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ABSTRACT

This study was developed using data from a drinking water treatment plant located at
Boudouaou, Algeria, it is located at about 7 km from the Keddara dam which supplies potable
water to Algiers capital of Algeria. The treatment consists essentially of preliminary disinfec-
tion, coagulation–flocculation, settling, filtration and final disinfection. Traditionally, optimum
coagulant dosages are determined using jar tests. However, jar tests are relatively expensive
and time consuming. In this study, we present a new Artificial Intelligence Techniques model
called dynamic evolving neural-fuzzy inference system (DENFIS) based on an evolving cluster-
ing method, for modelling coagulant dosage rate used in the coagulation stage. Six online vari-
ables of raw water quality including turbidity, conductivity, temperature, apparent colour,
ultraviolet absorbance, water pH and alum dosage were used to build the coagulant dosage
model. Two DENFIS-based evolving neural-fuzzy inference system are presented and com-
pared. The two DENFIS systems are: (1) Offline-based system named DENFIS-OF and (2)
Online-based system, named DENFIS-ON. The performances of the models are evaluated
using root-mean square errors (RMSE), mean absolute error and correlation coefficient (CC)
statistics. The low RMSE and high CC values were obtained with DENFIS-ON method.
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1. Introduction

Water treatment plants (WTP) are expected to pro-
vide safe and aesthetically acceptable water to con-
sumers at a reasonable cost. Conventionally,

management and operation of a WTP is based on
monitoring finished water quality parameters and
then comparing them to the regulatory requirements
[1]. Coagulation–flocculation followed by sedimenta-
tion and filtration is the most commonly used water
treatment process, in which turbidity or particle
removal is strongly dependent on proper coagulant
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dosage, flocculation mixing time, mixing intensity and
effective size of filter media [2]. Coagulation involves
three basic steps: coagulant addition and mixing,
colloid particle destabilisation and floc formation.
Coagulation describes the initial colloid destabilisa-
tion, principally by charge neutralisation after adding
the coagulant. In practice, there is a little distinction
between coagulation and the early phase of
flocculation because it occurs very rapidly. Hence, the
term either “coagulation” or “flocculation” could be
used to describe the overall treatment process [3]. The
coagulation effectiveness depends on various factors,
including coagulant types and dosage, pH and particle
properties [4]. Numerous other operational parameters
can affect coagulation including initial coagulant,
applied shear stresses by agitation and hydraulic
retention time for coagulation and floc formation [5].

One of the factors influencing coagulation behav-
iour is the coagulant which plays a key role in water
treatment process [6]. Commonly used metal coagu-
lants are generally based on aluminium and iron and
have been widely used in water treatment since the
early twentieth century [7]. The coagulants used in
this study were aluminium sulphate also called
“alum” (Al2SO4·18H2O). Improper coagulant and dos-
ages may lead to an inefficient operation and may
increase the quantity of chemical sludge [8]. Tradition-
ally, optimum alum doses are determined using jar
tests [9,10]. However, jar tests are relatively expensive
and take a long time to conduct. The limitations of
using jar tests for determining optimum alum doses
can be overcome using models [11]. Models that have
the ability to capture underlying relationships using
examples of the desired input-output mapping are
very suitable [12]. Until now, the majority of coagulant
dosage models have been statistically based, including
polynomial equations, artificial neural networks
(ANN) and neuro fuzzy models.

During the last few decades, many authors have
carried out modelling work on coagulant dosage con-
centration. Bazer-Bachi et al. developed two separate
models based on polynomial equations used to deter-
mine coagulant feed rates for the Clairfont WTP in
France [13]. Gagnon et al. developed an ANN model
for predicting the optimal alum dose for the SteFoy
WTP in Quebec, Canada [14]. Joo et al. developed a
similar model for the Chungju WTP in Korea [9] and
Van Leeuwen et al. developed an ANN model for the
prediction of optimal alum doses based on jar tests
conducted on surface waters collected in southern
Australia [15]. Maier et al. used the same database as
Van Leeuwen et al. to predict optimal alum dosage
and treated water quality parameters [11]. Heddam
et al. developed and compared two ANNs namely,

generalised regression neural network and radial basis
function neural network for modelling the nonlinear
complex process of coagulant dosage using raw water
data collected at Boudouaou WTP in Algiers, located
in the northern zone of Algeria [16].

