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ABSTRACT

The aim of this study was to investigate the potential role of three macrophyte species
(Arundo donax, Typha angustifolia and Phragmites australis) for degradation of azo dyes.
Activities of peroxidases enzymes involved in plant protection against stress were tested for
dye decolourization. In order to conduct the enzyme activity assay, the fresh extract was
obtained from crude extracts of leaves. The oxidation capability of peroxidase (POD) on
direct azo dyes (amaranth and amido black) was investigated and found to be an effective
treatment methodology. The performance of peroxidase was evaluated in soluble and free
form in the presence of H2O2. The oxidation was tested as a function of peroxidase at con-
stant POD activity. Parameters such as temperature (5–70˚C), concentration of H2O2 (0–
1000 μM/L), pH (4–10), dye concentration (0.002–1mM/L) and enzyme amount (5–20 μL)
were studied. Results show that P. australis, leaves contained the highest peroxidase activity.
The dye decolourization is about 87% for amido black and 93% for amaranth after 120 h of
reaction time. The bio removal efficiency depends on the reaction time, initial dye and
enzyme concentrations, pH and temperature.
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1. Introduction

The treatment of effluents containing dyes, which
come mainly from textile industries, is a challenging
issue among environmental technologies [1], due of
their complex aromatic structure, designed to resist
fading on exposure to sweat, soap, water, light and

oxidizing agents [2]. Different physical, chemical and
biological techniques have been applied to remove
dyes from wastewater and each has some technical
and economical limitations. Most physico-chemical
dye removal methods are expensive, have limited
versatility, are greatly inhibited by other wastewater
constituents and/or generate waste products that
must be handled. As an alternative, biological
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treatments present a relatively inexpensive way to
remove dyes from wastewater [3].

The removal of azo dyes in aqueous solution by
peroxidase (POD) enzyme and laccase has been
widely reported, in last year’s, especially by white-rot
fungi [4]. The enzymatic decolourization of amido
black using white-rot fungus, P. chrysosporium, with a
maximum decolourization of 98% is achieved on the
third day under normal conditions [5]. Theerachat
et al. [6] reported that laccase isolated from Trametes
versicolor has a decolourization of 96% for 100 ppm
amaranth, achieved in 8 h with optimized medium
containing 2% starch and 0.125% yeast extract.

Phytoremediation has emerged as an inexpensive
and less invasive cleanup strategy. The phytoremedia-
tion of various dye effluents by plants such as
Phragmites australis, Blumea malcommi, Brassca juncea,
Typhonium flagelliforme has been reported [7–9]. This
degradation process relies mostly on peroxidases,
enzymes typically activated as an oxidative stress
response.

Antioxidative defence system of plant is composed
of reactive oxygen species-scavenging enzymes that
function to interrupt the cascades of uncontrolled oxi-
dation in each organelle. The first line of antioxidative
defence is superoxide dismutase enzyme (SOD) that
converts the O��

2 radical into H2O2, preventing the
generation of a highly toxic oxidant (hydroperoxyl
radical, HO�

2). POD’s function is the scavenging of
H2O2 produced by SOD dismutation, avoiding its
accumulation [10].

The catalytic cycle of peroxidases in presence of
hydrogen peroxide is already presented [11]. The
heme group of the enzyme first reacts with one
molecule of hydrogen peroxide. During this reaction
step, the hydrogen peroxide is reduced to water while
the enzyme is oxidized, and oxidizes the reduced
substrate (RH) to give a substrate radical (R•).

Several studies have shown that plant peroxidases
(POD) are capable of degrading some textile and
other important dyes [12]. It has recently been demon-
strated that extracellular enzymes of white rot fungi
such as peroxidases (lignin peroxidase-LiP, horserad-
ish peoroxidase-HRP and manganese peroxidase-
MnP) and phenoloxidases (laccases) [13,14] can be
used to degrade and detoxify polyaromatic hydrocar-
bons, polychlorinated biphenyls and certain dyes
[15,16]. Davies et al. [7] reported that for AO7 solu-
tions in contact with stem and root crude extract of P.
australis after 120 h, not only the azo bond was
cleaved, leading to the solution decolourization, but
also the degradation of the aromatic amines was
detected as the typical peaks attributed to aromatic
rings disappeared [17].

