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ABSTRACT

This study compares the performance of three different approaches to modeling namely the
classical pore-blocking models, artificial neural networks (ANN) and the novel genetic pro-
gramming (GP) approach. Among the available models proposed by Hermia, standard pore-
blocking and cake filtration models were opted because of their better fitness with experi-
mental measurements. A feedforward backpropagation network using Bayesian Regulation
as well as Levenberg–Marquardt training methods was developed based on the experimental
results. Network inputs include the controlling parameters of permeate flux namely: temper-
ature, transmembrane pressure, crossflow velocity, pH, and filtration time. The architecture
and internal parameters of the network have substantial effect on the prediction performance
of the ANN. Hidden layers and neuron numbers were regulated using trial-and-error
approach. The individual program proposed by GP, which has satisfied the required fitness
value after 500 generations, had a depth of 10 among a population of 700 individuals. Rela-
tive error with respect to experimental results was used to compare the aforementioned
models. It was found that ANN outperformed pore-blocking and GP models. The GP-based
model had an acceptable coincidence with the experimental data and its ability to correlate
the input and target variables by a mathematical relation showed the high potentiality of GP
as a modeling tool.

Keywords: Flux decline prediction; Artificial neural network; Genetic programming; Pore
blocking model

1. Introduction

The increasing production of wastewater especially
oily wastewater, in both residential and industrial
areas, such as refinery plants and production units
associated with the increasing strictness of environ-
mental regulations calls for the development of new

and more efficient techniques for disposal or reuse of
wastewater [1].

Traditional techniques used in an oil-in-water
emulsion separation, for example, centrifugation,
de-emulsification, gravity settlement, and air flotation,
have some operational difficulties and also do not
lead to the purities of interest [2,3].
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Recently, membrane filtration has been playing a
fundamental role in the separation processes and has
been broadly implemented worldwide for its potentiali-
ties, high efficiency, relatively high ability in transport-
ing specific components, operational cost-effectiveness,
and its easy scaling up features. Although these
superiorities have been approved in many industrial
and laboratory applications, some disadvantages are
still assigned to the membrane processes, for example,
fouling of their pore spaces due to concentration
polarization, and chemical interaction with water con-
stituents. This phenomenon, whichcauses a permeate
flux decline, is the main limitation of membrane
processes [4].

In response, being familiar with such a critical
issue and benefiting from some knowledge on the
fouling of membrane and its associated factors is of
much vitality. Modeling the membrane filtration pro-
cesses has recently been the subject of much interest
and accounted as a challenging issue in many studies.

With the complexities such as hydrodynamic
dependency and complicated nature of cake layer,
there has been experienced a common poor knowl-
edge in description of the phenomena happening in
the filtration process. This significantly weakens the
phenomenological models, and as a result, more atten-
tion has been paid to the semi-empirical and black
box models [5,6]. In this regard, Hermia’s pore-block-
ing models have been exploited by many of the
researchers. Mohammadi et al. [3] have used a modi-
fied form of pore-blocking model to investigate the
permeate flux decline in the synthesized oily water
separation by reverse osmosis membrane. Their
results show an inconsistency between experimental
measurements and model predictions. In the process
of oily emulsion microfiltration by mullite ceramic
membrane and using the pore blocking model, Abbasi
et al. [7] studied the effects of pressure, cross flow
velocity (CFV), temperature, and oil concentration on
flux decline. They observed that different pore-block-
ing models had better results in different times of
filtration. Vela et al. [8] also obtained the same results
as that of Abbasi et al. [7] for different operating
conditions. However, it is a well-known fact that the
parameters associated with both non-linear correla-
tions and pore-blocking models could not be general-
ized to represent variation in flux decline with feed
concentrations and pressure differentials [2].

Modeling techniques based on the direct analysis
of experimental data (descriptive models) appear to
be the promising alternatives for the models that use
phenomenological hypotheses (i.e. knowledge-based
models) [5]. Artificial neural networks (ANN) are the
most famous and popular black box modeling tool in

this respect. The reason lies in the fact that ANN has
been widely used to predict the permeate flux
recently.

