 70% of monovalent ions
by electrostatic repulsion (charge effect), size exclusion
(sieving effect) and a combination of the rejection
mechanisms. Diffusion, sieving, convection and other
mechanisms can affect mass transport in membrane
processes [4–6].

According to previous findings, the NaCl retention
of NF membranes is as low as 10–50%, while organic
compounds retention has been reported by Wadley
et al. [3] in 1995 to be in the range of 80–97% on Koch
NF membranes (SelRO MPT-30 or MPT-31). It has also
resulted in 30% reduction of effluent volume and 60%
reduction in salt consumption. In 1997, Cartier et al.
[2] referred that with spiral wound membranes Desal
5.1 and Desal 5.2 (today Osmonics) and Filmtec NF4S
membrane (Dow), it is possible to reach even 89 and
74% reduction in water and salt consumptions, respec-
tively. Based on the resistance-in-series model, some
researchers proposed experimental methods to ana-
lyze membrane fouling phenomenon [7].

Dynamic modeling of membrane process is very
important for designing of a new process and better
understanding of the present process. ANN can be
used for mapping input and output data without
knowing information between them [8]. In the field of
membrane separation processes, ANNs have success-
fully been applied to different types of membranes
including MF, UF and NF [5]. Literature review shows
that ANNs were used to predict the performance of
membrane systems in terms of permeate flux, mem-
brane fouling, time evolution of membrane fouling,
total hydraulic resistance and components rejection
and ANNs offer a more attractive alternative to con-
ventional black box models in dealing with complex
phenomena [9–14]. However, there is no study avail-
able in the literature concerning the use of ANN for
dynamic modeling of permeate flux and total
hydraulic resistance of NF of high salt concentration
(100 g/l).

The objectives of present paper were (i) to study
the effect of operating parameters on dynamic perme-
ate flux and total hydraulic resistance of polyamide
membrane during NF of waste brine from resin regen-
eration, (ii) to develop and validate the application of
neural networks for the dynamic modeling of perme-
ate flux and total hydraulic resistance as a function of
transmembrane pressure (TMP) and temperature, and
(iii) to evaluate the performance of NF for recovery of
brine and water of waste brine in order to reuse and
reduction in effluent volume.

2. Materials and methods

2.1. Membrane setup

Fig. 1 shows a schematic diagram of the NF pilot-
plant system used in this study. The polymeric tubu-
lar AFC40 membrane was supplied by PCI membrane
systems, UK. The characteristics of NF membrane are
summarized in Table 1. Permeate solutions were col-
lected in a beaker, and were not returned into the feed
tank, whereas the retentate was circulated back to the
feed tank. A permeate collection vessel, located on an
electronic balance (±0.05 g), was used to collect perme-
ate and measure permeate flux (kg/m2 s) during the
experiments. All the experiments were carried out at
60min. Since the feed volume was continuously
reduced in the concentration mode of filtration tests,
the fluxes also declined continuously. Volume reduc-
tion factor (VRF) was calculated using the following
equation:

VRF ¼ Vf

Vc
ð1Þ

where Vf and Vc are the initial volume of feed and the
final volume of the concentrate, respectively.

2.2. Experimental procedure

The operating pressure of each run was at the
range of 1.0–2.0MPa (at three levels of 1.0, 1.5 and
2.0MPa). While the temperature was varied from 30–
50�C (at three levels of 30, 40 and 50�C) and con-
trolled by a tubular heat exchanger. Ion-exchange res-

Fig. 1. Schematic diagram of the tubular NF pilot plant
system used in this study.
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ins effluent (concentration 100 g/l) from sugar decol-
orizing column obtained from a sugar plant (Sepid-
Mehr sugar beet factory, Neyshabur, Iran) and this
batch used as the NF feed in all runs. The wastewater
and all samples were refrigerated at 4�C. The pH of
feed solutions was constant and obtained averagely
7.8 ± 0.1.

