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ABSTRACT

The present study intends to evaluate the properties of two pattern recognition methods,
principal component analysis (PCA) and cluster analysis (CA), for a better management of
the water quality monitoring systems, and then to identify those lake areas with similar pol-
lution behaviors and possible pollution sources. These methods were employed to analyze
the four indexes: chlorophyll-a, secchi depth, total nitrogen, and total phosphorus, and were
compared with each other. The results indicated that the classification outcomes by the PCA
were consistent with those by the CA. Twelve monitoring sites were classified into 5, 7, or 8
groups based on their similarity characteristics of the pollution level. In addition, the pollu-
tion sources in the Chaohu Lake were mainly exogenous pollution, derived from the four
rivers into the lake. These facts demonstrated that the PCA and CA methods had a great
application potential for a better management of the water quality monitoring system, and
the present paper provids a case study for many other lakes in China.

Keywords: Chaohu Lake; Principal component analysis; Cluster analysis; Water quality moni-
toring system

1. Introduction

Chaohu Lake (Anhui province), located in the
Yangtze River Basin, is one of the five largest freshwa-
ter lakes in China. It serves a variety of functions,
including flood control, water supply, irrigation, trans-
portation, fishery [1], and tourism. Therefore, the lake
plays an overwhelmingly significant role in the regio-
nal socioeconomic development. However, with popu-
lation expansion and rapid economic development,

this lake too has experienced a cultural eutrophication
process with the excessive nitrogen and phosphorus
inputs since the late 1970s [2], causing an accelerated
growth of algae [3,4] and a reduction in the transpar-
ency [5]. Some methods have been adopted to control
eutrophication in the lake since 1984 [6], albeit with
limited success.

To control water eutrophication and improve the
water quality, a water quality monitoring system
composed of 12 normal observation points was estab-
lished. These points are distributed along different
areas of the Chaohu Lake, few of them perhaps
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displaying a similar behavior. The annual monitoring
work is carried out the Environmental Monitoring
Station of the Anhui Province. Thus, it is necessary to
explore the water quality monitoring system perfor-
mance and more important by applying the principal
component analysis (PCA) and the cluster analysis
(CA).

The PCA is a technique that reduces the original
variables to minority underlying factors [7] (i.e. inde-
pendent uncorrelated variables) or principal compo-
nents (PCs), which account for as much of the total
original variance as possible. Through the application
of the PCA, the multicollinearity problem probably
implied between the original variables could be
avoided [8,9]. In addition, CA (such as hierarchical
CA) is an unsupervised pattern recognition technique
[10], designed to detect hidden “groups” or “clusters”
in a set of objects, so that the members of each cluster
behave similarly to each other and the groups are
maximally separated [9].

The above mentioned two approaches have been
combined to explore the primary information from the
original data in the previous reports. Vega et al.
assessed the seasonal and polluting effects on the qual-
ity of river water by utilizing the PCA and CA [10].
Singh et al. employed the two approaches to evaluate
the temporal/spatial variations and interpret a large
complex water-quality data set which was obtained
during the monitoring period of the Gomti River in the
Northern part of India [11]. Shrestha and Kazama used
both the approaches to assess the surface water quality
in the Fuji river basin, Japan [12]. All of them confirmed
that these two methods could supplement each other
and that a combination of the two approaches could
corroborate the feasibility approach for analyzing and
resolving environmental problems. Nevertheless, very
few researches have has applied the PCA and CA to
manage the water quality monitoring system by analyz-
ing the water quality indexes.

The four monitoring indexes, including chlorophyll
a (Chla), secchi depth (SD), total phosphorus (TP),
and total nitrogen (TN), have been chosen to describe
the characteristics of a water quality monitoring sys-
tem in the Chaohu Lake. Phosphorus and nitrogen are
the essential nutrients that are necessary for the
growth of algae in lakes [5,13] and serve as the pri-
mary causal factors for lake eutrophication. Generally,
TP and TN are the main monitoring indexes owing to
their stable measurement characteristics. In addition,
Chla and SD are important response variables. Chla is
the major photosynthetic pigment of algae and macro-
phytes, and most often is employed as an estimator of
the algal biomass. SD can easily provide a lot of infor-
mation on the lake water quality and, together with

TP, TN, and Chla, has been routinely used as a mea-
sure of the lake strophic status [14].

