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ABSTRACT

Membrane bioreactors (MBRs) are widely used to purify wastewater for reuse. One crucial
problem is membrane fouling. To reduce membrane fouling, chemical cleaning must be per-
formed because some foulants cannot be removed by physical cleaning and these foulants
will prevent the recovery of membrane performance. Hence, to allow chemical cleaning at
an appropriate time, membrane fouling must be predicted in the long term. When an MBR
plant is operated under a condition of constant-rate filtration, this corresponds to prediction
of the transmembrane pressure (TMP). Because one reason to make TMP difficult to predict
is a TMP jump, we have been developing a model that predicts the time of a TMP jump. In
this study, many data-sets measured in MBRs that differ in operating conditions, such as
flux and reactor size, and water quality, such as viscosity and mixed liquor suspended sol-
ids concentration, were collected from the literature. Then, TMP jump prediction models
having high prediction performance could be constructed for each type and each material
of membrane. In addition, we discussed MBR parameters, such as reactor volume and aera-
tion that would be important for TMP jump prediction and membrane fouling.
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1. Introduction

Membrane bioreactors (MBRs) have been widely
used in water treatment fields, such as sewage treat-
ment and industrial wastewater treatment, to purify
wastewater for reuse [1]. MBRs combine biological
treatment with membrane filtration. First, bacteria
within activated sludge metabolize the organic pollu-
tants and produce environmentally acceptable metabo-

lites, then a microfiltration or ultrafiltration membrane
separates liquids from solids. MBR can be distributed
at various locations such as residential sections and
industrial plants. Thus, we can create an environment
in which treated water is effectively reused in society.

However, MBRs have some practical problems.
One of the critical problems is membrane fouling [2].
Membrane fouling is a phenomenon wherein
foulants, such as activated sludge, sparingly soluble
compounds, and high-molecular-weight solutes and
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Saint-Pierre d’Oléron, France, 3–7 September 2013

1944-3994/1944-3986 � 2014 Balaban Desalination Publications. All rights reserved.

Desalination and Water Treatment 53 (2015) 1471–1481

Februarywww.deswater.com

doi: 10.1080/19443994.2014.943469

mailto:hkaneko@chemsys.t.u-tokyo.ac.jp
mailto:funatsu@chemsys.t.u-tokyo.ac.jp
http://dx.doi.org/10.1080/19443994.2014.943469


colloids, absorb or deposit on the membrane surface
and absorb into and block the membrane pores. For
example, in cases where the MBR is operated under
constant-rate filtration, much energy is required to
achieve a constant permeate flow rate owing to
membrane fouling. To reduce membrane fouling,
physical cleaning and chemical cleaning must be car-
ried out with chemical reagents after a given period of
processing time, when the transmembrane pressure
(TMP) exceeds a given value, because some foulants
cannot be removed by physical cleaning such as aera-
tion, backwashing, or back pulsing, and these residual
foulants will prevent the recovery of membrane per-
formance. Frequent chemical cleaning and replace-
ment of membranes are both expensive.

Hence, to allow chemical cleaning at an appropri-
ate time, membrane fouling must be predicted in the
long term [3–8]. When an MBR plant is operated
under a condition of constant-rate filtration, this corre-
sponds to prediction of the TMP [9–17]. Moreover, for
MBR systems to be used widely as mentioned above,
each MBR must be able to be operated automatically
and controlled remotely. The TMP must be predicted
a priori and a schedule of chemical cleaning must be
created in advance, because a certain amount of time,
for example, one week, is required for preparation of
the chemicals for chemical cleaning. In addition, when
distributed MBR systems are operated, it is difficult to
check each MBR manually and we must make a sche-
dule of chemical cleaning and prepare for chemical
cleaning for each MBR beforehand.

One of the reasons to make TMP difficult to pre-
dict is a TMP jump [18]. After the long-term operation
of MBR under the condition of constant-rate filtration,
TMP increases rapidly [19]. This is called a TMP jump.
Yu et al. proposed a mechanism for the TMP jump
whereby the membrane is partially blocked by fou-
lants, after which the local flux exceeds a critical flux
[20], below which only reversible fouling happens and
irreversible fouling can be neglected [21]. It can be
said that a TMP jump is a rapid increase in TMP after
a period of processing even though the measured flux
is less than the critical flux.