Sargolzaei et al. [9] showed the capability of ANN
model to predict the starch removal performance
using a hydrophilic polyethersulfone. Aydiner et al.
[10] compared performance of ANN and Kol-
tuniewicz’s method in modeling of flux decline rate of
crossflow microfiltration of a mixture in presence of
phosphate and fly ash. The study concluded that both
methods had satisfactory results. Benefiting from the
genetic algorithm (GA) to choose the initial connection
weights and biases of backpropagation neural network
(BPNN), Ming et al. [11] employed BPNN to predict
membranes pervaporation performances at different
operating condition. Sahoo and Ray [5] utilized GA to
optimize configuration of a radial basis function net-
work on predicting flux decline in crossflow mem-
branes. Shokrian et al. [12] showed that one can use
ANN to predict separation factor of C3H8 from CH4

and H2 by synthesized membrane. Curcio et al. [13]
constructed a three layer ANN which was used to
model the ultrafiltration of BSA solutions under pul-
sating conditions. Nandi et al. [2] delivered an ANN
model, which later compared with conventional pore
blocking model to predict the permeate flux of dead-
end filtration of oil-in-water emulations.

In neural network modeling, there is a relationship
between function complexity and network size in such
a way that optimal number of hidden layers in the
network grows proportionally by the complexity of
the problem [14]. In genetic programming (GP), how-
ever, there is no need to have any prior knowledge
neither on the physics of the problem nor on design
of the model at hand. Moreover, the ANN does not
return any function from the model, while GP results
in a mathematical correlation between the parameters.
Recent studies have focused more on the GP model-
ing. Hong and Bhamidimarri [15] used GP in order to
model the dynamic performance of municipal acti-
vated sludge waste water treatment plants. The model
had a relative mean square error (RMSE) on the train-
ing set of 1.34mg/L and an RMSE on the testing set
of 1.57mg/L. RMSE value of 1.57mg/L and 81.4% of
R2 for the testing data indicates very satisfactory per-
formance of the model. Hwang et al. [16] found the
pattern of fouling variation in filtration of drinking
water using GP. The model used some of the operat-
ing conditions such as flow rate and filtration time
and some of the feed water quality parameters like
turbidity and algae pH, as the input variables. They
developed a successful model for the pattern of mem-
brane resistance during the operational period, though
the dramatic increase in the membrane resistance was

H. Mashhadi Meighani et al. / Desalination and Water Treatment 51 (2013) 7476–7489 7477



not predicted at all. Shokrkar et al. [17] studied the
treatment of oily wastewaters with synthesized mull-
ite ceramic microfiltration membranes and proposed a
new approach for modeling of membrane flux using
GP. The population size in their model was 500 indi-
viduals, number of generations was 90, and the maxi-
mum depth for the trees was assumed to be 7. The
results thus obtained from their model represented a
good agreement with the experimental data, having
an average error of less than 5%. Some of the works
which have implemented the GP approach are briefly
described in Table 1.

In this study, the experimental results reported by
Salahi et al. [20] have lend the authors a hand on the
comparative assessment of three different modeling
methods including pore blocking models, ANN, and
GP. The overall performance, accuracy, advantages,
and blind spots of each method are investigated. The
main criteria applied for the performance study are
considered as the run time and ease of use of the
models. Relative error is the cornerstone of accuracy
evaluation and according to the output format; the
overall strengths and weaknesses of the models are
estimated within the scope of the article.

2. Theory and model description

2.1. Pore-blocking model

As a function of the solute characteristics, mainly
particle size, four different mechanisms of fouling are
probable, namely complete pore-blocking model, stan-
dard pore-blocking model, intermediate pore blocking
model, and cake filtration model. The models have
been proposed by Hermia [21] based on the constant

pressure dead-end filtration; however, the acceptable
coincidence of their prediction with the experimental
results of cross flow filtration has proved them
applicable in such processes [22–25].