The objectives of the present paper were to esti-
mate the properties of the PCA and CA for a better
management of the water quality monitoring system,
and then to identify those lake regions with similar
pollution behaviors and possible pollution sources
through analyzing the four indexes.

2. Materials and methods

2.1. Study area

The Chaohu Lake (N31˚25´–31˚43´, E117˚17´–117˚
51´) (Fig. 1) is a shallow eutrophic lake, which is
located in the Anhui Province, southeast China. It pre-
sents the features of high terrain in the west, low in
the east, and flat in the middle and flows from west
to east. It covers a surface area of 760 km2, with an
average depth of 3m. Owing to being a shallow lake
and strong winds (with an annual average wind
speed of 4.1m/s), no seasonal stratification of the
water column is observed [15]. Fengle River, Hangbu
River, and Nanfei River are the three main tributaries
in the watershed, accounting for more than 60% vol-
ume of the runoff [16]. The only drainage stream-Yuxi
River [17] is permitted a direct water exchange
between the lake and the Yangtze River.

The water quality of the Chaohu Lake is seriously
influenced by the excessive nutrients inputs, mainly
from the industrial and municipal wastewater, man-
ure discharges, agricultural drainage, and roadways
runoff, and sediment resuspension. The first three
causes are caused due to an external pollution and the
last due to an internal pollution.

2.2. Monitoring points

For the purpose of controlling the lake eutrophica-
tion, improving, and better managing the water qual-
ity in the Chaohu Lake, 12 monitoring points were
established according to sampling specification. Fig. 1
shows the distribution of the monitoring sites along
the Chaohu Lake. Among these sampling sites, five
sites are set near the mouth area of main tributaries,
i.e. the inlets of Nanfei River, Shiwuli River, Paihe
River, Xinhe River, and Zhaohe River, respectively.
The detailed characteristics of water quality monitor-
ing stations in Chaohu Lake are listed in Table 1.

The samples were taken from each site underwater
0.5m every month for over 8 years (from January 2000
to June 2008). The data were provided by the Chinese
Research Academy of Environmental Sciences.
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2.3. Analytical methods

Ammonium Molybdate Spectrophotometry
(GB11893-89, China) was employed to determine the
TP Alkaline Persulfate Digestion Spectrophotometry
(GB11894-89) which is used to measure the TN. Chla
was extracted from the water body according to the
acetone extracting agent and the colorimetric tech-
nique was used as a crude spectrophotometric method
in the present paper. The SD was measured by utiliz-
ing the secchi disk and for the specific monitoring
process one can refer to this document [19].

2.4. Pattern recognition methods

2.4.1. Principal component analysis

The PCA mainly creates new variables (so-called
PCs) through a linear conversion. These PCs, which are
linear combinations of the original variables, are
orthogonal and uncorrelated to each other and keep
maximum original information [9,20]. They are ordered
in such a way that: the first PC accounts for the largest
proportion of the original data variability, and then
each subsequent one interprets the larger fraction of
alterability that has not been explained by its predeces-
sors. That is to say, most of the variation in the data set
can be illustrated by the first few PCs [21]. These PCs
are expressed by the following equation [22]:

PCi ¼ a1iV1 þ a2iV2 þ � � � þ aniVn ð1Þ

where a is the component loading; V is the measured
value of original variable, i is the component number,
and n is the total number of variables.

To better illustrate the effect of each original vari-
able in the PCs, varimax rotation is employed to
obtain the rotated factor loadings that represent the
contribution of each variable to a specific PC [23]. The
varimax rotation ensures that each variable is maxi-
mally correlated with only one PC is minimally asso-
ciated with the other components [21]. The rotated
factor loadings of a variable are greater, the variable
more contributes to the variation interpreted by the
particular PC. In practice, only rotated factor loadings
(with absolute valuesP 0.5 [24]) are chosen for the
interpretation of the PC

2.4.2. Cluster analysis

The CA discovers an intrinsic structure or an
underlying behavior of a data set without making any
previous assumption about the data, to separate the
objects into categories or clusters based on their simi-
larity [10]. Hierarchical clustering is the most common
approach in which the clusters are produced sequen-
tially, through starting with the most similar pair of
objects and forming higher clusters gradually. The
Euclidean distance (defined by Eq. (2)) is usually used
as a measure of similarity between the samples, and
can be represented by the difference of analytical val-
ues from both the samples.