Another approach to modelling coagulant dosage
is a neuro-fuzzy-based approach. Heddam et al. devel-
oped and compared two ANFIS models namely (i)
grid partition-based fuzzy inference system (FIS),
named ANFIS-GRID and (ii) subtractive clustering-
based inference system (FIS), named ANFIS-SUB, for
the Boudouaou WTP [17]. Wu and Lo developed and
compared the performance of ANNs and Adaptive
Neuro-Fuzzy Inference System (ANFIS) approaches
for coagulant dosage modelling. The study was con-
ducted at the WTP in Taipei County, Taiwan, and the
models were used to model poly aluminium chloride
dosing [18].

These models can be differentiated from each
other based on the type of raw water data used as
input. Bazer-Bachi et al. [13] used four variables
(turbidity, resistivity, temperature and organic
material) as input data with a correlation coefficient
(CC) between observed and calculated coagulant dose
of 0.94. The model of Gagnon et al. [14] is based
on the pH, turbidity, temperature and conductivity,
the mean absolute error (MAE) was approximately
(2.69 mg/L) in the validation phase. The parameters
used in the model developed by Joo et al. [9] are
temperature, pH, turbidity and alkalinity. The root-
mean-square error (RMSE) obtained ranged over two
orders of magnitude with minimum and maximum
values of 17.31 and 24.04. Van Leeuwen et al. [15]
and Maier et al. [11] selected the following parame-
ters: dissolved organic carbon, absorbance at 254 nm,
turbidity and alkalinity. The standard deviation of
the difference between the actual coagulant dose
levels and those obtained using the ANN model
developed by van Leeuwen et al. [15] was (6.2mg/L),
and the MAEs obtained using the model developed
by Maier et al. [11] was (3.2 mg/L). Heddam et al.
[16,17] used six variables (turbidity, conductivity, pH,
temperature, dissolved oxygen and absorbance at
254 nm); the CC obtained ranged over two orders of
magnitude, with minimum and maximum values of
0.90 and 0.93 in the validation phase. Finally, Wu
and Lo [18] used turbidity, pH, colour and tempera-
ture as input to the developed model. The CC
between observed and calculated coagulant dosage
was relatively strong (CC = 0.860). Hence, we can
conclude that the performances of these models vary
depending on the type of data. Thus, it is difficult
to tell which model will be more suitable for a
particular application.
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Recently, dynamic evolving neural-fuzzy inference
system (DENFIS) has been used in many fields of civil
engineering applications. Nevertheless, to the author’s
knowledge, coagulant dosage modelling and predict-
ing with DENFIS has been not reported in the litera-
ture. The present study investigates the use of
DENFIS system in the development of robust model
for coagulant dosage modelling.

2. Materials and methods

2.1. WTPs and raw water data

The raw water used in this study was taken from
the WTPs of Boudouaou City Boudouaou water treat-
ment plant (BWTP), located at Boudouaou, Algeria. It
is located at about 7 km from the Keddara dam
which supplies potable water to Algiers, capital of
Algeria. BWTP is an important drinking WTP in
Algeria and operates with a production capacity of
540,000 CMD (cubic meters per day), and provides
drinking water to more than four million inhabitants.
This drinking water plant uses conventional treat-
ment as the main treatment steps. The plant uses