We proposed the construction of a model that pre-
dicts the time of a TMP jump previously [22], which is
based on the concept of critical flux [20] and statistical
methods. The model where input variables X are time,
flux, TMP and other MBR parameters such as operating
conditions (aeration rate, hydraulic retention time
(HRT), sludge retention time (SRT), and so on), and
water quality (water temperature, total organic carbon,
concentrations of extracellular polymeric substances
(EPS) and soluble microbial products (SMP), and so
on), and an output variable y is a label variable repre-

senting whether TMP jumps happen or not is con-
structed by using physical and statistical approaches.
The model used to detect a TMP jump is called as a dis-
criminant model. This model f is represented as y = f
(X) and constructed with data of X measured in MBRs
and those of y where the presence of TMP jumps is
labeled. A support vector machine (SVM) [23], which is
a nonlinear classification method, was applied for the
construction of f. By inputting new data of X into f, we
can estimate whether a TMP jump happens or not at
the time when the new data are measured. Also, the
presence of a TMP jump can be predicted at the target
time by inputting setting values into f. In addition, the
domains, where a discriminant model estimates TMP
jumps happen, can be visualized to discuss the possi-
bility of TMP jumps and the ways to prevent TMP
jumps in the future [24].

However, each discriminant model must be con-
structed for each MBR, i.e. a discriminant model con-
structed with data measured in an MBR cannot be
applied to other MBRs. In this study, therefore, we
construct discriminant models that can be used for var-
ious types of MBR plants. First, from the literature, we
collect many data-sets measured in MBRs that differ in
operating conditions such as flux, HRT, SRT, and reac-
tor size, and water quality such as viscosity and mixed
liquor suspended solids (MLSS) concentration. Second,
discriminant models are constructed for each type and
each material of membrane because the interactions
between foulants and membrane are different in each
type and each material of membrane [25]. The type
means flat membrane and hollow fiber membrane, and
the material means polyvinylidene (PVDF), polyethyl-
ene (PE), polyethersulfone (PES), and so on.

In addition, we discuss MBR parameters that are
important for TMP jump prediction and membrane
fouling. The relationships between membrane fouling
and MBR parameters, such as flux [26], SRT [27], tem-
perature [28–31], MLSS [32,33], EPS [32–34], SMP [35],
and F/M [36], have been investigated by many
groups. Though some MBR parameters cannot be
included in input variables of discriminant models
when those parameters are not measured in many
papers, we check the effect of as many parameters as
possible to the performance of the discriminant mod-
els, as long as several data-sets remain.

2. Method

To predict the time of TMP jumps, a nonlinear
function was derivated, based on Darcy’s law, the
relationship between flux and flow rate, resistance-in-
series model, parallel resistance model and the
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equation of cake fouling [22]. The details of derivation
of a nonlinear function for predicting the presence or
absence of TMP jumps are shown in Appendix A.
However, the derivated function is difficult and
impractical to solve. Therefore, the function judging
whether TMP jumps will happen or not is solved sta-
tistically using various data-sets measured in many
MBRs. The basic concept of the TMP jump discrimi-
nant model is shown in Fig. 1. Input variables X are
time, flux, TMP, and other MBR parameters, and an
output variable y is a label variable representing
whether there are TMP jumps. The data before TMP
jumps are labeled –1, the data after TMP jumps are
labeled 1, and an SVM model determining values of
–1, and 1 is then constructed for X and y. The details
of SVM are shown in Appendix B.

Fig. 2 shows image of the actual use of the TMP
jump discriminant model. In the prediction of a TMP
jump in the long term, the target time is input, a set
flux relating to the constant-rate filtration is entered,
and the predicted TMP should be entered into the
SVM model. The TMP values are predicted with Eqs.
(A1) and (A4) in Appendix A. Fortunately, the
increase in TMP is represented as a linear function of
time because the initial increase in the fouling resis-
tance can be assumed to be due to cake fouling. Pre-
dicted TMP values are then entered into the
discriminant model. For other parameters, predicted
values or set values are entered into the model.
Accordingly, we can predict whether a TMP jump will
happen at target time.