In these models, the general equation is as follows:

dJ

dt
¼ �KjðJ � J0Þ2�n ð1Þ

where n = 2.0 for complete pore blocking; n = 1.5 for
standard pore blocking; n = 1.0 for intermediate pore
blocking, andn = 0 for cake filtration; J represents the
permeate flux, Kj is a constant, and J0 is the limiting

flux. The equations of the pore-blocking model are
given in the Table 2.

In these equations, the constants Kb and Ki are
related to the blocked surface area per unit permeate
volume; A represents the membrane surface; Ks is a
function of retained particles volume per unit perme-
ate volume, and Kc depends on both cake resistance
and concentration [3].

Complete pore blocking occurs when the solute
particles are larger than the mean pore size of the
membrane. The particles or molecules finally deposit

Table 1
Summary of research on the membrane filtration modeling using GP

Reference Membrane
process

GP model characteristics Error Year

Shokrkar et al. [17] (Prediction of permeation flux
decline during MF of oily wastewater using GP)

Mullite ceramic
membrane, MF

500 population, 90
generation and maximum
tree depth of 7

0.2–13% 2011

Okhovat and Mousavi [18] (Modeling of arsenic,
chromium and cadmium removal by
nanofiltration process using GP)

Polymeric
(Polyamide)
membrane, NF

200 population, 250
generation and maximum
tree depth of 50

RMSE= 0.005–
0.02

2011

Suh et al. [19] (Application of GP to develop the
model for estimating membrane damage in the
membrane integrity test using fluorescent
nanoparticle)

Synthesized
membrane, MF

140 population, 220
generation and maximum
tree depth of 7

MAE=0.83 2011

Hwang et al. [16] (Prediction of membrane fouling
in the pilot-scale microfiltration system using
GP)

Polymeric
(PVDF)
membrane, MF

– 8% 2009

Table 2
Pore blocking characteristic models

Characteristic equation Model

LnðJÞ ¼ LnðJ0Þ � Kbt Complete pore blocking
1
J ¼ 1

J0
þ KiAt Intermediate pore blocking

1
J0:5 ¼ 1

J0:5
0

þ Kst Standard pore blocking

1
J2 ¼ 1

J2
0

þ Kct Cake filtration
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on the surface of membrane and the available paths
through the membrane would successively reduce. In
standard pore blocking mechanism, smaller particles
or molecules plug the internal pores of membrane and
the reduction of pore volume will be proportional to
the filtered permeate volume. The intermediate block-
ing occurs when the membrane mean pore size is
nearly the size of particles or molecules. In this model,
each particle can block the membrane pores and
deposit on the previously deposited particles. Particles
greater than pore volume in size, accumulate on the
surface of membrane and gradually a porous concen-
trated layer called “cake” will cover the surface. This
layer dramatically affects the membrane performance.
Cake filtration model describes the variation of perme-
ate flux in this fouling mechanism. Salahi et al. [20]
used the pore-blocking models and reported a better
prediction of standard pore-blocking and cake filtra-
tion models. R2 values of these models have been
summarized in Table 3. As it can be traced, in early
times, standard pore-blocking model has a better
fitness, while as time elapses, cake filtration model
shows a higher accuracy in prediction.

2.2. Artificial neural network

ANN models are the algorithms used for cognitive
tasks, such as learning and optimization. They are
powerful tools used in modeling complex systems
that seek to simulate human brain behavior by
processing data on a trial and error basis. Then it tries
in learning how to avoid repeating an error the next
time a similar situation occurs. Neural networks have
proved to be promising solutions for approximating
complex and non-linear functions; they have also
exhibited a great accuracy in complex systems
when there is a lack of rigorous knowledge on their
behavior [26].