Fig. 1. A map of the study area and surface water quality monitoring sites in the Chaohu Lake.
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dij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
k¼1

Xik � Xjk

� �2s
ð2Þ

where Xik is the measured value of the kth indicator
of the ith sample; Xjk is the measured value of the kth
indicator of the jth sample and dij expresses the
Euclidean distance between the ith and jth samples.
The smaller the value of dij is, the closer properties
between the ith and jth samples are, and together will
they group.

The number of clusters may be indicated graphi-
cally with a dendrogram, a tree diagram usually used
in the hierarchical CA [25]. For a complete procedure
of the clustering method used in the present study,
we can refer to the literature [23].

3. Results and discussion

3.1. Principal component analysis

Although the PCA was mostly utilized to reduce
the multiple dimensions, the method employed in the
present paper was to serve as a non-parametric
method of classification, so as to partition the monitor-
ing sites into classes (PCs), which had a similar behav-
ior and varied from those in other classes.

To understand the potential data structure, the
number of PCs retained was identified in the Scree
plot for Chla, SD, TN, and TP (seen in Fig. 2) [26]. It

could be found that the first three eigenvalues
expressed a greater slope, there was an unobvious
change in slope after the third eigenvalue. In general,
if eigenvalues were greater than 1 [27] and the PCs
explained most of the variance in the original data set,
these PCs were retained.

3.1.1. Chlorophyll a

The main results of the PCA application at all sites
for Chla, SD, TN and TP are presented in Table 2.

From the table, it is evident that the first three
PCs (with eigenvalues greater than 1) explained
86.86% of the information obtained from the original
data set for analyzing the Chla mass concentration.
This information displayed the data which were
highly relevant and could be expressed by the first
three PCs. Simultaneously, as the corresponding
rotated factor loading values were <0.5, it has to be
decided whether these sites could be clearly grouped
into different classes in accordance with the variation
of Chla. The first PC (PC1, 47.08% of variance) was
heavily loaded by the contributions from BK, CC,
ZHX, CE, ZM, and ZH sites, appearing to have
similar characteristics in describing the level of Chla.
In the PC2, the points of SW, TX and CW were com-
bined to undertake 20.82% of the loading variance.
PC3 (18.95% of variance) was mostly participated by
PH, XH, and NF points.

Table 1
Characteristics of the water quality monitoring stations in the Chaohu Lake

NO Monitoring
point

Detailed description

1 NF Inlet lake district, industrial and municipal wastewater, manure discharges, agricultural drainage,
and roadways runoff

2 SW Inlet lake district, industrial and municipal wastewater, manure discharges, agricultural drainage,
and roadways runoff

3 TX Manure discharges, agricultural drainage, and roadways runoff

4 PH Inlet lake district, industrial and municipal wastewater, manure discharges, agricultural drainage,
and roadways runoff

5 XH Inlet lake district, industrial and municipal wastewater, manure discharges, agricultural drainage,
and roadways runoff

6 CW Sediment resuspension

7 ZM Manure discharges, agricultural drainage, and roadways runoff

8 ZH Inlet lake district, industrial, and municipal wastewater, manure discharges, agricultural drainage,
and roadways runoff

9 CE Sediment resuspension

10 ZHX Manure discharges, agricultural drainage, and roadways runoff

11 CC Manure discharges, agricultural drainage, and roadways runoff

12 BK Outlet lake district, municipal wastewater, and sediment resuspension

Note: Come from Qingying [16] and Chao and Qinguo [18].
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The loading values of the first three PCs were plot-
ted in the load diagram, that of Chla is indicated in
Fig. 3(a). It could be seen that similar results were
achieved, i.e. the points associated with PC1, PC2, and
PC3 got together automatically.