Optical density (OD) was chosen as a measure
for the colorant concentration in permeates and
retentate samples [2]. OD was measured at 420 nm
and 25�C using a UV–vis spectrophotometer (Jenway
6105, Bibby Scientific Limited, UK). In order to deter-
mine the concentration of sodium chloride in the
retentate and the permeate samples the conductivity
of the samples was measured by a conductivity
meter (Jenway 4010, Bibby Scientific Limited, UK).
Dynamic viscosity of permeate samples was deter-
mined using an Ostwald U-tube capillary viscometer
at 20�C after each NF run. All NF operations and
experiments were carried out in two replications and
the results were averaged.

2.3. Membrane performance parameters

The rejection of sodium chloride and dye com-
pounds was calculated by the following equation:

R ¼ ð1� Cp

Cf
Þ � 100% ð2Þ

where, R is the rejection, Cp and Cf are the concentra-
tion of each component (g/l) in the permeate and feed
streams, respectively. During the transport of solutes
from the feed solution to the membrane surface, solute
concentrations at the membrane surface are higher
than in the feed solution, leading to concentration

polarization. In some cases, solute concentrations at the
membrane surface can reach a limiting value. In these
conditions, a gel layer begins to accumulate, leading to
surface and/or internal pore fouling [15]. The fouling
mechanisms, including concentration polarization, gel
layer formation and pore blocking, introduce addi-
tional resistances to transport across the membrane
due to the increased osmotic pressure on the feed side
[16]. Membrane fouling was determined as:

Fouling ¼ Jw � Jwf
Jw

� �
� 100% ð3Þ

where, Jw and Jwf is the flux of distilled water through
a membrane before and after each run, respectively.
To understand the flux decline in pressure-driven
membrane operations, a number of models were
developed. Two of the most widely studied models
are the resistance-in-series model and the concentra-
tion polarization model. In this study, the hydraulic
resistances were calculated by applying the resistance-
in-series model, containing intrinsic membrane resis-
tance (Rm), gel layer resistance (Rg) and concentration
polarization resistance (Rcp), as follows [17].

RT ¼ Rm þ Rg þ Rcp ð4Þ

The total hydraulic resistance (RT) is defined as:

RT ¼ TMP� Dp
lpJp

ð5Þ

where lp and Jp are the permeate viscosity and flux,
respectively. In this study, the passage of sodium
chloride ion through the membrane was high (low
rejection of NaCl), it was assumed that the osmotic
pressure difference (Dp) is small. Transmembrane
pressure (TMP) can be calculated by the following
equation:

TMP ¼ Pi þ Po

2
� Pp ð6Þ

where, Pi and Po are inlet and outlet pressures,
respectively and Pp is the permeate pressure. The
transport of pure water through a membrane is by
viscous flow. The membrane hydraulic resistance (Rm)
can be described by Darcy’s Law [17];

Rm ¼ TMP

lwJw
ð7Þ

where, Jw and lw are flux and viscosity of distilled
water through the clean membrane, respectively.

Table 1
Characteristics of NF membrane and module used in this
study

Membrane type AFC40 (PCI Membranes
Ltd., UK)

Material Polyamide film

Effective area 240 cm2

Diameter 63.5mm

Length 30 cm

Range of pH tolerance 1.5–9.5

Maximum temperature 60�C
Maximum pressure 6MPa

Apparent retention character 60% CaCl2
Module Tubular (Micro 240)

(PCI Membranes Ltd., UK)
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At the end of each run, the distilled water flux of
fouled membrane (Jwf) was measured for calculation
of gel layer fouling resistance (Rg) using the following
equation:

Rg ¼ TMP

lwf Jwf
� Rm ð8Þ

where, lwf is the viscosity of distilled water through a
fouled membrane. The concentration polarization
resistance was then determined as:

Rcp ¼ RT � ðRg þ RmÞ ð9Þ

2.4. Statistical analysis

The analysis of variance (ANOVA) provides infor-
mation about statistically significant factors. Analysis
of variance of data was performed using statistical
software called “MINITAB” release 13.20 (Minitab
Inc., State College, USA), and determination of signifi-
cant differences of means was carried out at 5% signif-
icant level.