Using the constructed discriminant model and
inputting future set values of flux and water quality
with changing them, i.e. repeating trial and error, we
can search the conditions where a TMP jump will
hardly happen. MBR can be accordingly controlled for
a TMP jump not to happen in the future. In addition,

by projecting the results of a discriminant model to a
two-dimensional map with visualization methods such
as principal component analysis [37], kernel PCA [38],
self-organizing map [39], and generative topographic
mapping [40], we can discuss optimal MBR conditions
where TMP jumps hardly happen [24].

3. Results and discussion

We analyzed discriminant models using operating
data measured in various MBRs. The data-sets were
collected from the literature. The types of membrane
are flat membrane and hollow fiber membrane, and
the materials of membrane are PVDF, PE, and PES.
Table 1 shows the numbers of papers from which
MBR data were collected and batches for each type
and each material of membrane. A batch of data
means the operation from the start or membrane foul-
ing to next membrane cleaning or the end of opera-
tion. Quality and quantity of raw water and operating
conditions are varied by MBRs.

To determine y in Fig. 1, we defined the data
before TMP jumps (–1) and the data after the TMP
jumps (1). First, a straight line approximating TMP by
time was constructed with the first some data. The
data whose absolute error of the approximation was
less 2 kPa were labeled as −1, and the data whose
absolute error of the approximation was equal to or
more than 2 kPa were labeled as 1. The detailed pro-
cess should be referred to the papers [22].

Table 2 shows the input variables for each type
and each material of membrane. Time, flux, and TMP
are included in all types and materials of membrane.
However, other variables representing operating con-
ditions and water quality are different in types and
materials of membrane because there is no informa-
tion on an MBR parameter for some papers.

Fig. 1. TMP jump discriminant model.
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The discriminant models were constructed with the
data-set of each type and each material of membrane for
the accurate prediction of TMP jumps. Table 3 shows
the results of construction of discriminant models. The
accuracy rate (AR), precision (PR), and the detection
rate (DR) are defined as follows [Eqs. (1)–(3)]:

AR ¼ TPþ TN

TPþ FPþ TNþ FN
(1)

PR ¼ TP

TPþ FP
(2)

Fig. 2. Image of the actual use of the TMP jump discriminant model.

Table 1
The number of papers and batches that are collected for the analysis of TMP jump discriminant models in this paper

Type
Flat membrane Hollow fiber membrane

Material PVDF PE PES PVDF PE

The number of papers 13 [41–53] 2 [54,55] 3 [56–58] 7 [59–65] 14 [58,59,66–77]
The number of batches 26 5 6 13 22

Table 2
The input variables for each type and each material of membrane

Type Material
The number of input
variables Input variables

Flatmembrane PVDF 11 Time, flux, TMP, MBR type (2), filtration mode (2), tank type for
membrane (3), and viscosity

PE 7 Time, flux, TMP, MBR type (2), reactor volume, and mixed liquor
suspended solids (MLSS)

PES 7 Time, flux, TMP, MBR type (2), pore size, and reactor volume
Hollow fiber

membrane
PVDF 7 Time, flux, TMP, MBR type (2), pore size, and viscosity
PE 7 Time, 1/V, TMP, MBR type (2), and tank type for membrane (2)
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DR ¼ TP

TPþ FN
(3)

Here, TP denotes the number of true positives, i.e. the
number of samples for which the state after TMP
jumps is correctly detected; TN represents the number
of true negatives, i.e. the number of samples for which
the state after TMP jumps is not detected and the tran-
sition is, indeed, incomplete; FP denotes the number
of false positives, i.e. the number of samples for which
the state after TMP jumps is incorrectly detected; and
FN represents the number of false negatives, i.e. the
number of samples for which TMP jumps is actually

complete but it is not detected. ARCV, PRCV, and DRCV

are the AR, PR, and DR calculated by using cross-vali-
dation based on batches. First, the original data are
divided into batches. Then, one batch is used as the
data for validating the model constructed using the
data of the other batches. This procedure is repeated
so that each batch is used once as the validation data.
Finally, not calculated but predicted values of y can
be obtained. Therefore, ARCV, PRCV, and DRCV, which
are obtained by this cross-validation, mean the predic-
tive ability of the constructed model, while AR, PR,
and DR mean the accuracy of the model.