This strategy appears to be very interesting as
enzymes not only allow the pre-treatment of specific
recalcitrant compounds by changing their physico-
chemical properties and making them more amenable
for treatment, but also act in their transformation into
innocuous products [18]. POD is involved in scaveng-
ing of hydrogen peroxide with oxidizing a wide range
of organic and inorganic compounds.

The present work was aimed to assess bio removal
potential of amaranth and amido black by P. australis,
Arundo donax and Typha angustifolia. Since amaranth
possesses exceptionally good solubility in water,
its removal by common chemical treatments or by
physical treatments like coagulation, floatation, etc. is
not efficient. Generally, biological aerobic wastewater
systems are not successful for decolourization of
majority of dyes [19]. The study will compare the
response of the selected three macrophytes species to
oxidative stress by measuring the concentration of
POD activity in the leaves collected from polluted
sampling site. Also, to investigate their potential role
for decolourization of the two dyes. In order to reach
the optimal removal of amido black and amaranth
dyes, the effect of main variables such as reaction
time, peroxidase concentration, initial dye concentra-
tion, pH and temperature was investigated.

2. Materials and methods

2.1. Chemicals and reagents

Azo dyes used in this study are, amido black
(C22H14N6Na2O9S2), (Sigma–Aldrich) and amaranth
(C20H11N2Na3O10S3), (Sigma A1016). All the chemicals
used were of the highest purity available and of
analytical grade.

2.2. Plants

The studied plants were collected from natural
polluted ecosystem (a river collecting secondary
treated wastewater from urban and food industry).
The aim of this study was to compare the response of
these three species to oxidative stress and to investi-
gate their potential role for detoxification of azo dyes
(Fig. 1).

2.3. Enzymatic assays

In order to conduct enzyme activity assay, the
fresh leaves extract was homogenized in phosphate
buffer (0.01M/L, pH 7.0), containing 0.2% polyvinyl-
pyrrolidone. The homogenate was centrifuged at
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2000xg at 4˚C for 20min. The supernatant was used as
the crude extract for the following assay:

Protein content was determined according to the
method of Bradford with bovine serum albumin as a
standard [20]. A BSA standard (0–1mg/mL) was pre-
pared from dilution of a 2mg/mL stock solution.
Bradford reagent (3 mL) was mixed with 0.1 mL of
extract and allowed to develop for 5 min at room
temperature before absorbance measurements at
595 nm. A blank was prepared by using 0.1 L of
extraction buffer.

Peroxidase (POD EC. 1.11.1.7) activity was
determined according to Khan and Robinson [21] by
using the reaction medium of: 1.5 mL of guaiacol 1%
(v/v) (Vetec, 97%, v/v), 0.4 mL of H2O2 0.3% (v/v)
(Vetec, PA), 0.1 mL of enzyme (kept in ice bath) and
1.2mL of 0.05M/L phosphate buffer pH 6.5. The
reaction was carried out for 5min at 30˚C in a spectro-
photometer coupled to a thermostatic bath. One unit
of peroxidase activity represents the oxidation of 1 μM
of guaiacol per minute in the assay conditions and it
was calculated by using data relative to the linear
portion of the curve.