3.1.2. Secchi depth

The SD was a primary index for monitoring the
water quality as well as Chla, so the PCA was applied
to analyze the SD. Considering eigenvalues higher
than 1, the first three PCs, which accounted for
81.98% of the data variance, were also required (seen
in Table 2). PC1 had an important devotion of 42.43%
from NF, SW, TX, PH, XH, and CW sites; while the
loading variation of 25.02% was provided by PC2
whose contributions were from BK, CC, ZHX, and
ZM sites. The CE and ZH points were significantly in
accordance with PC3, its loading variation was

14.52%. The coincident results obtained from the load
diagram are given in Fig. 3(b), where the points iden-
tified with PC1, PC2, and PC3 collected together auto-
matically.

3.1.3. TN and TP

For TN and TP mass concentration, three PCs were
selected for each index and their eigenvalues were all
greater than 1, they explained 82.56 and 72.22% of the
original variance, respectively. About TN, PC1
accounted for 54.24% of the variance and had an
important dedication of SW, TX, PH, XH, and CW
positions, while PC3 (9.61% of variance) was consid-
ered significantly in the NF sites. The other sites were
mainly loaded by PC2 (18.70% of variance). The TX
site was not only important for PC2, but also devoted
to PC1, their factor loadings were 0.674 and 0.64. With
regard to TP, PC1 made important devotions (35.05%
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Fig. 2. Scree plot of the characteristic roots (eigenvalues) of PCs for Chla, SD, TN, and TP.
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of variance) toward NF, SW, TX, PH, XH, and CW
points, while in sites BK, CC, ZM, and sites ZHX, CE,
ZH were evidently associated with PC2 and PC3, they
contained 20.45 and 16.72% of the variance, individu-
ally. The results obtained from the load diagram in
Fig. 3(c) and (d) agreed with PC1, PC2, and PC3.

Although these four indexes were all loaded with
many sites and took up many percent for illustrating
the variation, it was still difficult to distinctly classify
them into different categories in detail to describe a

similar behavior. Hence, it was necessary to apply the
CA method to analyze these indicators.

3.2. Cluster analysis

In the CA method, the clustering procedure
applied was the average linkage method. Euclidean
distance was employed to calculate the distance
between the monitoring points, and then the ratio of
Euclidean distance was served as the Rescaled Dis-

Fig. 3. PC plots of Chla, SD, TN, and TP in the rotational space (load diagram).
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tance Cluster Combine (RDCC). Fig. 4 expresses the
dendrograms of CA for Chla, SD, TN, and TP.

3.2.1. Chlorophyll a

As can be seen from Fig. 4(a), the dendrogram of
Chla indicated that 12 monitoring sites of the Chaohu
Lake could be divided into 5 clusters: cluster 1 (A,
BK, CC, ZHX, CE, ZM, and ZH sites), cluster 2 (B, TX,
CW and SW sites), cluster 3 (C, NF site), cluster 4 (D,
XH site), and cluster 5 (E, PH site). It could be illus-
trated that these results were consistent with those
obtained from the PCA method, where the PC1 and
PC2 were coincident with A and B, and PC3 corre-
sponded to the C, D, and E clusters of the CA, respec-
tively.

For the sake of showing the Chla’s classification
clearly, the relevant clusters in the points map are
demonstrated in Fig. 5(a). The sites in cluster A were
lay in the Central Eastern district of the lake, while
the other points in B, C, D, and E, which were in the
inlet of rivers, were all located in the West area. It
could be concluded that the distribution of these clus-
ters were evidently relied on the pollution level,
which played a major part to produce this classifica-
tion.

3.2.2. Secchi depth

According to the RDCC value of SD calculated
(seen in Fig. 4(b)), 12 sites could be firstly grouped
into three clusters: cluster 1 (A, sites NF, SW, TX, PH,
XH, and CW), cluster 2 (B, sites BK and CC), and
cluster 3 (C, sites CE, ZH, ZHX, and ZM). Similar
results could be gained from the PCA method, where
PC1, PC2, and PC3 corresponded exactly to A, B, and
C, respectively.