Neural networks are configured to obtain a desired
set of outputs, by the identification of the connection
and strengths between given input and desired out-
put. According to the desired output, neural networks
can be designed to perform the classification, regres-
sion predictions, or desired tasks. The former task
requires neural networks to label correctly the rela-
tionship between input attributes with one class of a
predefined set of classes (e.g. classifying cells for
cancer diagnosis), while the latter requires to map an
n-dimensional input vector with a real value variable
(e.g. temperature forecast). The main difference
between these two networks is their output represen-
tation, since both can be modeled with the same learn-
ing method and architecture [27].

In order to use a neural network for prediction, it
is necessary to define its topology (i.e. number of lay-
ers and neurons) and additional variables such as
weights and bias of each layer as well. These variables
are obtained during the learning process. Various
methods for network learning are available; among
them is a method which should set the weights and
bias of the network explicitly, and requires a good
knowledge of the process to be modeled. Another
method is by feeding the neural network with
patterns and iteratively changing its weights in order
to adjust the network to the provided patterns [28].

One of the most common neural networks archi-
tectures is the Feedforward backpropagation (FFBP);
the reason lies in the fact that it has been employed
successfully to model many different tasks. Backprop-
agation networks describe how a network with neu-
rons connected in only one direction (forward) is
trained. Backpropagation is a type of supervised train-
ing that provides sample inputs and outputs to the
network. In FFBP networks, actual outputs are
compared against predicted outputs and so, error is
calculated. Based on the resulted error, and starting
from the output layer, the backpropagation algorithm
adjusts the weights until the input layer is reached
[29]. Fig. 1 depicts a general schematic of how an
ANN works.

A successful BPNN requires the determination of
internal parameters such as network architecture and
initial weights to meet the required performance [30].

Table 3
R2 values of pore blocking models [20]

Experiment
number

Standard
pore
blocking

Complete
pore
blocking

Intermediate
pore
blocking

Cake
filtration

1 0.9321 0.8677 0.9748 0.9993

2 0.9060 0.8732 0.9568 0.9991

3 0.9232 0.8349 0.9607 0.9974

4 0.9232 0.8732 0.9607 0.9974

5 0.9060 0.8349 0.9568 0.9991

6 0.9188 0.8458 0.9678 0.9999

7 0.9110 0.8400 0.9606 0.9996

8 0.9196 0.8681 0.9583 0.9970

9 0.8710 0.8027 0.9241 0.9852 Fig. 1. Artificial neural network, training and learning
concepts.
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An ineffective design of the network will last into
some unreliable consequences. Finding a suitable
architecture and the corresponding weights of the net-
work is a complex task due to the lack of theoretical
parameters or optimal values and requires the trial
and error approach using different initializations and
architecture [31].

In initial steps of training, errors of both training
and validation data are reduced. After several steps,
the error of training data decreases while that of vali-
dation data increases. As a result, the network is over-
trained and its generality decreases. Hence, the
training process must be continued until the validation
data error decreases. Testing data set is used to test the
trained network for unseen patterns (The results of
which are known to the researcher but not used in the
training procedure). The network generalizes well
when it sensibly interpolates these new patterns [9].

2.2.1. Architecture and model basis of the proposed
neural network

As mentioned earlier, the BP algorithm is based on
a learning rule by which the weights are evolved in
order to minimize the mean of squared differences
between the desired and actual values of the output
neurons. The standard BP algorithm suffers from a
few drawbacks such as the risk to converge in local
minima and long computational time. In order to
improve its performance, two different types of high-
performance BP training algorithms employing differ-
ent optimization techniques are used in this study.
These algorithms are Levenberg–Marquardt (LM) and
Bayesian Regularization (BR) algorithms that brief
explanations are offered in the following.

LM method. Similar to quasi-Newton methods, the
LM algorithm was designed to approach a second-
order training speed without having to compute the
Hessian matrix. The method combines the best
features of the Gauss–Newton method and the
steepest-descent method, but avoids many of their
limitations [32].