From Table 3, the discriminant models having high
AR, PR, and DR values of more than 90% could be
constructed for flat membrane. We achieved highly
accurate discriminant models. In addition, ARCV,
PRCV, and DRCV that are indexes of the predictive per-
formance indicated over 90% for flat membrane of
PVDF and PE, and over 85% for hollow fiber mem-
brane of PVDF. It was confirmed that some discrimi-
nant models can predict TMP jumps appropriately
even in inputting data measured in MBRs different
from the MBRs that are used for the model construc-
tion into the discriminant model if the same type and
the same material of membrane are used.

Fig. 3 shows the plots of actual and predicted time
of TMP jump. The unit of time is the second. From
Fig. 3(a), one point is far from the diagonal, which

Table 3
Modeling and prediction results

Flat membrane
Hollow fiber
membrane

PVDF PE PES PVDF PE

AR [%] 95.6 99.9 93.5 90.4 91.6
PR [%] 94.2 100 90.1 97.5 99.4
DR [%] 94.6 99.6 97.3 85.5 73.8
ARCV [%] 94.4 99.4 83.0 91.2 88.0
PRCV [%] 92.3 97.0 75.8 88.1 88.2
DRCV [%] 93.7 99.6 96.0 97.9 71.4

Fig. 3. The plots of actual and predicted time of TMP jump. The unit of time is the second.

H. Kaneko and K. Funatsu / Desalination and Water Treatment 53 (2015) 1471–1481 1475



means the prediction was failed. This would be
because only one datum of time of the TMP jump
exceeded 9 × 106 s and the TMP jump discriminant
model constructed with the other data could not pre-
dict the time of the TMP jump of the datum, which
was completely different from the other data. Applica-
bility domain [78–80] of the constructed model must
be considered in practice. On the other hand, most
data in Fig. 3 are close to the diagonal, reflecting that
the TMP jump discriminant models can predict the
time of TMP jumps correctly.

Examples of TMP jump prediction results of flat
membrane of PVDF and PE, and hollow fiber mem-
brane of PVDF are shown in Fig. 4. The four batches
in Fig. 4 came from the different papers. Although the
time scale and the TMP scale are different in Fig. 4(a)
and (b), the discriminant model could predict the
times of TMP jumps accurately. The TMP jump dis-
criminant models can be applied to MBRs other than
the MBRs where training data are measured and can
be used to discuss optimal MBR systems where TMP
jumps hardly happen.

However, the PRCV value in the cross-validation is
not so high in the case of flat membrane of PES and

the DRCV value in cross-validation is not so high as
well in the case of hollow fiber membrane of PE (see
Table 3). For the case of flat membrane of PES, the
number of batches is small in Table 1, and then, we
focused on the case of hollow fiber membrane of PE
in this paper. To increase predictive performance of
the TMP jump discriminant model, other MBR param-
eters should be added to the input variables. How-
ever, an MBR parameter is not measured or described
in all papers on hollow fiber membrane of PE. The
addition of a new input variable means the decrease
of batches or data-sets. Hence, we added new MBR
parameters to the input variables one by one. Table 4
shows the additional input variables. These parame-
ters were selected so that the number of batches was
as large as possible.

Table 5 shows the modeling and prediction results
when each MBR parameter is added to the seven
input variables shown in Table 2 for hollow fiber
membrane of PE. For A: pore size, and B: viscosity;
the number of batches did not decrease so much, but
the DRCV value remained small. On the other hand,
the DRCV value greatly increased by adding C: reactor
volume, D: HRT, or E: aeration, and especially the
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DRCV value was 90.0% and the ARCV and DRCV val-
ues exceeded 90% when the discriminant model had
aeration as an input variable. Although the number of
batches were smaller than that of only seven input
variables because there are no information on such
MBR parameters in several papers, reactor volume,
HRT, and aeration would be important for the predic-
tion of TMP jumps and understanding MBR fouling.