2.5. ANN simulation

The most widely used ANN is the feed forward
multilayer perceptron, where neurons are arranged
into three layers: input layer, hidden layer and output
layer. A schematic description of the 3-layers network
structure used in this study is shown in Fig. 2. Each
layer consists of several neurons. The number of input
and output neurons corresponds to the number of
input variables into the neural network and the num-
ber of desired output variables, respectively. There is
at least one hidden layer between the input and the
output layers that can have any number of neurons.
The number of neurons in the hidden layer(s)

depends on the application of the network [18,19].
Each neuron is connected with all other neurons in
the next layer by a weight connection. The inputs to
the node are modified by interconnection weight and
are determined as the weighted sum of its input
[8,12].

Net input to the node in the hidden and output
layer is obtained by adding a bias term with the
weighted sum of the inputs. This process can be
described by the following equation:

Yj ¼
Xn

i¼1

WijXi þ bj ð10Þ

where xi represents the input to a neuron, n is the
number of input nodes, wji is the corresponding
weight from ith to jth neurons and bj is bias of the jth
neuron. The expected output yj is obtained via adjust-
ing weights wji in the networks [20]. The reason for
adding the bias term is that it allows a representation
of phenomena having thresholds. Output from the
node is determined by transforming this net input
using a suitable transfer function. The transfer func-
tion can be linear or nonlinear (commonly sigmoidal
and hyperbolic tangent) functions depending on the
network topology [17,21]. In this work, the operational
variables of NF treatment of waste brine (TMP, tem-
perature and processing time) were used as inputs
and dynamic flux and total hydraulic resistance as
outputs. A sigmoid activation function (Eq. (11)) was
chosen to be used as the transfer function in the hid-
den and output layers, due to lower calculated mean-
squared error values comparing to the respective
hyperbolic tangent function and linear function:

fðxÞ ¼ 1

1þ e�x
ð11Þ

The network architecture refers to the number of
layers in the network and the number of neurons in
each layer. The universal approximation theory sug-
gests that a network with a single hidden layer with
sufficient number of hidden neurons is able to map
any input to any output to any degree of accuracy
[14,22,23]. The ANN used in the present work fea-
tured with 1 hidden layer and bias nodes in the input
and hidden layers. On the other hand, to find the best
architecture, different networks were built with differ-
ent hidden neurons.

In this study, 540 data were collected from experi-
ments at different TMPs, temperatures and processing
times. The data order was first randomized and then
all data were divided into two sub-groups: first group
including 360 data (2 TMP levels (1 & 2MPa)� 3

Fig. 2. Multilayer feed forward perceptron network
architecture with one hidden layer for prediction of total
hydraulic resistance and dynamic permeate flux of NF
treatment of waste brine.
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temperatures� 60 processing times) was used for
developing ANNs model. For this purpose, 72 data
were applied for training, and 288 data for cross vali-
dation. Another group including 180 data (1 TMP
(1.5MPa)� 3 temperatures� 60 processing times) was
used as testing data to examine ANN predictability
using data not used in the training and cross valida-
tion process (unseen data).

Training is the process by which the free parame-
ters of the network (i.e. the weights) get optimal val-
ues. During training, the input and desired data will
be repeatedly presented to the network. As the net-
work learns, the error will drop toward zero. Cross
validation is a highly recommended criterion for stop-
ping the training of a network. The cross validating
step was carried out with the best weights stored dur-
ing the training. In this study, the fast Levenberg–
Marquardt (LM) optimization technique was used to
train the network [24]. Each predicted value was com-
pared against the experimental value to test the net-
work performance. For this purpose, three statistical
parameters including mean square error (MSE), nor-
malized mean square error (NMSE), and mean abso-
lute error (MAE) were calculated to evaluate the
prediction ability of network. On the lower values of
MSE, NMSE and MAE, the network predicts more
truly. In addition, the correlation coefficient (r), Eq.
(12), gives information on the training of network,
having a value between (�1, 1). If the correlation coef-
ficient is close to (1), it shows how much the learning
is successful.

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �N

i¼1½Oi � Ti�2
�N

i¼1½Oi � Tm�2
s

ð12Þ

where Oi is the ith actual value, Ti is the ith predicted
value, N is the number of data, r2 is the variance and
Tm is given by:

Tm ¼ �N
i¼1Oi

N
ð13Þ

In evaluating the network, various performance
measures are computed. A sensitivity analysis was
conducted to provide a measure of the relative impor-
tance among the inputs of the neural network model
and to illustrate how the model output varied in
response to variation of an input [25,26].