2.4. Dye decolourization

To evaluate the effects of operational factors on the
efficiency of dye decolourization, a reaction medium of:
0.5 mL of dye (0.05mM/L), 0.4 mL of phosphate buffer,
0.1 mL of H2O2 (100 μM/L) and 20 μL enzyme extract
was prepared. Experiments were carried out with dif-
ferent initial dye concentrations (0.02–0.1 mM/L), pH
values (4–10) and quantities of plant enzyme (5–20 μL).
Experimental study of temperature effect on POD
activity was performed at the range of 5–70˚C. The
initial pH of dye solution was adjusted using diluted
KOH and H2SO4 solutions and was measured by pH
metre. The concentration of H2O2 was varied to
examine its reusability by P. australis, A. donax and

T. angustifolia peroxidases to remove amido black and
amaranth colours.

2.5. Analytical method

Peroxidase activity extracted from plants leaves
was evaluated in soluble form in the presence of
H2O2. The oxidation was tested as a function of
peroxidase at fixed concentration of H2O2 (100 μM/l)
and at constant POD activity (Table 1).

The degree of decolourization is usually calculated
from the decrease of absorbance at a selected wave-
length, most conveniently at the maximum absorbance
(Fig. 2), λmax = 619 nm for amido black and 521 nm for
amaranth, using a UV–vis spectrophotometer
(Thermospectronic UV1). Colour removal percentage
was calculated using Eq. (1), [22].

Colour removal%

¼ ðInitial absorbance� Final absorbanceÞ � 100

Initial absorbance
ð1Þ

The UV–vis spectrum of POD enzyme of different spe-
cies (P. australis, A. donax and T. angustifolia) dissolved
in water was presented in Fig. 3. Two bands are
observed at 275 and 330 nm. These values are similar
for the three plants. Interference of POD absorbance in
the visible region, with the maximum of absorbance
of dyes (619 nm for amido black and 521 nm for
amaranth) is not expected (Fig. 3). However, it is not
the case in the UV region. The decrease of UV absor-
bance cannot be linked only to the dye degradation as
presented in other studies [23].

In order to compare the results between treatments
and between species, Student–Newman tests were
performed using XLStat pro. In all cases, significance
was defined by p < 0.05.

Fig. 1. Photographic image of the three macrophytes species: (a) P. australis, (b) A. donax and (c) T. angustifolia.
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3. Results and discussion

3.1. Enzymatic activity

To compare the response of macrophytes species
(P. australis, A. donax and T. angustifolia) to oxidative
stress, peroxidase activity was measured in fresh
leaves.

As shown in Table 1, peroxidases activities were
overall higher for the three plants according to the con-
centration of organic pollutant. P. australis contained
the highest specific peroxidase activity (5.65 U/mg pro-
teins). The peroxidase activity in P. australis species
conducted as cell cultures in laboratory under high-
stress condition lead to specific peroxidase activity of
24U/mg protein [24].

3.2. Effect of temperature on POD activity

Temperature’s variations have an important effect
on biological activity of peroxidase for the three
macrophyte species. This parameter was studied at
the range of 5–70˚C. As shown in Fig. 3, the efficiency
of POD activity increased with rising temperature (5–
30˚C) suggesting that the optimal temperature for the
activity is about 25–30˚C. After 30˚C, POD activity
decreases with increasing of temperature, when reach-
ing an inactivation after 70˚C. T. angustifolia appeared
less dependent on temperature that increases until
40˚C (Fig. 4, T > 30˚C). Peroxidase has been reported
to lose activity (∼ 91%) at high temperatures such as
50˚C [25,26].

Sciancalepore et al. [27] reported 50% reduction in
grape POD activity for 2min of heating at 65˚C. Also

Table 1
Peroxidase activity and specific peroxidase activity in P. australis, A. donax and T. angustifolia leaves

Macrophytes species
POD activity
(U/g/min)

Specific POD activity
(U/mg of protein)

Protein
mg/g

[POD]
U/mL of extract

P. australis 69.92 ± 0.0 3 5.65 ± 0.03 12.75 ± 0.03 69.92 ± 0.03
A. donax 63.15 ± 0.04 4.95 ± 0.04 15.37 ± 0.04 63.15 ± 0.04
T. angustifolia 43.92 ± 0.0 1 2.65 ± 0.01 12.83 ± 0.01 43.92 ± 0.01
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Fig. 2. UV–vis spectrum of amido black (a) and amaranth (b).