To discuss the important variables for the predic-
tion of TMP jumps, new MBR parameters were added
to the input variables for flat sheet membrane of
PVDF as is the case in hollow fiber membrane of PE.
Table 6 shows the additional input variables for flat
membrane of PVDF. A: pore size, B: HRT, and D:
reactor volume are included also in Table 4. Table 7
shows the modeling and prediction results when each

MBR parameter is added to the eleven input variables
shown in Table 2 for flat membrane of PVDF. When
A: pore size, B: HRT, C: SRT, or E: MLSS concentra-
tion was added to the input variables, the ARCV,
PRCV, and DRCV values were more than 90%. How-
ever, those values of D: reactor volume was lower
than 90% and the predictive performance of the dis-
criminant model decreased (see Tables 3 and 7). On
the other hand, for hollow fiber membrane of PE, the
predictive performance increased by adding reactor
volume to the input variables (see Tables 3 and 5).
This difference would be because the batches before
the addition of reactor volume and the batches after
the addition are different; the important input vari-
ables for the prediction of TMP jumps depend on the
types and the materials of membrane; not one input
variable but the combination of input variables relates
TMP jumps and the relationships between reactor vol-
ume and other MBR parameters are considerable. The
more data-sets and more information on MBR param-
eters are required to investigate the important vari-
ables and combinations of variables for TMP jumps
and membrane fouling.

4. Conclusion

In this paper, we constructed discriminant models
for predicting TMP jumps with MBR parameters. In
the construction of the models, the operating data-sets
measured in various MBRs were given in the litera-
ture. The high predictive accuracy of the models could
be achieved for some types and some materials of
membrane used in MBR plants. To increase the pre-
dictive performance for the model, whose ARCV,
PRCV, and DRCV values were low, we added several
MBR parameters as the input variable one by one and
checked the performance of the model. Then, reactor
volume, HRT, and aeration would be important for

Table 4
The additional input variables for hollow fiber membrane
of PE

A Pore size
B Viscosity
C Reactor volume
D Hydraulic retention time
E Aeration

Table 5
Modeling and prediction results for hollow fiber mem-
brane of PE when each MBR parameter was added to the
input variables. A, B, C, D, and E should be referred to
Table 4

A B C D E

The number of batches 21 21 16 14 14
AR [%] 92.1 90.9 95.5 95.5 96.1
PR [%] 98.0 94.6 92.3 99.1 99.1
DR [%] 75.5 76.3 94.7 86.6 90.0
ARCV [%] 88.8 88.3 92.8 92.9 94.0
PRCV [%] 93.7 87.1 96.9 95.6 92.2
DRCV [%] 67.9 74.9 81.6 81.3 90.0

Table 6
The additional input variables for flat membrane of PVDF

A Pore size
B Hydraulic retention time
C Sludge retention time
D Reactor volume
E MLSS concentration

Table 7
Modeling and prediction results for flat membrane of
PVDF when each MBR parameter was added to the input
variables. A, B, C, D, and E should be referred to Table 6

A B C D E

The number of batches 23 20 19 17 14
AR [%] 96.0 95.4 96.0 90.8 96.0
PR [%] 94.8 94.7 94.9 94.6 98.5
DR [%] 95.0 93.5 94.9 87.9 94.1
ARCV [%] 94.6 93.5 94.3 84.6 94.2
PRCV [%] 92.1 90.9 91.4 83.5 97.4
DRCV [%] 94.4 92.8 94.3 88.8 91.7
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the prediction of TMP jumps and understanding MBR
fouling. However, reactor volume decreased the ARCV,
PRCV, and DRCV values in another type and material
of membrane. The more data-sets and more informa-
tion on MBR parameters are required to further inves-
tigate the important MBR parameters for TMP jumps
and membrane fouling. When the important parame-
ters can be found for a discriminant model, in the ref-
erence [24], the domains where a discriminant model
estimates TMP jumps will happen is visualized. By
visualizing the results of a discriminant model and
analyzing set values of the MBR parameters using the
visualization result, we can discuss the possibility of
TMP jumps and the ways to prevent TMP jumps in
the future.