The Neurosolution software (Excel software release
6.0) was used for designing the neural networks and
simulation of NF treatment of waste brine. This soft-
ware incorporates various types of ANN presented by
NeuroDimension, Inc., USA.

3. Results and discussion

3.1. NF performance

The experimental results obtained for NF treat-
ment of waste brine are summarized in Table 2. It is
found that the mean NaCl rejection, based on the con-
ductivity, was ranged from 6.82 to 10.91% with the
mean value as 9.19% and it decreased with increasing
temperature. It means that about 81% of the salt was
recovered and the feed was concentrated up to VCF9.
A higher reduction on salt consumption was obtained
in this work, 81% against 74% reported by Cartier
et al. [2]. In addition, 90% reduction in water utiliza-
tion was achieved. The colorant removal using NF
process was in the range of 87.39–90.42% with the
mean value as 89.31%, which is feasible completely
for industrial purposes.

As it is shown in Table 2, the permeate flux was
increased by increasing temperature and TMP and the
maximum flux value (139.35 kg/m2h) was obtained at
TMP 2MPa and temperature 50�C. Furthermore, it
can be found that the permeate flux increased almost
3.64 and 1.02% as the pressure and temperature

Table 2
Mean values of permeate flux and components rejection as a function of TMP and temperature (feed concentration 100
(g/l), pH 7.8 ± 0.1, Rm=4.46� 1013)

TMP (MPa) Temperature (�C) Flux (kg/m2h) NaCl rejection (%) Colorant rejection (%)

1 30 82.14 10.91 88.90

1 40 96.63 9.09 87.39

1 50 114.69 6.82 89.27

1.5 30 103.57 9.55 89.76

1.5 40 109.37 9.55 90.42

1.5 50 123.18 8.64 90.40

2 30 127.39 10.00 90.35

2 40 133.73 10.00 87.86

2 50 139.35 8.18 89.66
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increased by 0.1MPa and 1�C, respectively. It seems
that at such higher pressures, increasing the driving
force led to increase in the flux, whereas, increasing
the molecular diffusion and decreasing the viscosity
led to flux improvement at such higher temperatures.
In this study, the permeate flux was totally pressure-
dependent in the pressure range studied.

The dynamic flux of waste brine NF process as a
function of operating pressure and time is displayed
in Figs. 3–5 at temperatures of 30, 40 and 50�C,
respectively. These figures demonstrate that both ini-
tial flux and pseudo steady state flux (flux after about
10min) vary significantly with TMP, temperature and
time. It can be also observed that the flux decline was
more pronounced at higher pressures; therefore the
permeate flux was more stable at 1MPa at all temper-
atures compared to other pressures studied. Abbas
and Al-Bastaki [13] reported that the permeate rate
increases with increasing pressure and temperature
and decreases with increasing feed concentration. It is
known that flux decline can be caused by several fac-
tors such as concentration polarization, gel layer for-
mation and plugging of the pores. These entire factors
cause additional resistances on the feed side to trans-
port across the membrane [15]. The flux behavior dur-
ing NF of resin wastewater was investigated by
Cartier et al. [2]. In contrast, they observed a sharp
flux decline from 70 l/hm2 to 55 l/hm2 during the
first 170min [2].

Flux decline due to fouling was evaluated by using
the resistance-in-series model. Table 3 shows the val-
ues of fouling, total hydraulic resistance (RT), concen-
tration polarization resistance (Rcp) and gel layer
resistance (Rg) as a function of TMP and temperature.

It can be seen that the average membrane fouling was
ranged from 2.75 to 23.84% with the mean value as
12.97% and it increased greatly with increasing pres-
sure. The results of fouling resistances (Rcp and Rg)
also suggest the low membrane fouling propensity for
this NF membrane surface because of a relatively sta-
ble flux behavior observed for most conditions. In this
study, total hydraulic resistance, concentration polari-
zation resistance and gel layer resistance were
increased almost by 2.54, 8.21 and 7.49% with an
increase of 0.1MPa TMP; and 0.60, 1.84 and 2.23%
with an increase of 1�C, respectively (Table 3).