alum as the primary coagulant at an average dosage
of 23.87mg/L, as Al2(SO4)318H20. The raw water
quality parameters and coagulant dosage of BWTP
drinking water are presented in Table 1. In this
research, raw water pH, temperature (TE), conductiv-
ity (CO), turbidity (TU), apparent colour (AC) and
UV254 were measured at the inlet of the treatment
plant. A jar test was used to simulate the coagulation
and sedimentation processes, providing the necessary
target values (the optimal dosing rates to be esti-
mated from raw water quality data (Dos)). The raw
water database consisted of 808 samples of six input
variables (TU, CO, TE, AC, UV254 and the pH of raw
water) were used as input parameters to model the
coagulant dosage and sampled between January 2009
and June 2012. Nevertheless, the data collected at the
BWTP were incomplete; and therefore, days with
inadequate data were removed from the patterns. In
addition to the above-mentioned input parameters,
the optimum coagulant dosage rate was determined
through Jar-tests (Dos) and were related to the above
reported six raw water variables, which was used
as an output parameter of the developed model
[16,17,19].

Table 1
The statistical summary of raw water data

Variables Unit Xmax Xmin Xmean Sx Cv

Temperature (TE) Training ˚C 19.40 10.20 15.15 2.05 0.13
Validation 19.50 11.00 15.10 2.03 0.13
All data 19.50 10.20 15.14 2.05 0.13

pH Training / 8.33 7.48 7.96 0.18 0.02
Validation 8.24 7.56 7.97 0.17 0.02
All data 8.33 7.48 7.97 0.18 0.02

Conductivity (CO) Training uS/cm 1312.00 691.00 982.57 100.08 0.10
Validation 1274.00 709.00 995.98 106.03 0.10
All data 1312.00 691.00 985.22 101.36 0.10

Turbidity (TU) Training NTU 62.60 1.12 5.66 5.88 1.03
Validation 38.95 1.14 5.16 4.23 0.81
All data 62.60 1.12 5.56 5.595 1.00

Apparent colour (AC) Training UH(1) 70.00 5.00 16.09 7.04 0.43
Validation 50.00 5.00 16.58 6.96 0.41
All data 70.00 5.00 16.19 7.02 0.43

UV254 (UV) Training cm−1 1.11 0.01 0.11 0.04 0.40
Validation 0.25 0.04 0.11 0.02 0.25
All data 1.11 0.01 0.11 0.04 0.38

Coagulant dosage
(Dos)

Training mg/L 50.00 2.00 24.06 12.61 0.52

Validation 50.00 2.00 23.09 12.23 0.52
All data 50.00 2.00 23.87 12.53 0.52

(1) Hanzen unit = (mg Pt-Co L−1), Cv = Sx/Xmean.
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2.2. Dynamic evolving neural-fuzzy inference system

The DENFISs was introduced by Kasabov and
Song [20]. DENFIS evolves through incremental,
hybrid (supervised and unsupervised) learning, and
accommodates new input data, including new fea-
tures, new classes, etc. through local element tuning.
New fuzzy rules are created and updated during the
operation of the system. At each time moment, the
output of DENFIS is calculated through a FIS based
on the m-most activated fuzzy rules, which are
dynamically chosen from a fuzzy rule set. A set of
fuzzy rules can be inserted into DENFIS before or dur-
ing its learning process. Fuzzy rules can also be
extracted during or after the learning process [20,21].
An evolving clustering method (ECM) is used in
DENFIS models to partition the input space for creat-
ing the fuzzy rules [20]. DENFIS is used for online
(DENFIS-ON) and offline (DENFIS-OF) learning. In
the online model of DENFIS, the linear functions in
the consequent parts are created and updated through
learning from data using least square estimator [20].
In the online mode, the fuzzy rules in the rule set can
also be updated as new training data appear in the
system [22]. DENFIS offline was proposed together
with the online version of DENFIS, which sacrifices
the dynamic evolving aspect of the DENFIS algorithm
and replaces it with more sophisticated learning algo-
rithm aimed at providing higher accuracy. It has
shown improvement in prediction accuracy; however,
more optimisation can be applied to further improve
its accuracy [23]. The Takagi–Sugeno fuzzy inference
engine is used in both online and offline modes of
DENFIS. The difference between them is that for form-
ing a dynamic inference engine, only first-order Tak-
agi–Sugeno fuzzy rules are employed in DENFIS
online mode, and both first-order Takagi–Sugeno
fuzzy rules and expanded high-order Takagi–Sugeno
fuzzy rules are used in DENFIS offline modes. To
build such a fuzzy inference engine, several fuzzy
rules are dynamically chosen from the existing fuzzy
rule set depending on the position of current input
vector in the input space [24].

