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ABSTRACT

The presented chlorine controller system has neglected the travel time for monitoring the
amount of chlorine in water treatment plant (WTP). In the present study, an adaptive neuro-
fuzzy inference system was used to predict the travel time and chlorine changes that take
place at a clear well in a typical WTP. The artificial Neuro-Fuzzy Inference System combined
with Proportional Integral Derivative (PID) controller system was applied to optimize the
chlorine dosing rate and to minimize the chance of errors. The travel time and the dosing
rate were automatically calculated and injected using the proposed model and the controller.
The standard deviation of an output chlorine rate was 3.6 and 7 times less than those of an
old controller system in real application and in simulation, respectively. It was found that
the neuro-fuzzy PID controller made a significant contribution to supply hygienically safe
drinking water by considering various conditions including the travel time than the existing
methods.
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1. Introduction

Drinking water can be contaminated by regrown
microorganisms when the injected chlorine concentra-
tion fails to maintain the required concentration
throughout the entire water treatment plant (WTP).
Chlorine is the most commonly used disinfectant due
to its ease of application and monitoring, its low cost,
and its effectiveness in killing bacteria [1-3]. Most of
the WTPs in Korea apply chlorine as a disinfectant.
There are three types of chlorine injecting methods
such as pre-chlorination, post-chlorination, and re-
chlorination. In post-chlorination, chlorine is injected
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after the filtration process to keep the residual chlo-
rine from being contaminated by various types of
microorganisms. When the chlorine concentration is
lower than the required value, drinking water can be
easily contaminated by re-grown microorganisms. On
the other hand, overdischarged chlorine concentration
may create taste and odor problems. Maintaining
chlorine level at the required value throughout the
water treatment process is a crucial factor to overcome
the above-mentioned problems.

In WTPs, the chlorine dosing rates are usually
determined by the technical operators who are in
charge of monitoring the input and output chlorine
rates. In practice, however, it is not easy to adhere to
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the monitoring of chlorine dosing rates all day long
and the dosing rates can vary depending on each
operator’s personal inclination. An automatic control
of these chlorine dosing rates is required to overcome
these difficulties.

The simplest model for chlorine decay is the first-
order decay, one in which the chlorine concentration
is assumed to decay exponentially [4-6] and for a
given initial concentration and temperature, the first-
order model can provide a fair approximation. Diffi-
culties may arise in the decision process of decay con-
stant and in the implementation of multiple
experiments, as the results can be varied based on the
quality of source water, temperature, Reynolds num-
ber, and the material properties of water pipes. As an
alternative method, statistical models can be used.
Unlike the first-order decay model, such statistical
methods do not have to decide the constant. But they
need large amounts of reliable data stored in a data-
base to predict the amounts of residual chlorine.

Development of the statistical based models is nec-
essary when the parameter estimation within the pro-
cess-based model is imprecise or difficult to obtain [7].
It is also proper to study such models when the data
required for the development of first order models are
not available. This data-driven method does not
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Fig. 1. The schematic diagram of a typical WTP in Korea.

require any prior knowledge of chemistry or mathe-
matics related to residual chlorine [8]; but it is very
important to find related variables to predict the
residual concentration accurately. The control system
in most of the WTPs in Korea is computerized to
monitor and control each unit process, and to accu-
mulate large amount of data on hard disk drives.
These accumulated data are to be used to analyze the
chlorine decay and to determine the most appropriate
injection rate.

The overall objective of this study was to develop
a control system for maintaining the output chlorine
rate at one of the WTPs in Korea. The travel time at a
water reservoir must be predicted to identify the chlo-
rine decay. The chlorine dosing rate shall then be
determined from the predicted chlorine decay with
travel time. Statistical algorithms such as linear regres-
sions, neural networks [9-11] and support vector
regressions [12-14] can generally be used for model-
ing the chlorine decay and travel time. In the present
study, Artificial Neuro-Fuzzy Inference System
(ANFIS) was adopted due to its capacity to handle
non-linearity, large amounts of data, and its fault and
noise tolerances. Other learning algorithms were also
used to compare them with the ANFIS. As all the
learning algorithms are based on the feed-forward
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controls, they may create errors. Proportional Integral
Derivative (PID) as a conventional control algorithm
was additionally applied to remove the errors in the
output chlorine concentration [15] in the present
study.