0

20

40

60

80

100

120

140

160

180

0 5 10 15 20 25 30 35 40 45 50 55 60

P
er

m
ea

te
 f

lu
x 

(k
g/

m
2 h

)

Time (min)

ANN ANN

ANN 1MPa

Fig. 3. The permeate flux vs. time, showing the
experimental and the predicted values of NF treatment of
waste brine by optimum ANN (3/9/2) configuration;
Training points are shown by solid symbols (temperature
30�C).
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Fig. 5. The permeate flux vs. time, showing the
experimental and the predicted values of NF treatment of
waste brine by optimum ANN (3/9/2) configuration;
training points are shown by solid symbols (temperature
50�C).
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waste brine by optimum ANN (3/9/2) configuration;
Training points are shown by solid symbols (temperature
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The effects of the applied TMP, temperature and
time on total hydraulic resistance of waste brine NF
process are presented in Figs. 6–8. The results with
the polyamide membrane under various temperatures
showed that RT increased with time at all TMPs. It
can be seen that fouling was more pronounced at
higher pressures, same as the results observed for per-
meate flux (Figs. 3–5). Based on experimental works
of this study, the gel layer formed on the membrane
surface was in principle reversible by rinsing with
pure water.

The results of analysis variance obtained for per-
meate flux, fouling, colorant rejection and NaCl rejec-
tion are given in Table 4. The ANOVA approach was
applied to investigate which factors significantly affect
the response parameters. Statistical analysis displayed
that the permeate flux was significantly affected by
pressure, temperature and interaction between pres-
sure and temperature (p< 0.01), whereas the fouling

and NaCl rejection was significantly influenced by
pressure and temperature, respectively (p< 0.01). Fur-
thermore, the studied variables had no significant
effect on colorant rejection of waste brine NF process.

3.2. Simulation results

In this work, the applications of neural network
approach for dynamic prediction of permeate flux and
total hydraulic resistance were tested for NF treatment
of waste brine at different TMPs and temperatures.

The training process was carried out for 1,000
iterations or until the cross-validation data’s mean-
squared error (MSE) did not improve for 100
iterations to avoid over-fitting of the network. Errors
values obtained for estimation dynamic flux and total
hydraulic resistance during the testing step are shown
in Table 5. It was found that the ANN with nine

Table 3
Mean values of fouling and hydraulic resistances (determined based on resistance-in-series model) as a function of TMP
and temperature (feed concentration 100(g/l), pH 7.8 ± 0.1, Rm=4.46� 1013)

TMP (MPa) Temperature (�C) Fouling (%) RT (m�1) RCP (m�1) Rg (m�1)

1 30 3.75 4.94� 1013 2.02� 1012 2.80� 1012

1 40 2.75 4.97� 1013 1.01� 1012 4.08� 1012

1 50 3.96 5.00� 1013 1.95� 1011 5.20� 1012

1.5 30 10.15 5.53� 1013 3.66� 1012 7.05� 1012

1.5 40 21.27 6.04� 1013 9.91� 1011 1.48� 1013

1.5 50 13.65 6.30� 1013 7.05� 1012 1.13� 1013

2 30 14.28 5.99� 1013 5.32� 1012 1.00� 1012

2 40 23.08 6.59� 1013 2.57� 1012 1.87� 1013

2 50 23.84 7.42� 1013 1.02� 1013 1.94� 1013
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Fig. 6. The total hydraulic resistance vs. time, showing the
experimental and the predicted values of NF of waste
brine by optimum ANN (3/9/2) configuration; training
points are shown by solid symbols (temperature 30�C).
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Fig. 7. The total hydraulic resistance vs. time, showing the
experimental and the predicted values of NF of waste
brine by optimum ANN (3/9/2) configuration; training
points are shown by solid symbols (temperature 40�C).
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hidden neurons had the minimum NMAE values
(0.06 and 0.05) for dynamic flux and total hydraulic
resistance prediction, respectively. Therefore, this
architecture can be selected as the best ANN.