2.2.1. General principles

The DENFIS [20], both online and offline models,
use Takagi–Sugeno type fuzzy inference engine
[25,26]. The inference in DENFIS is performed on m
fuzzy rules indicated as follows.

if x1is R11 and x2 isR12 and. . .and xq is R1q, then y is f1 ðx1; x2; . . .; xqÞ
if x1is R21 and x2 is R22 and . . .and xq is R2q , then y is f2 ðx1; x2; . . .; xqÞ
if x1isRm1 and x2 is Rm2 and . . .and xq is Rmq , then y is fm ðx1; x2; . . .; xqÞ

� �
ð1Þ

where “xj is Rij”, i = 1, 2 …, m and j = 1, 2, …, q are
m × q fuzzy propositions that form m antecedents for
m fuzzy rules, respectively; xj, j = 1, 2, …, q, are ante-
cedent variables defined over universes of discourse
Xj, j = 1, 2, … , q and Rij, i = 1, 2, …, m; j = 1, 2, … , q
are fuzzy sets defined by their fuzzy membership
functions μRij: Xj →[0,1], i = 1, 2, …,m; j = 1, 2, … , q.
In the consequent parts of the fuzzy rules, y is the
consequent variable, and crisp functions fi, i = 1, 2 …,
m are employed.

In both DENFIS online and offline models, all
fuzzy membership functions are triangular type func-
tions which depend on three parameters as given by
the following equation:

lðxÞ ¼ mfðx; a; b; cÞ ¼
0; x 6 a
x�a
b�a ; a 6 x 6 b
c�x
c�b ; b� x� c

0: c� x

8>><
>>:

ð2Þ

where b is the value of the cluster center on the
x dimension, a = b − d ×Dthr and c = b + d ×Dthr, d
ranged between 1.2 and 2; the threshold value, Dthr,
is a clustering parameter.

If the consequent functions are crisp constants, i.e.
fi (x1, x2, … , xq) = Ci, i = 1, 2, … , m, we call such sys-
tem a zero-order Takagi–Sugeno type FIS. The system
is called a first-order Takagi–Sugeno type FIS, if fi (x1,
x2, … , xq), i = 1, 2, … , m, are linear functions. If these
functions are nonlinear functions, it is called high-
order Takagi–Sugeno FIS [20].

For an input vector x0 = ½x01 x02 :::, x0q� , the result of
inference, y0 (the output of the system) is the weighted
average of each rule’s output indicated as follows:

y0 ¼
Pm

i¼1 wifiðx01; x02; . . .; x0qÞPm
i¼1 wi

(3)

where

wi ¼
Yq
j

l Rijðx0j Þ; i ¼ 1,2,. . .;m; j ¼ 1,2,. . .; q. (4)

2.3. Ranges of water quality data

The daily statistical parameters of the water quality
data and coagulant dosage are given in Table 1, in
which the Xmean, Xmax, Xmin, Sx and Cv denote the
mean, maximum, minimum, standard deviation and
variation coefficient, respectively. Because the seven
variables above had different dimensions, and there
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were major differences among values, it was consid-
ered necessary to standardise the primary data in
order to enhance the training speed and the precision
of the models. This was done to correct the differing
units used to measure each variable. As can be seen
from Table 1, the data ranges for the input and output
variables vary significantly. The inputs and outputs of
the data-sets were normalised to improve the perfor-
mance of the model [16,17,19]. The normalisation
applied was as follows:

xni;k ¼ xi;k �mk

SDK
(5)

where xni,k is the normalised input k or target data at
i = 1,2, … , N, the index number of the data value, xi,k
the original data, and mk and SDk are the mean value
and standard deviation of input k or target data. All
the input and output variables were normalised to
have zero mean and unit variance.