2. Learning algorithm

Fig. 1 shows the schematic diagram of a typical
WTP in Korea. Untreated raw water is treated by sev-
eral unit processes such as rapid mixing, flocculation,
sedimentation, filtration, and chlorination in sequence.
At the post-chlorination stage, chlorine is injected after
the filtration process and some of the chlorine gets
evaporated while going through the clear well. The
evaporation rate must be estimated to inject the exact
amount of the dosage rate.

In the present study, among several existing algo-
rithms ANFIS was adopted as a learning algorithm as
it is easy to implement. It also operates well using a
small number of rules compared to other neural net-
works [14]. ANFIS is known as one of the methods to
organize the fuzzy inference system with the given
input-output data pairs. The parameters of conse-
quent parts can be optimized using the least square
method while the premise parameters using the
steepest descent method. It is assumed that the fuzzy
inference system has two inputs, x, ¥ and one
output z.

Rule 1: If x is Ay and y is By, then fi=pix+ g1y +11
Rule 2: If x is A, and y is By, then fo=px + g2y + 12

A detailed description of an ANFIS structure is sum-
marized in Fig. 2. A square node (adaptive node) has
parameters, while a circle node (fixed node) has none.
The node functions in the same layer are of the same
family function as described in Fig. 2:

Layer 1: Every node i in the first layer is an
adaptive node with node function as shown in
Eq. (D).

0! = pA;(x) (1)
where x is the input node i and A; is the linguistic
label (small, large, etc.). In other words, O} is the
membership function of A; and it specifies the degree
to which the given z satisfies the quantifier A;. A bell-
shaped function was used as shown in Eq. (2).

A(x) = exp{ - (" ; C">2} 2)

Here {a;, c;} is the parameter set. The parameters in
this layer are referred to as premise parameters.

Layer 2: Every node in this layer is a fixed node
labeled [], which multiplies the incoming signals and
sends the product out as shown in Eq. (3). For
instance,

WI‘ = ,LtA,‘(X) X ,uBl(y), i= 1,2 (3)

Each node output represents the firing strength of a
rule.

Layer 3: Every node in this layer is a fixed one
labeled N. The ith node calculates the ratio of the ith
rule’s firing strength to the sum of all rules’ firing
strengths as shown in Eq. (4):

_ W,
Wi=——— 4
W W, (4)
For convenience, outputs of this layer are to be called
normalized firing strengths.
Layer 4: Every node i in this layer is an adaptive
node with the node function as shown in Eq. (5).

layer 1 layer 4
J’_ layer 2 layer 3 v
/ A, | Xy layer 5
X "———*Z "!?1 ff
— s > f
y <18 w1,
N 7
B, Xy

Fig. 2. A detailed description of an ANFIS structure.



214 S.-T. Hong et al. | Desalination and Water Treatment 47 (2012) 211-220

O = Wi(pix +qiy +17) (5)

Here {p;, q;, v} is the parameter set. The parameters in
this layer are to be referred to as consequent
parameters.

Layer 5: The single node in this layer is a fixed
node labeled C that computes the overall output as
the summation of all incoming signals as shown in

- Nk f = 2l
O} = overall output = » W x f; = S w; (6)

The premise and consequent parameters can be
chosen to minimize the following sum of the squared
error as shown in Eq. (7).

N

E= Z(Tm - OM)Z (7)

m=1

Here, T,, is the desired output of mth data and O,,
is the output of fuzzy model using the mth data, and
N is the total number of training data sets. The steep-
est descent method as in a neural network can be
applied to find the premise parameters and the least
square estimate can be applied to optimize the conse-
quent parameters [15].

3. Case study
3.1. Target plant and present controller

A case study was drawn up with one of the WTPs
in Korea. The flowrate of this treatment plant was
found to be 414,000 m>/day. The chlorine dosing rate
should be properly controlled to maintain the
required output chlorine concentration. The chlorine
dosing rate in this treatment plant was calculated
using the following Eq. (8):

Uy = (In_Cl, — Sed Cl,) + (Desired In_Cl,
—In—Cl,)kp; + (Desired_Out_Cl,
— Out_Clz)*kpz (8)

In Eq. (8), sedimentation chlorine (Sed Cl,) was
considered for the feed-forward control, which has
affected the injection rate based on its residual. The
value of (Desired_In_Cly—In_Cl)* kp; was updated
every 20min and that of (Desired_Out_Cl,—Out_ClL)*
kp, was updated every 120min due to its delayed
time. Here, the final goal is to maintain the Desire-

d_Out_Cl,. To achieve this goal, Desired_In_Cl, must
be changed according to the amount of chlorine
decay. But the amount of chlorine decay is not consid-
ered in Eq. (8) and Sed_Cl, should be carefully con-
sidered, because it also has a delayed time.