Table 6 illustrates the weight and bias values of
the selected ANN, which could be used to predict
dynamic flux and total hydraulic resistance of NF
treatment of waste brine. The efficiency of the selected
ANN model for prediction of unseen dynamic flux
data (TMP=1.5MPa at three levels of temperature) is
presented in Figs. 3–5. It can be seen that the dynamic
flux, JP, was well predicted by the best ANN configu-
ration (3/9/2).

The total hydraulic resistance, RT, was estimated
from Eq. (5). The experiments with varying TMP and
temperature were carried out to investigate membrane
fouling. The experimental data and the results of
modeling using ANNs for the total hydraulic resis-
tance (RT) at all TMPs and temperature are shown in

Figs. 6–8. Figs. 3–8 show that the complex behavior
(non-linearity) of JP-time or RT-time profile is well
reproduced by the ANNs. As shown in Figs. 3–8,
there is excellent agreement between the predictions
and the experimental data of full time-dependent
JP/RT profiles at TMP 1 and 2MPa and also for
unseen data (TMP=1.5MPa) at all temperatures.

The calculated correlation coefficient values for
estimation of dynamic flux and total hydraulic resis-
tance were 0.96 and 0.98, respectively, which show
high correlation between predicted and experimental
values (Table 5). The ability to predict JP and RT at
intermediate TMP (1.5MPa) could reduce the compu-
tation time and the amount of practical work required
before designing a new membrane process. Thus,
these results suggest that in actual practice, the maxi-
mum information and great saving in time and cost
can be obtained with a minimum number of experi-
ments.

Sensitivity analysis was tested in order to study
the sensitiveness of neural network models toward
different inputs (Figs. 9 and 10). It can be found that
among the input variables, pressure was the most sen-
sitive factor for prediction of both flux and total
hydraulic resistance by the selected ANN.

4. Conclusions

1. The results display satisfactory qualitative per-
formance of NF membranes treatment for the removal
of colorant components (89%) and high recovery of
salts (81%) and water (90%) for reuse from the resin
regeneration waste. The mean rejection of sodium
chloride was found to be 9%. Permeate flux, mem-
brane fouling and NaCl rejection increased signifi-
cantly when pressure and temperature increased,
respectively. The average membrane fouling was
found to be 13%. The results showed that the total
hydraulic resistance, concentration polarization

Table 4
Successive mean squares from the analysis of variance of the flux, NaCl rejection, colorant rejection and fouling of two
operation parameters

Source Degree of freedom Mean square

Flux (kg/m2h) Fouling (%) Colorant rejection (%) NaCl rejection (%)

TMP 2 1934.68⁄ 448.06⁄ 4.227NS 0.322NS

Temperature 2 691.88⁄ 62.82NS 2.754NS 8.327⁄

TMP� temperature 4 57.37⁄ 29.57NS 1.418NS 1.426NS

Error 9 5.84 21.07 4.519 1.472

Total 17

Note: ⁄p=0.01; NS, not significant.
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Fig. 8. The total hydraulic resistance vs. time, showing the
experimental and the predicted values of NF of waste
brine by optimum ANN (3/9/2) configuration; training
points are shown by solid symbols (temperature 50�C).
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resistance and gel layer resistance increased with
increasing TMP and temperature.

2. The application of ANNs to the simulation of
crossflow NF was investigated to predict the dynamic

behavior of permeate flux and total hydraulic resis-
tance (as outputs) vs. pressure, temperature and time
(as inputs). A sigmoid transfer function was used for
the hidden and output layers. The results suggest that

Table 6
Corresponding weight and bias values of each neuron for optimum ANN configuration selected to predict dynamic
permeate flux and total hydraulic resistance of regeneration waste brine