BR method. This method is the modification of the
LM training algorithm to produce a well-generalized
network. It minimizes a combination of squared errors
and weights, and then determines the correct combi-
nation so as to produce a network that can generalize
well. This algorithm can train any network as long as
its weights, inputs, and activation functions have
derivative functions. In the configuration of a neural
network model, one of the most important factors is
to determine the number of hidden layers to be used
and also the number of neurons located in each layer.
Although some researchers suggest that solely one

hidden layer is usually sufficient [33,34], the introduc-
tion of additional hidden layers allows for the fit of a
larger variety of target functions and enables the
approximations of complex functions with fewer
connection weights [35]. Hecth and Nielsen [36] sug-
gested that the upper limit for the number of hidden
layer neurons should be smaller than 2Nl þ 1, where
Nl is the number of input neurons, considered in
order to ensure that ANNs are able to approximate
any continuous function.

In data analysis, numerous combinations of net-
work geometry with two and three number of hidden
layers were tested. For each hidden layer, various
combinations having 3–20 neurons were tried. Each
case was examined using both LM and BR training
algorithms. The results of MSEs for all the investi-
gated layer combinations are tabulated in Table 4.

The networks trained by LM algorithm demon-
strate a better prediction performance compared with
those by BR algorithm.

The best simulation results were obtained with
model architectures of 5-3-1, 5-20-1 and 5-10-10-1
accompanied by LM as the training method. The first
architecture had a fewer number of layers well as
lower MSE and was hence selected as the optimum
model. The architecture of a multi layered network
used in this work is presented in Fig. 2.

Settings used in the development of the neural
network are summarized in Table 5.

Table 4
MSEs of various examined neural networks

Model structure
(Hidden Layers
and Output Layer)

Transfer
function

Learning
algorithm

MSE NMSE

5-30-1 TTP BR 110.56 0.413

5-20-1 TTP BR 47.65 0.178

5-10-1 TTP BR 267.46 1.000

5-5-1 TTP BR 81.82 0.306

5-3-1 TTP BR 208.22 0.779

5-30-1 TTP LM 0.91 0.003

5-20-1 TTP LM 0.44 0.002

5-10-1 TTP LM 2.64 0.010

5-5-1 TTP LM 2.13 0.008

5-3-1 TTP LM 1.28 0.005

5-10-5-1 TTTP BR 28.20 0.105

5-10-10-1 TTTP BR 32.43 0.121

5-10-5-1 TTTP LM 1.52 0.006

5-10-10-1 TTTP LM 1.40 0.005

BR: Bayesian regulation; LM: Levenberg–Marquardt; T: Tansig; P:

Pureline; MSE: Mean Square Error; NMSE: Normalized Mean

Square Error.
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Having chosen the backpropagation learning
method, input parameters have to be normalized
between 0 and 1 to prevent any numerical overflow.
In this study, we normalized the input data according
to Eq. (2),

PNormalized ¼ P� Pmin

Pmax � Pmin
ð2Þ

where PNormalized is the normalized value of parameter
P;Pmin and Pmax are respectively the minimum and
maximum values of each parameter.

One of the most widely used transfer function is
tan-sigmoid (tansig) and is used in this work in
hidden layers according to Eq. (3).

tansigðxÞ ¼ ex � e�x

ex þ e�x
ð3Þ

tansig function maps the inputs in the range of �1
to + 1.

In the output layer, pure line function is used as
the transfer function. This function produces the
output equal to its input variable.

Fig. 2. Architecture of the developed backpropagation multilayer ANN used for the modeling of permeate flux.

Table 5
Settings used in the development of the neural network

General information Neuron numbers Transfer functions

Network type Training
function

Layer
no.

Hidden
Layer #1

Hidden
Layer #2

Output
Layer

Hidden
Layer #1

Hidden
Layer #2

Output
Layer

FFBP TRAINLM 4 5 3 1 TANSIG TANSIG PURELIN

Performance
function

Epochs max
fail

mem_reduc min_grad mu mu_Inc. mu_dec mu_max

MSE 150 75 1 1� 10�10 1� 10�3 10 0.1 1� 10+10

FFBP: Feed-forward back propagation; TRAINLM: Levenberg–Marquardt training function; MSE: Mean squared error.
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Relative error between ANN output and experi-
mental data used for the sake of performance evalua-
tion of the implemented ANN model was calculated
via Eq. (4).