3.2. Post-chlorination design procedure

The dosing rate of post-chlorination was randomly
determined by the desired input chlorine rate based
on the operator’s personal experience. In this case, the
operator decides the desired input chlorine according
to the output chlorine. The output chlorine is affected
by the travel time. Although the output chlorine is
highly affected by its decay, this process does not
have an algorithm to calculate the travel time, which
is one of the key factors of a chlorine decay. The treat-
ment plants operator usually decides the desired
input chlorine rate without the thoughtful consider-
ation of travel time.

The crucial factor for the effective control of post-
chlorination is the modeling of travel time as accurate
as possible and the calculation of chlorine decay with
time. Once the chlorine decay is predictable, it is easy
for the controller to decide the ideal input chlorine rate.
Fig. 3 shows the design procedure of an ANFIS PID
controller. Initially the travel time is acknowledged by
the filter output flow, storage tank output flow, and
tank level. Once the travel time is given, chlorine decay
in the storage tank is estimated by the travel time and
water temperature. Then the input chlorine rate can be
calculated by the sedimentation output chlorine and
dosing rates. Finally, the dosing rate is determined by
the sedimentation output chlorine and desired input
chlorine rates considering the decay.

3.3. Plant controller and modeling

Pearson’s correlation coefficient was used for the
variable selections. And the wvariables for chlorine
decay were analyzed as follows.

Learning Travel Time &= Flow & Level

$

Leaming Chlorine Decay

&

Learning Input Chlorine
Rate

4

Learning Dosing Rate

&= Travel Time & Temp

&= Sed_Cl: & Dosing Rate

&= Desired In_Cl: & Sed_Cl:

Fig. 3. The design procedure of an ANFIS PID controller.
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Table 1
A comparison of the various learning algorithms
NN(BP) ANFIS LR SVR
Train Test Train Test Train Test Train Test
Mean absolute percentage error (MAPE) (%) 7.24 8.35 7.84 8.13 8.15 8.79 8.59 8.41

Pearson’s correlation coefficients by the variables were
given as follows:

¢ Input and output chlorines=0.914
¢ Travel time and (input-output) chlorine =0.166
¢ Water temp and (input-output) chlorine =0.093

According to the above-mentioned analysis, the
output chlorine was found to be influenced by the
input chlorine predominantly. The chlorine decay was
influenced by the travel time and temperature. The
decay should be considered to obtain the exact output.
As the travel time changes frequently, the desired
input chlorine rate must be flexible according to the
variation of time. In case of temperature, it follows the
seasonal variation and does not require the chlorine
rate in real time. Neural networks and regression
methods can predict the output according to their sta-
tus with other algorithms. The applied algorithm is
selected to consider its error and to implement it eas-
ily. Table 1 summarizes the comparison of various
learning algorithms.

As a result, the neural network has shown better
results in the training data than the checking ones.
The checking data have shown a slight overfitting.
The ANFIS has shown better results in training data
compared to linear regression (LR) and support vector
regression (SVR), and its checking data have dis-
played the best fitting among them. The ANFIS with
fuzzy C-means clustering can also reduce the number
of rules, which can make its implementation easier

due to the small number of estimated parameters. The
ANFIS was eventually selected as the model algo-
rithm for the process.

3.4. Modeling and controller

Optimization of modeling and controller are based
on a large number of accumulated data from the
WTP. Modeling was implemented by one of the
learning algorithms from an uncontrollable environ-
ment and controllable input/output chlorine rate.
The controller was implemented using the neuro-
fuzzy inference system with a PID controller. Fig. 4
shows the schematic diagram of modeling and con-
troller for the overall system. It would help to simu-
late post-chlorination process to decide the optimized
dosing rate.