Hidden neurons Bias Input neurons Output neurons

Time TMP Temperature Dynamic flux Total resistance

1 �0.0206 1.6074 0.7886 0.0634 0.5585 0.5172

2 �0.8872 �0.3628 �0.3704 �0.5922 �0.4536 0.3706

3 0.7103 �0.811 1.1384 �1.2030 0.5655 0.9745

4 �1.0287 �1.3034 �1.1099 1.6665 0.7013 0.8232

5 0.7036 �0.1789 0.6468 �0.0178 1.756 �0.4175

6 1.0926 �0.3025 0.1182 0.8615 �0.2434 �0.245

7 0.4511 �0.1978 �0.3665 �0.5119 �0.4425 0.5953

8 0.4655 �0.3127 0.7738 �0.2423 �0.9946 �2.025

9 �2.7587 �1.8942 0.9734 0.1649 0.2543 �1.091

Bias 0.5363 �0.4841

Table 5
Errors values in prediction of dynamic flux and total hydraulic resistance of NF treatment of waste brine using ANN (3/
9/2)

Performance Dynamic flux Total hydraulic resistance

MSE (mean squared error) 24.57 6.82� 1024

NMSE (normalized mean squared error (MSE/variance of desired output)) 0.06 0.05

MAE (mean absolute error) 3.27 1.64� 1012

Minimum absolute error 0.03 1.53� 1010

Maximum absolute error 16.53 9.47� 1012

Correlation coefficient 0.958 0.980
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Fig. 10. Sensitivity of the best selected ANN (3/9/2) toward
the inputs for prediction of total hydraulic resistance.
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an optimum ANN model with 3/9/2 configuration
could potentially be used to accurately simulate the
dynamic behavior of permeate flux and total hydrau-
lic resistance of NF treatment of waste brine (r= 0.96
and r= 0.98, respectively).

Symbols

bj — bias

Cf — feed concentration, g/L

Cp — permeate concentration, g/L

Jp — permeate flux, kg/m�2 h�1

Jw — distilled water flux before run, kg/m2 h�1

Jwf — distilled water flux after run, kg/m2 h�1

Pi — inlet pressures, MPa

Po — outlet pressures, MPa

Pp — permeate pressure, MPa

Rcp — concentration polarization resistance, m�1

Rg — gel layer resistance, m�1

Rm — membrane resistance, m�1

RT — total hydraulic resistance, m�1

TMP — transmembrane pressure, MPa

VRF — volume reduction factor

Vf — initial volume of feed, L

Vc — final volume of the concentrate, L

w — weight

xi — input to a neuron

yj — output

Dp — osmotic pressure differences, MPa

lp — permeate viscosity, Pa s

lw — distilled water viscosity, Pa s

lwf — distilled water viscosity through a fouled
membrane, Pa s

References

[1] A. Hinkova, Z. Bubnı́k, P. Kadlec, J. Pridal, Potentials of sepa-
ration membranes in the sugar industry, Sep. Purif. Technol.
26 (2002) 101–110.

[2] S. Cartier, M.A. Theoleyre, M. Decloux, Treatment of sugar
decolorizing regeneration waste using nanofiltration, Desali-
nation 113 (1997) 7–17.

[3] S. Wadley, C.J. Brouckaert, L.A.D. Baddock, C.A. Buckley,
Modelling of nanofiltration applied to the recovery of salt
from waste brine at a sugar decolorisation plant, J. Membr.
Sci. 102 (1995) 163–175.

[4] R.J. Petersen, Composite reverse osmosis and nanofiltration
membranes, J. Membr. Sci. 83 (1993) 81–150.

[5] N.A. Darwish, N. Hilal, H. Al-Zoubi, A.W. Mohammad, Neu-
ral networks simulation of the filtration of sodium chloride
and magnesium chloride solutions using nanofiltration mem-
branes, I. Chem. E 85 (2007) 417–430.

[6] S.J. Duranceau, Modeling the permeate transient response to
perturbations from steady-state in a nanofiltration process,
Desalin. Water Treat. 1 (2009) 7–16.

[7] I.S. Chang, R. Field, Z. Cui, Limitations of resistance-in-series
model for fouling analysis in membrane bioreactors: A cau-
tionary note, Desalin. Water Treat. 8 (2009) 31–36.

[8] B. Sarkar, A. Sengupta, S. De, S. DasGupta, Prediction of per-
meate flux during electric field enhanced cross-flow ultrafil-
tration—a neural network approach, Sep. Purif. Technol. 65
(2009) 260–268.