2.4. Division of data

In this study, the DENFIS-OF and DENFIS-ON
models for coagulant dosage were developed and
compared. The 808 daily samples of six input vari-
ables (raw water quality) and one output variable
(Dos) were used for the models. In both models, 80%
of the data-set was used for training (calibration),
which corresponded to 648 input–output pairs while
20% was used for testing the performance of the
model predictions (validation), which corresponded to
160 input–output pairs. Note that both the DENFIS-OF
and DENFIS-ON models employ the same training
and validation data-sets for an appropriate perfor-
mance comparison. The training data (1–648) were the
first part of the data-set and the validation (1–160)
data were the second.

A brief data summary are presented herein to
highlight background raw water quality, concentra-
tion ranges and notable differences between distribu-
tion of the variables at the training and validation
phases of the data set. It can be seen from Table 1,
concentrations of coagulant dosage ranged over three
orders of magnitude, with minimum and maximum
values of 2.0 and 50mg/L. The mean of all observa-
tions was nearly 24.00mg/L (23.87 mg/L). The distri-
bution of coagulant dosage in the training phase was
very similar to that for the validation phase, with
mean, min and maximum values of 24.06, 2.0 and
50.0mg/L. The mean value was slightly higher than
the value at the validation phase. Conductivity ran-
ged from 691 to 1,312 uS/cm, with a mean value of

982.57 uS/cm (Table 1), in the training phase. At the
validation phase, the minimum value of conductivity
(709 uS/cm) was slightly higher than the value at the
training phase. The maximum for conductivity was
slightly less than the value at the training phase
(1,274 uS/cm) and the mean of all observations was
nearly 996 uS/cm over one-tenth the mean value at
the training phase. The distribution of water tempera-
ture and pH shows that the values at the training
phase were very similar to that for the validation
phase, with no significant difference.

As seen from Table 1, the mean value of water tur-
bidity at the training phase was higher than the value
in the validation phase, and was the same value in
comparison with the all data. However, there is no
shift in the min and mean values, as seen from Table 1.
The mean observation for apparent colour was 5 UH;
concentrations ranged from 16.09 to 70 UH in the
training phase. At the validation phase, the mean
value of apparent colour, 16.58 UH, was slightly
higher than the value at the training phase. The maxi-
mum for apparent colour was 50 UH, and the mean
of all observations was 5 UH. UV254 ranged from 0.01
to 1.1 (cm−1), with a mean value of 0.11 in the training
phase. The min value at the validation phase, 0.04
(cm−1), was higher the min value in the training
phase; the maximum observation (0.25) was less than
the value in the training phase. Obviously, training
data-set must cover all the characters of the problem,
and it is desirable that training data includes all the
maximal and minimal values. Moreover, in the
process of segregation, the average and standard
deviation of three independent subsets were com-
puted to ensure the data-sets were divided equally
among two subsets.