As the sedimentation residual chlorine and dosing
rates are inputted into model 1, it gives the value of
the input chlorine concentration rate. In this case, the
target input chlorine level did not reach because it
was affected by the changes in its environment such
as the input flow and sedimentation chlorine. Feed-
back controller is to be added to remove the probable
error. In model 2, the output chlorine concentration is
mainly influenced by the input chlorine. But the dif-
ferences between the input and output chlorines were
caused by the travel time and water temperature.
Their relationships were modeled using the
neuro-fuzzy inference system. It would be helpful to
estimate the output chlorine rate according to the

Environment Environment Environment
(Temp, Hour) (SedCl) (Temp. Hour)
Tar_InCly Tar_InjRate
cl Qut_Cl;
Tar_OutCl NF Controller Injector [Valve Cirl | Model 1 InCl Mode! 2
Error
Error

Fig. 4. Modeling and controller of overall system.
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Table 2
Calculating procedure for the delay time between the
injection and measurement points

Sampling 20L/min (roughly)
pump
PVC line 25 mm
diameter
PVC line 70m
distance
PVC water 7 x *=3.14 x (12.5/1,000)* = 0.00049 m*/
quantity m=049L/m
Total water 049L/m x70m=34L
quantity
Pipe delay Total water/sampling pump=34L/
(20L/min) =1.7 min
Delay time Pipe delay + Water tank delay =1.7 min

+3min~5min

variables such as input chlorine, travel time, and
water temperature.

The ANFIS controller provides the desired input
chlorine and dosing rates to keep the output chlorine
concentration constant, despite the changes in its vari-
able. The characteristics of instruments, injectors, and
other environments, however, can be changeable with
time and produce various types of errors. In the
present study, two sets of PID controllers were
adopted to compensate the target input chlorine and
dosing rates to overcome such offsets. Both of input
and output chlorine concentrations having a long time

S.-T. Hong et al. | Desalination and Water Treatment 47 (2012) 211-220

delay should be carefully decided. Input sampling
time was calculated by the procedure shown in
Table 2. The delay time should be more than 5min to
match the dosing rate and its influence.

The time between input and output chlorine rates
changes continually and the output PID control period
must be more than the maximum delay time — 5h as
shown in Fig. 5.

4. Results and discussion
4.1. Simulation

It is essential to collect the tremendous amounts of
data to effectively analyze the post-chlorination pro-
cess. Eight kinds of variables were considered such as
sedimentation chlorine, input chlorine, output chlo-
rine, travel time, water temperature, level, and input

Table 3
Percentage of error for the travel time estimation with the
selected variables

Variables MAPE
(%)

Level, effluent flowrate 9.3

Level, effluent flowrate, travel time (n—1) 9.1

Level, effluent flowrate, differential level 9.2

Level, effluent flowrate, effluent differential 9.6

flowrate
Level, influent flowrate, effluent flowrate 8.1
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Fig. 5. Comparison of estimate and real travel times.
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and output flows. Most of the information on the vari-
ables was collected using the K-water’s database gath-
ered from more than 30 WTPs in Korea. Roughly
4,500h of recorded data from the 1st day of January
to the 21st day of June were used for the simulation.

Table 3 shows the percentage of error for the travel
time estimation with the selected variables. Here, the
value of level was taken from the storage tank level,
while the differential level from the hourly level dif-
ference. The value of an effluent differential flowrate
was also taken from the hourly effluent flow differ-
ence, while the value of influent flowrate from the
storage influent. The travel time has shown the opti-
mum value when the level, influent flowrate, and
effluent flowrate were considered.

The estimated travel time was found to be similar
to the real one as shown in Fig. 5. Although the travel
time changes from 0 to 5h, it goes well along with its
changes. In fact, the travel time can be estimated by
the prediction of algorithm considering relevant vari-
ables.

The percentage of error for output chlorine estima-
tion with the selected variables is summarized in
Table 4. The estimation was found to be better in case
of considering the input chlorine concentration, travel
time, and water temperature. Its error has shown to
be lower than 2.16%, which means that the output
chlorine can be modeled by these variables.

The estimated and real output chlorine rates were
compared as shown in Fig. 6. Although the estimated

08 T T T T
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Table 4
Percentage of error for output chlorine estimation with the
selected variables

Variables MAPE (%)
In_Cl,, Travel time 2.21
In_ Cl,, Travel time, Water temp. 2.16

output chlorine rate was deviated in the upper and
lower parts compared to the real one, it fitted well.

Fig. 7 shows the output chlorine rate by the pres-
ent controller. There was a great variation in the out-
put chlorine rate. Although the target output chlorine
rate was 0.75mg/L, it ranged from 0.65 to 0.82mg/L.