By parameterizing the type and the material of
membrane appropriately and using data-sets of vari-
ous types and materials of membrane, the integrated
discriminant model will be constructed with high
prediction ability. To improve the performance of the
discriminant models, the compressibility of cake
appropriately. Using the TMP jump discriminant
models, we will achieve the effective control of an
MBR.
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Appendix A. Derivation of a nonlinear function for
predicting the presence or absence of TMP jumps
[22]

Viscosity, μ; transmembrane flux, J; and total filtration
resistance, R, have the following Eq. (A1)

TMPt ¼ lt Jt R t (A1)

where t is the time and these variables are functions of
time. This equation is called Darcy’s law. The resistance-
in-series model of R is represented as follows [Eq. (A2)]:

Rt ¼ Rm þ Rf ;t þ Rother;t (A2)

where Rm is the intrinsic membrane resistance; Rf is the
fouling resistance; and Rother is the other resistance due to
water quality, such as EPS and SMP, in MBRs. Rf and
Rother are functions of t. If cake filtration is assumed, the
parallel resistance model of Rf is given as follows [Eq.
(A3)]:

Rf ;t ¼ A0

At
Rc;t (A3)

where A0 is the total membrane area; At is the usable
membrane area that is not blocked at time t; and Rc is the
resistance due to cake fouling. When MBR is operated
under constant-rate filtration, Rc is given as follows [Eq.
(A4)]:

Rc;t ¼ atþ b (A4)

where a and b are constant values. Though Rc is a expo-
nential function of t, considering the compressibility of the
filter cake [81], the function of initial Rc before a TMP
jump will be approximated by the linear function of t like
Eq. (A4).

J in Eq. (A1) is represented with treatment flow rate, V,
as follows [Eq. (A5)]:

Jt ¼ Vt

At
(A5)

The following Eq. (A6) is derived from Eqs. (A1)–(A5).

TMPt ¼ lt
Vt

At
Rm þ A0

At
atþ bð Þ þ Rother; t

� �
(A6)

Then, if a mechanism of a critical flux, Jcrt, proposed by Yu
et al. [20] is adopted, a local flux exceeds Jcrt. that is, the
following [Eq. (A7)] meets, when a TMP jump happens.

Jt � Jcrt (A7)

Eqs. (A6) and (A7) are summarized as follows [Eq. (A8)]:

TMPt � l Jcrt Rm þ A0 atþ bð Þ Jcrt
Vt

þ Rother;t

� �
� 0 (A8)

Therefore, when the left-hand value of (A8) exceeds zero,
a TMP jump happens. (A8) is a nonlinear function of t,
TMP, V, and other MBR parameters such as operating con-
ditions and water quality, which are assumed to relate μ,
a, b, Jcrt, and Rother. It is totally impractical to solve the
function (A8) exactly and hence, this function is handled
statistically. Input variables X are t, TMP, V (or flux J), and
other MBR parameters such as operating conditions and
water quality; the labels of data before TMP jumps are set
as –1; the labels of data after TMP jumps are set as 1; and
then, a model determining 1 or –1 is constructed by using
a statistical method.

Appendix B. SVM [23]

For constructing an above discriminant model, an SVM
method is used in this paper. An SVM is one of the classi-
fication methods used to generate nonlinear classifiers by
applying the kernel approach. In a linear SVM, the
discriminant function f(x) is defined as follows [Eq. (B1)]:

f xð Þ ¼ x � wþ b (B1)

where x is a query sample; w is a weight vector; and b is a
bias. The primal form of the SVM can be expressed as an
optimization problem:

Minimize [Eq. (B2)]

1

2
wk k2 þ C

X
i

ni (B2)

subject to [Eq. (B3)]

yi xi � wþ bð Þ� 1� ni
yi 2 �1; 1f g (B3)

where yi and xi represent training data; ξi is slack vari-
ables; and C is the penalizing factor that controls the
trade-off between a training error and a margin. By mini-
mizing (B2), we can construct a discriminant model that
shows a good balance between the ability to adapt to the
training data and the ability to generalize. In our applica-
tion, a kernel function is a radial basis function as follows
[Eq. (B4)]:

K x; x0ð Þ ¼ exp �c x� x0k k2
� �

(B4)

where γ is the tuning parameter that controls the width of
the kernel function. Using (B.4), a nonlinear model can be
constructed because the inner product of x and w in (B.1)
is represented as the kernel function of x. In this study,
LIBSVM [82] is used as the machine learning software.
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