When reducing the RDCC value, the C and A
could be further sorted into different sub-clusters,
such as C1 (BK and CC sites), C2 (ZHX site) and C3
(ZM site); A1 (XH and CW sites), A2 (TX, PH, and
SW sites), and A3 (NF site). The distribution of these
classified groups in the points map is presented in
Fig. 5(b). It could also be discovered that the cluster of
these sites was highly dependent on the pollution
level as well as the Chla.

3.2.3. TN and TP

Likewise, the dendrogram from CA on the TN and
TP mass concentrations and related clusters of point
map are also shown in Figs. 4(c) and (d) and 5(c), and
(d). It could be shown that the monitoring points were

Fig. 4. Dendrograms for Chla, SD, TN, and TP.
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divided into different categories on the basis of the
RDCC value.

For the TN concentrations, four categories, includ-
ing A (CE, ZH, ZHX, ZM, BK, and CC sites), B (XH,
CW, SW, and PH sites), C (TX site), and D (NF site),
were firstly acquired from the CA method, which
achieved similar results from the PCA, with PC1, PC2

and PC3 corresponding to A, B, and D, respectively.
However, the site TX belonged to C category for its
special properties, which had important contribution
in both PC1 and PC2. In the same way, the A and B
could be further classified into different sub-classes,
containing A1 (XH and CW sites), A2 (TX, PH, and
SW sites), A3 (NF site), and B1 (XH and CW sites),
and B2 (SW and PH sites), through decreasing the
value of RDCC.

Furthermore, for the TP mass concentrations, the
12 points were classified into three clusters: cluster 1
(A, sites BK, CC, CE, ZH, ZHX, and ZM), cluster 2 (B,
sites XH, CW, TX, PH, and SW), and cluster 3 (C, site
NF). From the results, it could be seen that the points
gained in PC1 were divided into clusters B and C,
and A included PC2 and PC3. To reduce the RDCC
value, clusters A and B might be further divided into
sub-clusters, i.e. A1 (points BK and CC), A2 (points
CE and ZH), A3 (point ZHX), A4 (point ZM), and B1
(points XH and CW), B2 (points TX and PH), and B3
(point SW). These results declared that the PCA and
CA achieved similar outcomes, that is to say, PC2,
PC3, and PC1 were associated with A1 and A3, A2
and A4, B, and C, respectively.

According to Fig. 5, they demonstrated that there
was a distinct description in the point map, and it
could be concluded that the cluster of these sites was
highly dependent on the pollution level as well as
Chla and SD.

To prove the accuracy of the classification results
from the CA method, the monthly average values of
Chla, SD, TN, and TP at the categorical sites were
analyzed in the next section.

At last, the classification results of PCA and CA
for Chla, SD, TN, and TP at all sites are listed in
Table 3. As can be found from the table, the classifica-
tion results of the PCA were in agreement with those
of CA, and compared with PCA, CA was a more spe-
cific sorting technique. Among these four indexes, the
sites BK, CC, ZHX, CE, ZM, and ZH were remarkably
separated from the other sites and they could be fur-
ther classified into diverse sub-clusters. These sub-
clusters may have been formed because the two types
of points were quite different on the pollution level.

Via analyzing the CA outcomes, the points of BK
and CC were always grouped into one category for all
the indicators. In other words, these two points had
similar characteristics of water quality indexes, they
could be merged into one site. Meanwhile, the NF site
was independent when comparing with the other
points for all the indexes and was required to be mon-
itored individually. The classification of the other
points should be specifically discussed on the basis of
the various water quality indexes.

Fig. 5. Corresponding clustering point maps for Chla, SD,
TN, and TP.
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3.3. Data analysis

To prove the accuracy of the CA method, the
monthly average values of Chla, SD, TN, and TP were
analyzed in this section, in terms of the classification
results of the CA. They are shown in Figs. 6–9, indi-
vidually.