Pearson CC were calculated to identify the statisti-
cally significant correlation between the variables.
Pearson CCs among the variables showed a number
of strong, moderate and weak (positive and negative)
associations. The correlation between these variables is
shown in Table 2. As shown in this table, there is no
significant correlations between these variables, except
the very strong positive CC (0.754) between the appar-
ent colour and turbidity and the strong negative CC
(–0.66) between the pH and water temperature. The
value and sign of CC demonstrate the relative
contribution and direction of influence of each
variable. As shown in Table 2, the most evident
features are the strong positive correlations between
apparent colour and coagulant dosage (0.533),
turbidity and coagulant dosage (0.428), implying that
any model built using these two variables will
certainly be able to compute the coagulant dosage
concentrations satisfactorily, these two variables are
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highly interrelated with the coagulant dosage, the
positive CC indicates that as one variable increases,
the other increases and vice versa. Coagulant dosage
was weakly positively correlated with both pH and
UV254 (CC = 0.268 and 0.143, respectively). Coagulant
dosage and water temperature show moderate nega-
tive correlation with CC of (−0.302). Also, it can be
seen from Table 2, coagulant dosage presented negligi-
ble correlation with conductivity. It is observed from
Table 2, the parameters such as AC and TE exhibit
strong negative relationship with CC of –0.507. TU,
CO and UV254 are correlated with TE with coefficients
of −0.268, 0.035 and −0.107, respectively. pH and AC
show moderate CC of 0.359. CO, TU and UV254 show
weak correlation with pH and with Pearson CCs of
−0.194, 0.217 and 0.122, respectively. TU, AC and
UV254 are correlated with CO with coefficients of
0.239, 0.136 and –0.131, respectively.

2.5. Performance indices

To assess the fitting and predictive accuracy of the
models, the data-sets were mathematically evaluated
by calculating the following evaluation criteria: coeffi-
cient of correlation (CC), RMSE and MAE.

CC ¼
1
N

P ðOi �OmÞðPi � PmÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

Pn
i¼1 ðOi �OmÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

Pn
i¼1 ðPi � PmÞ2

q (6)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

ðOi � PiÞ2
vuut (7)

MAE ¼ 1

N

XN
i¼1

jOi � Pij (8)

where N is the number of data points, Oi is some
measured value and Pi is the corresponding model
prediction. Om and Pm are the average values of Oi

and Pi.

3. Results and discussion

The modelling approaches above presented in sec-
tion (2.2) were applied to modelling coagulant dosage
(Dos) in WTP of Boudouaou. In this section, we pres-
ent the numerical results and their evaluation. Table 3
presents the numerical results obtained, with compari-
sons in terms of accuracy and reliability. The DENFIS-
ON and DENFIS-OF models were performed using
program codes written in Matlab language available
from the Knowledge Engineering and Discovery
Research Institute (KEDRI) (http://www.aut.ac.nz/
research/research-institutes/kedri/books). In order to
compare the performance of both DENFIS-ON and
DENFIS-OF models, in addition to CCs and RMSE,
MAE was also considered as model performance

Table 3
Performances of the two DENFIS models in different
phases

Model

Training Validation

CC RMSE MAE CC RMSE MAE

DENFIS-ON 0.824 7.435 4.837 0.804 7.858 5.531
DENFIS-OF 0.721 8.744 7.030 0.666 9.279 7.433

Table 2
Pearson CCs between and among physical raw water variables, and coagulant dosage concentration

TE pH CO TU AC UV Dos Dos-of Dos-on
(˚C) (uS/cm) (NTU) (UH) (cm−1) (mg/L) (mg/L) (mg/L)

TE 1.000
PH −0.665 1.000
CO 0.035 −0.194 1.000
TU −0.268 0.217 0.239 1.000
AC −0.507 0.359 0.136 0.754 1.000
UV −0.107 0.122 −0.131 0.334 0.248 1.000
Dos −0.302 0.268 −0.022 0.428 0.533 0.143 1.000
Dos-of* −0.070 0.007 −0.039 0.002 0.049 0.045 0.710 1.000
Dos-on** −0.104 0.044 −0.009 0.011 0.054 0.015 0.820 0.750 1.000

*Dos-of coagulant dosage calculated using DENFIS-OF model. **Dos-on coagulant dosage calculated using DENFIS-ON model.
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evaluation criteria. All the two models are trained and
tested with the same data. Results for the DENFIS-ON
and DENFIS-OF are tabulated in Table 3. In addition,
the performance of DENFIS depends mostly on the
choice of distance threshold value (Dthr), the two
models are trained with different distance threshold
value (Dthr) and its effects on the prediction perfor-
mance are analysed.