[9] M. Dornier, M. Decloux, G. Trystram, A. Lebert, Dynamic
modeling of crossflow microfiltration using neural networks,
J. Membr. Sci. 98 (1995) 263–273.

[10] C. Teodosiu, D. Pastravanu, M. Macoveanu, Neural network
model for ultrafiltration and backwashing, Water Res. 34
(2000) 4371–4380.

[11] T.M. Hwang, Y. Choi, S.H. Nam, S. Lee, H. Oh, K. Hyun, Y.
K. Choung, Prediction of membrane fouling rate by neural
network modeling, Water Treat. 15 (2010) 134–140.

[12] S.M.A. Razavi, S.A. Mortazavi, S.M. Mousavi, Dynamic mod-
elling of milk ultrafiltration by artificial neural network, J.
Membr. Sci. 220 (2003) 47–58.

[13] A. Abbas, N. Al-Bastaki, Modeling of an RO water desalination
unit using neural networks, Chem. Eng. J. 114 (2005) 139–143.

[14] W.R. Bowen, M.G. Jones, J.S.T. Welfoo, H.N. Yousef, Predict-
ing salt rejections at nanofiltration membranes using artificial
neural networks, Desalination 129 (2000) 147–162.

[15] S.C. Tu, V. Ravindran, M. Pirbazari, A pore diffusion trans-
port model for forecasting the performance of membrane pro-
cesses, J. Membr. Sci. 265 (2005) 9–50.

[16] Y. Kaya, H. Barlasa, S. Arayici, Evaluation of fouling mecha-
nisms in the nanofiltration of solutions with high anionic and
nonionic surfactant contents using a resistance-in-series
model, J. Membr. Sci. 367(1–2) (2011) 45–54.

[17] A.K. Pabby, S.S.H. Rizvi and A.M. Sastre, Handbook of
Membrane; Separations Chemical, Pharmaceutical, Food, and
Biotechnological Applications, Taylor & Francis Group, New
York, NY, 2009.

[18] S.M.A. Razavi, S.A. Mortazavi, S.M. Mousavi, Application of
neural networks for crossflow milk ultrafiltration simulation,
Int. Dairy J. 14 (2004) 69–80.

[19] N. Hilal, O.O. Ogunbiyi, M. Al-Abri, Neural network model-
ing for separation of bentonite in tubular ceramic membranes,
Desalination 228 (2008) 175–182.

[20] Q. Liu, S. Kim, S. Lee, Prediction of microfiltration membrane
fouling using artificial neural network models, Sep. Purif.
Technol. 70 (2009) 96–102.

[21] M. Fathi, M. Mohebbi, S.M.A. Razavi, Application of image
analysis and artificial neural networkto predict mass transfer
kinetics and color changesof osmotically dehydrated kiwi-
fruit, Food Bioprocess Technol. (2009), doi: 10.1007/s11947-
009-0222-y.

[22] S.S. Tambe, B.D. Kulkami and P.B. Deshpande, Elements
of artificial neural networks with selected applications in
chemical engineering, and chemical and biological sciences,
Simulation and Advanced Controls, Louisville, KY, 1996.

[23] S. Chellam, Artificial neural network model for transient
crossflow microfiltration of polydispersed suspensions, J.
Membr. Sci. 258 (2005) 35–42.

[24] M.T. Hagan, M. Menhaj, Training feed forward networks
with the Marquardt algorithm, IEEE. Trans. Neural Network
5 (1994) 989–993.

[25] M.P. Rapetto, A. Almqvist, R. Larsson, P.M. Lugt, On the
influence of surface roughness on real area of contact in nor-
mal, dry, friction free, rough contact by using a neural net-
work, Wear 266(5–6) (2009) 592–595.

[26] A. Mohebbi, M. Taheria, A. Soltania, A neural network for
predicting saturated liquid density using genetic algorithm
for pure and mixed refrigerants, Int. J. Refrig. 31(8) (2008)
1317–1327.

104 F. Salehi and S.M.A. Razavi / Desalination and Water Treatment 41 (2012) 95–104