3.3.1. Chlorophyll a

From Fig. 6, the Chla averaged concentrations in
cluster A ranged from 2.5 to 8.3mg/m3, while those
in the B, C, D, and E clusters exceeded 16mg/m3,
even could reach 103.8mg/m3. It appeared that the
variation trends of the Chla averaged concentration
were very similar in the A group, which agreed with
the results gained from the PCA and CA methods.

However, in the B group with a higher concentration,
the sites a had the similar profile from 4 to 9months
and 10 to 12months, while other months showed vari-
ous changes.

Combined with Fig. 4, these results indicated that
the similarity was highly dependent on the RDCC
value. The RDCC values were lower within the cate-
gory, the behaviors of the category were more similar.
Toward clusters C, D, and E, the trends of monitoring
sites were different, they seemed to have minimum
similarity, and needed to be sample all alone.

3.3.2. Secchi depth

Simultaneously, on the basis of Fig. 7, the values
of SD ranged between 30 and 47.3 cm in all points,
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Fig. 6. The monthly average values from 2000 to 2008 for Chla at the monitoring sites, grouped by the correspondent CA
category.
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and did not have distinct changes as well as Chla con-
centrations. This demonstrated that SD was not
related to Chla directly. The high level of suspended
sediment contented in Chaohu Lake was the main rea-
son for the low SD [28]. For the A2, B, and C1 clus-
ters, the monitoring sites had a similar profile. But for
the A1 group, the sites did not have the same profile
between 4 and 9months, the other months had ana-
logical features. With regard to cluster A3, C2, and
C3, they seemed to have minimum similarity and
should be monitored separately.

3.3.3. TN and TP

In addition, similar behaviors of TN and TP in sites
could be observed in Figs. 8 and 9. The averaged con-

centrations of TN and TP in cluster A located in the
east-central area were lower than those in other clus-
ters, which were distributed along the western lake.
These concentration variation trends were the same as
those of Chla, which was because excessive TN and TP
were beneficial to the growth of algae [6].

For TN, in cluster A1, the sites presented the same
variation trends from 3 to 12months, but the ZHX site
showed a peak of TN in the first two months. This
fact could be explained by the corresponding RDCC
value of the ZHX site, which was greater than that of
the other two sites belonging to the A1 category.

Similar conclusions could be drawn from Fig. 9.
For TP, the sites in group A1, A2, and B1 all had a lar-
ger similarity intra-group, but the sites in the B2 group
had a greater difference. These sites were related to
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Fig. 7. The monthly average values from 2000 to 2008 for SD at the monitoring sites, grouped by the correspondent CA
category.
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their RDCC value, i.e. the value of B2 group was
greater than that of A1, A2, and B1 group. The sites in
group A3, A4, B3, and C appeared to have maximum
distinction and should be classified individually.

In other words, these analyzing results confirmed
that the Chaohu Lake had the same polluted behavior
at many monitoring stations, this meant that only one
monitoring point should be needed under the same
pollution level. Moreover, they further verified that
the western water quality of Chaohu Lake was in a
much more deteriorated state than in the east-central
area.

According to the data analysis and the discussion
of water quality indicators––Chla, SD, TN, and TP by
applying the PCA and CA methods, it was deduced
that the sources of pollutants were mainly exogenous
pollution, coming from the rivers into the lake.
Endogenous pollution was not serious. The manage-

ment of water quality in Chaohu Lake should control
the entrance of external contaminant.

4. Conclusions

In the present paper, the PCA and CA methods
were applied to the four water indexes at twelve
sites in the Chaohu Lake. The conclusions obtained
were as follows. (1) The identification of water mon-
itoring sites by the PCA method was complied with
that by the CA method. This indicated that PCA
and CA methods had great application potential for
better management of water quality monitoring sys-
tems. (2) The classification for these monitoring
points evidently relied on the similarity of pollution
behaviors, which played an important part. It was
suggested that only one monitoring point should be
needed to install under the same pollution level. (3)
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It was inferred that the pollution source of Chaohu
Lake was the exogenous pollution, derived from riv-
ers into lake.

Therefore, this research would provide a case
study to improve the management of water quality
monitoring systems for many other lakes in China.
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