Fig. 3. UV–vis scan of POD enzyme of P. australis, A. donax
and T. angustifolia, peroxidases between 250 and 650 nm.
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Fig. 4. Effect of temperature on POD activity: peroxidase
activity extracted from leaves of plants was evaluated at
fixed H2O2 concentration and different temperature
degree.
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in another study [28], for Borbon grape cultivar, POD
activity decreased about 58% at 60˚C for 6min of heat-
ing. Cano et al. [29] treated whole peeled bananas in
boiling water for 11min and observed 96–100% reduc-
tion in the activity of POD enzyme. The energy that is
needed to overcome the activation can be supplied by
heat, so temperature increases the rate of enzymatic
reactions by supplying energy to activate the reaction
(Fig. 4, until 30˚C). At high temperature (>40˚C) the
protein denatures which changes the enzymes
structure [29].

3.3. Effect of hydrogen peroxide concentration

To evaluate the dye decolourization by the enzy-
matic extracts, controls were carried out in the absence
of H2O2. It was observed that for the three species,
there was no decolourization of dyes.

The decolourization at different concentrations of
H2O2 (without extract addition) showed an oxidizing
power of peroxide that reached 38% for amaranth and
56% for amido black after 120 h as a reaction time
(Fig. 3). This removal can be considered stable at
[H2O2] > 100 μM/L. In the presence of H2O2 catalysed
by POD (Fig. 5), same behaviour is obtained for

the three species and the two dyes. An increase of
colour removal related to low H2O2 concentration
(≤100 μM/L) followed by strong decrease at high
concentration of H2O2 (≥500 μM/L).

As POD concentration is different for the three
species extracts, Fig. 6 shows that the decolourization
of the two dyes depend strongly in the ratio [H2O2]/
[POD]. In low ratio (8–10), the percentage of decolou-
rization, obtained after 120 h, was about 20–30%,
respectively, for amaranth and amido black by the
three plants enzymes. The increase of [H2O2]/[POD]
ratio from 128 to 446, increases the percentage of
colour removal. After 120 h, it reaches 93–87% for
amaranth and amido black, respectively, when
[H2O2]/[POD] ratio is in the range of 81–128.
While, for [H2O2]/[POD] ratio higher than 600, an
inhibitory effect was observed. The H2O2 stepwise
addition to the reaction medium can avoid the inacti-
vation of the enzyme by H2O2 excess [30]. This is due
to the denaturation of peroxidase enzyme. Fig. 6
shows the same behaviour for the two dyes with
higher colour removal reached for amaranth. Also,
same behaviour is observed for the three species with
different concentration of H2O2. However, the curves
of the three species are not confused, (Fig. 6), showing
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that not only the concentration of peroxidase involved
in the decolourization process, but it depends also
strongly on the nature of the peroxidase. So H2O2 is
acting differently with the different component of per-
oxidase.

3.4. Effect of enzyme concentration

To study the optimum dose of POD for enzymatic
treatment of amido black and amaranth solution,
experiments were carried out at various POD doses
with fixed dye concentration of 0.05 mM/L and H2O2