Table 3 shows the results of different DENFIS-ON
architectures, in terms of RMSE, MAE and CC statis-
tics, respectively. The DENFIS model, on the other
hand, needs only one parameter to be tuned up; the
distance threshold value (Dthr). Dthr parameter was
changed from 0.09 to 0.01, with 0.01 steps in order to
seek the most suitable value to achieve the best pre-

diction performance. The best result was obtained
when Dthr was 0.01. As shown in Table 3, the DEN-
FIS-ON predictions for the coagulant dosage yield a
MAE of 4.837, a RMSE of 7.435 and a CC of 0.824 in
the training phase. Table 3 indicates that the DENFIS-
ON has the smallest MAE (5.531) and RMSE (7.858),
and the highest CC (0.804) in the validation phase.
These values show that the DENFIS-ON predicts coag-
ulant dosage very well. Figs. 1(a)–(b) and 2(a)–(b)
shows the plots between observed and model
calculated, and the Scatterplots of observed vs. calcu-
lated values of coagulant dosage concentration in
training and validation, for the DENFIS-ON model,
respectively. Generally, very good prediction accuracy
is attained with the DENFIS-ON model. The

Fig. 1. Results obtained with DENFIS-ON model for coagulant dosage modelling in the training phase: (a) comparison of
observed and simulated series of Dos and (b) scatter plots of observed and calculated Dos.

Fig. 2. Results obtained with DENFIS-ON model for coagulant dosage modelling in the validation phase: (a) comparison
of observed and simulated series of Dos and (b) scatter plots of observed and calculated Dos.

Fig. 3. Results obtained with DENFIS-OF model for coagulant dosage modelling in the training phase: (a) comparison of
observed and simulated series of Dos and (b) scatter plots of observed and calculated Dos.
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comparison of results showed that DENFIS-ON
predicted coagulant dosage concentration was found
to be closer with the measured values.

Table 3 shows that the DENFIS-ON performed bet-
ter during training and validation, and it outperforms
the DENFIS-OF in terms of all the standard statistical
measures. In the training phase, the DENFIS-ON
improved the DENFIS-OF forecast of about 14.97 and
31.19% reduction in RMSE and MAE values, respec-
tively. In addition, improvements of the forecast
results regarding the CC value during the training
phase were approximately 10.30%. In addition, in the
validation phase as seen in Table 3, the values with
the DENFIS-ON prediction were able to produce a
good forecast, as compared to those with DENFIS-OF
prediction. In the validation phase, the DENFIS-ON
improved the DENFIS-OF M6 forecast of about 15.31
and 25.58% reduction in RMSE and MAE values,
respectively. In addition, improvements of the forecast
results regarding the CC value during the validation
phase were approximately 13.80%. Overall, the perfor-
mance of the DENFIS-ON model is very good. The
results demonstrate that the DENFIS-ON can be suc-
cessfully applied to establish the predicting model that
could provide accurate and reliable coagulant dosage
concentration (Dos), raw water quality data. It is
understood that the developed DENFIS-ON model has
been successful in the prediction of coagulant dosage.
Fig. 3(a)–(b) and Fig. 4(a)–(b) shows the plots between
observed and model calculated, and the Scatterplots of
observed vs. calculated values of coagulant dosage
concentration in training and validation, for the DEN-
FIS-OF model, respectively.

4. Conclusion

Feasibility of applying DENFIS to predict
coagulant dosage concentration in WTP of Bou-
douaou, Algeria was studied. Results show that the
trained model can be considered as very satisfactory.
Six raw water quality variables, such as water pH,

temperature, conductivity, turbidity, apparent colour,
and UV254, were used as input parameters and the
DENFIS model results showed a very good agreement
with the measured values (CC = 0.824 − 0.666). Two
types of DENFIS networks were considered regarding
to the structure identification method. It has been con-
cluded that DENFIS-ON could be used as a powerful
and simple alternative technique for prediction of
coagulant dosage in WTP.
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