Fig. 8 shows the variation in the input and output
chlorine rates by the proposed ANFIS combined with
the PID controller. Its simulated output chlorine rate
was in the range of 0.75mg/L, which was the target
to reach. The input chlorine rate varies from 0.78 to
0.9mg/L, while the output rate ranges from 0.723 to
0.766 mg/L. Its variation was found to be smaller than
the one compared to the previous controller.

Table 5 shows the simulation results of three con-
trollers. The neuro-fuzzy and two PID controllers have
the least error compared to the other ones. The per-
centage error of ANFIS and two PID was less than
half compared to the one of only-ANFIS controller.
The ANFIS combined with two PID controller systems
was adopted to control post-chlorination process in
this study.

085
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Fig. 6. Comparison of estimate and real output chlorines.
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Table 5
Simulation results of three controllers
Variables MAPE (%)

In_C12 Out_C12
ANFIS only 0.81 0.77
ANFIS + PID (In_Cl,) 0.31 0.62
ANFIS + PID (In_Cl,) + PID(Out_Cl,) 0.34 0.35

The output chlorine using the conventional con-
troller varies from 0.65 to 0.82mg/L, while the new

Table 6
A comparison of the standard deviation for the old and
new controllers in simulation

Old controller New (proposed)
controller

Mean SD Mean SD

0.746 0.0286 0.75 0.0038

controller ranges from 0.723 to 0.766 mg/L. The major
difference comes from the fixation of travel time. As
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Post Chlorine Control for Chunan WTP
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Fig. 9. Real output residual chlorine by old and new controller.

the input chlorine rate of the proposed controller
changed by travel time estimated by the neuro-fuzzy
model, the output chlorine rate kept constant as
shown in Fig. 8. It was found that the PID controller
has contributed to minimize the variation of desired
output chlorine rate by compensating the error. A
comparison of the standard deviation for the old and
new controllers in simulation is tabulated in Table 6.
It was found that the ANFIS combined with two PIDs
system has shown seven times lower standard
deviation than the conventional types of controllers.
The chlorine output rate can be more stable by apply-
ing this system.

4.2. Experiment

The new control input was made from 11:40, on 18
September to 01:00, on 19 September. The output
results were obtained 3h later due to the delay time
and the real results were displayed from 14:40, on 18
September to 04:00, on 19 September. Experimental
section was divided into two — before and during
experiments. Fig. 9 shows the real output residual
chlorine by old and new controllers. At that time, the
target output chlorine concentration increased up to
0.9mg/L due to the hot temperature in summer sea-
son. The proposed controller kept its output chlorine

Table 7
Standard deviation of old and new controllers in
experiment

Old controller New (proposed)

controller
Mean SD Mean SD
0.875 0.029 0.912 0.008

rate lower than 0.02mg/L, while the variation of old
controller is great.

The standard deviation of an old controller is as
high as 0.029, while the new controller was deviated
by 0.008 as shown in Table 7. It means that the output
chlorine rate can be improved once the travel time is
estimated and the optimal dosing rate is decided
using neuro-fuzzy algorithm.

In the case of a conventional controller, the out-
puts were so deviated because they did not care for
the travel time. But the new controller decided the
desired input chlorine rate based on its travel time,
and most of the output data ranged from 0.90 to
0.92mg/L. It looks well controlled. The mean of “dur-
ing the experiment” had an error from its desired out-
put of 0.9mg/L. It was caused by the learning data
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set, which was not considered until 23 August, and its
surrounding environment changed slightly. To com-
pensate this fact, PID error compensation equation
should be applied for the desired input chlorine as
shown in Eq. (9).

n

1
Error = . Z(Des_Out_Clz — Out Cl) 9)

i=1

The output chlorine rates are expected to move
around the desired output.

5. Conclusions

The operator in the treatment plant randomly deci-
des the desired input chlorine rate as the current chlo-
rine controller system did not make any thoughtful
consideration of the travel time. The chlorine dosing
rate entirely relied upon the operator’s experience. In
this study, the ANFIS combined with a PID controller
system was applied to optimize the chlorine dosing
rate. The travel time and dosing rate were automati-
cally calculated and injected using the proposed
model and controller. The standard deviation of out-
put chlorine rate was 3.6 and 7 times less than old
controller in real application and in simulation,
respectively. As the travel time in WTP changes con-
tinually, the learning algorithm such as neuro-fuzzy
inference system is recommended to be adopted to
supply hygienically safe drinking water.
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