concentration of 100 μM. Enzyme amounts were varied
from 5 to 20 μL. The POD concentration is increased
from 0 to 24.8U/mL for P. australis, from 0 to 22.4
U/mL for A. donax and from 0 to 15.6U/mL for T. an-
gustifolia. As shown in Fig. 7, the increase of the deco-
lourization of amaranth and amido black is dependent
on the amount of catalyst added for fixed contact time.
There is thus an optimum relationship between the
concentration of enzyme and dye for achieving maxi-
mum activity. The enzyme dose was found to have
significant influence on colour removal reaction. The
increase in the [POD]/[Dye] ratio from 6 to 26
resulted a gradual increase in the colour removal. That
was 16–92% for P. australis having the highest POD
activity, 25–71% for A. donax and 21–63% for T. angust-
ifolia that has the lowest POD concentration. This
increase can be explained on the basis that in the ini-
tial stages, the reaction between dye and POD is quite
fast and becomes slower when POD concentration
increases, as there are not enough dye molecules avail-
able for the reaction. Similar trend has also been
reported with chloroperoxidase-mediated degradation
of Sunset Yellow dye [31]. Khataee et al. [32] reported
that an increase in the efficiency is due to an increase
in the number of active sites on peroxidase enzyme
available for the reaction, which increases the rate of
radical formation. The three curves are merged which
means that, at the investigated POD/Dye ratios, the

POD activity is more important than its origin (plant
species).

3.5. Effect of initial dye concentration

A different initial dye concentration of amaranth
and amido black (0.05–0.1 mM/L) was added to 20 μL
of POD in order to explore a higher ratio of
[Dye]/ [POD].

In this study, the maximum colour removal was
obtained by P. australis peroxidase and the lower
colour removal was obtained by T. angustifolia
peroxidase.

It has been shown experimentally in Fig. 8 that
in constant [POD] an increase of amido black and
amaranth concentration will increase the enzymatic
decolourization process for the three species. The
maximum colour removal efficiency was observed in
the [Dye]/ [POD] ratio in the range of 40–65. This
may be attributed to the initial dye concentration
that provided an important driving force to over-
come all mass transfer resistances of the dye. Hence,
high initial concentration of dye may enhance the
process efficiency [33]. Another explanation for
above observation is that increasing the initial con-
centration of the dye increases the probability of
contact between dye molecules and enzyme. The
finding was in agreement with literature reports
where high initial concentration of pollutants would
result in high biological decolourization efficiency
[34]. After this optimum, the decolourization percent-
age decreases with further increase in [Dye]/[POD]
ratio, due to the limited POD activity. The decrease
observed on colour removal at higher dye concentra-
tion should be linked to available active sites on
POD for decolourization action that is strongly
dependent on POD origin.

Comparing both dyes decolourization, observed
optimum is similar. However, decolourization rate is
different, especially for T. angustifolia where higher
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efficiency is obtained for amido black. Interaction
between dye functional groups and POD active sites is
another important parameter to consider.

3.6. The effect of pH

The effect of initial solution pH on enzymatic
decolourization of amido black and amaranth was
analysed over a pH range from 4 to 10 (Fig. 9). These
experiments show that the decolourization process is
dependent on the pH of the solution. Since the deco-
lourization of amaranth and amido black solutions has
been identified in presence of hydrogen peroxide and
in absence of POD as well, we can affirm that the
increase of dye decolourization observed in these
experiments is exclusively due to the peroxidase
activity of these macrophytes species.

As shown in Fig. 9, in absence of enzyme, initial
decolourization (30%) caused by hydrogen peroxide,
increased in pH 4 for both amaranth and amido black.

In pH 4 and at fixed dye and enzyme concentra-
tion, 50–60% of the colour is removed in 120 h.
However, in the pH range of 6–7, approximately 80–
92% of the decolourization occurred. At alkaline pH
values, decolourization decreases and drops near to

20% (pH 10). As a result, the optimum pH range for
P. australis, T. angustifolia and A. donax for colour
removal is obtained in the pH range of 6–7 and the
optimum pH appears independent on dyes character-
istics as pKa. These data are proved that the decolou-
rization appropriate pH which corresponds also to
POD activity of macrophytes, is in the range of 6–7
[35,36]. A similar trend of result was previously
reported for the removal of Methylene Blue dye using
Lemna minor peroxidase [32].

3.7. The efficiency removal of amido black and amaranth by
P. australis, A. donax and T. angustifolia and kinetic
study

In the optimum identified experimental conditions
(pH 7, Temperature = 30˚C, dye concentration = 0.05
mM/L, reaction time = 120 h, load enzyme = 20 μL,
H2O2 concentration = 100 μM/L), the amido black dec-
olourization efficiencies by P. australis, A. donax and T.
angustifolia were, respectively, 87, 75 and 65%. For the
amaranth dye, the highest percentage of decolouriza-
tion is, respectively, 93, 74 and 66%, achieved after
120 h as a contact time (Fig. 10). These results support
that P. australis peroxidase has the highest ability to
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Table 2
Optimum conditions for amaranth and amido black colour removal by P. australis, A. donax and T. angustifolia

Optimum condition for colour removal

P. australis A. donax T. angustifolia

Amaranth Amido black Amaranth Amido black Amaranth Amido black

Temperature (˚C) 30 30 30 30 30 30
PH 7 7 7 7 7 7
K 0.023* 0.019* 0.014** 0.016** 0.009** 0.007**
R2 0.98 0.93 0.97 0.98 0.98 0.97
[H2O2]/[POD] (nM/U) 80.6 80.6 89.3 89.3 128.2 128.2
Colour removal (%) 93 87 75 74 65 66
[POD]/[Dye] (U/μM) >24.8 >24.8 >22.4 >22.4 >15.6 >15.6
Colour removal (%) 93 87 75 74 65 66
[Dye]/[POD] (nM/U) 40.3 40.3 44.64 44.64 65.78 65.78
Colour removal (%) 93 87 75 74 65 66

*k (h−1).

**k (h/abs).
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degrade azo dyes (93% of amaranth and 87% of amido
black) with slightly high efficiency with amaranth;
where for the two other plants, equivalent dicolouriza-
tion is obtained for the two dyes.

As seen in Fig. 11 the enzymatic decolourization
process is fitting an apparent first-order kinetic reac-
tion for P. australis. The kinetic apparent constants of
the reaction for both amaranth and amido black is
higher (0.023 and 0.019 h−1) using P. australis POD.
Several authors [37–39] have reported that colour
removal obey the first-order kinetic. However, in the
case of A. donax and T. angustifolia, reactions are better
fitting the second-order kinetic (Fig. 11).

Halliwell [40] has referred that POD may use a
large variety of electron donor substrates, so that the
activation of P. australis POD could be linked to the
ability of this enzyme to use dyes as an electron donor
substrate, and thus participate in this dye oxidation
and consequent degradation [41]. By analogy with the
HRP catalytic cycle, the first reaction step of colour
removal uses H2O2 as a substrate, and in the following
two steps POD are able to use a wide variety of
reducing substrates producing its radicals of products
[42,43].

Table 2 summarizes the identified experimental
conditions.

4. Conclusion

Based on the experimental results presented above,
it has been found that the solution pH, the initial
H2O2 concentration, the initial enzyme concentration,
the initial dye concentration and the temperature are
the main factors that have strong influences on the
degradation of amido black and amaranth, by peroxi-
dase oxidation process. The optimal operation param-
eters for the POD oxidation of amido black and
amaranth were 100 μM/L [H2O2], 20 μL enzymes
amount and 0.05mM/L dye concentration in an initial
pH of 7 in 30˚C. Efficiency of dye decolourization is
about 93% of amaranth and 87% of amido black using
P. australis peroxidase, after 120 h of reaction time,
suggesting that an enzymatic breakdown process is
occurring. Therefore, P. australis has the highest perox-
idase activity (69.92 U/g/min) to confirm the partici-
pation of these enzymes in the degradation of these
azo dyes. Our results indicate that these three macro-
phytes could be used in bioprocesses to remove colour
from effluents. However, only a better understanding
of the mechanisms used by these plants will allow the
development of technologies to apply these organisms
to the cleaning-up of aquatic and terrestrial environ-

ments. Optimum identified ratios can be base for
process design.
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