Error % ¼ OANN �OEXP

OEXP
� 100 ð4Þ

2.3. Genetic programming

The inspiration of Koza by Darwin’s theory, which
explains the ability of computers in solving the prob-
lems by some training and validating algorithms,
resulted in the introduction of GP [37]. GP is a pro-
gressive approach that generates a model program as
a function of the parameters affecting a target variable

on the basis of biological evolution. In GP, the
programs are presented in tree-like structures in
which the leaves of the tree represent the independent
variables or integers, while the nodes having their
arguments as branches are the functions. The follow-
ing tree shown in Fig. 3, demonstrates a 2� (3 + x)
program in the population with three terminals and
two functions [38].

The procedure of developing a nonlinear model in
GP begins with generation of a random population
using the available methods. The population is
referred to the number of individual programs. Form-
ing the individuals in the next generation is the sec-
ond step which consists of two main methods namely
Reproduction and Cross over. In reproduction, old
individuals copy themselves to a new population
without any changes and in cross over, the genetic
materials from two individuals are mixed to form the
offsprings. Fig. 4 is a representation devoted to this
issue. The most important genetic operation in GP is
cross over. The reason lies in the fact that it is the
main source of having new individuals in the next
generation. There are also other genetic operations
such as mutation, edition, encapsulation, permutation,
and decimation.

After substitution of the new population, it is
required to specify how good an individual is in the
population. The fitness values of all the individuals
are determined using an appropriate fitness function
and the best ones are selected for the next population.Fig. 3. Tree-like structure of an individual.

Fig. 4. Cross over operator in action representing original parents, cross over points and generated offsprings.
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These steps are continued until the termination
criterion is satisfied. This criterion may be either
fitness value, maximum depth of trees or number of
generations. Fig. 5 is a flow chart of GP.

2.3.1. Specifications of the proposed GP model

In the experiment design section, nine series of
tests have been conducted in order to obtain the varia-
tion of permeate flux. The permeate flux is regarded
as a function of some controlling parameters such as
transmembrane pressure (TMP), feed temperature,
CFV, pH, and filtration time [20]. The objective of pre-
sented modeling is hence to find the mathematical
relation between these parameters. In this model, the
selected function set was {“+”, “�”, “⁄”, “exp”, “p”}.
After normalizing the variables, 75% of them were
introduced to the program as training data. Mean
square error (MSE) between experimental values and
those of predicted from the GP model was used as the
fitness function. Population size was set to 700, the
number of generations was 500, and the maximum
depth of each individual was 10 to avoid the bloating
phenomenon that tree depth increases without any
improvement in the fitness [39]. The genetic opera-
tions were set to be only cross over and mutation and
their probabilities were 60 and 40%, respectively.
Lexictour method was chosen as the selection method
and the expected number of children was assumed to
be Rank 89 meaning that the expected number of
children for each individual is based on its rank in the
population and on the state of the algorithm (how far
it is from the maximum allowed generation).

The MATLAB�GP toolbox published by Sara Silva
was used in this study.

3. Results and discussion

This section is comprised of four parts. First, the
developed GP-based mathematical relation between
target variable (permeate flux) and input parameters
is presented. Next, permeate flux predictions using
pore blocking, GP, and ANN models are demon-
strated. The accuracies of the proposed models are
discussed in terms of relative error and R2 parameter
in the third part. The last part is devoted to the com-
plete investigation of selected models considering per-
formance, accuracy, advantages, and disadvantages.

3.1. Development of GP model

Normalized values of the input parameters consist-
ing of filtration time, temperature, TMP, CFV, and pH
were introduced for the development of GP model
and the initial generation was created with a popula-
tion size of 700 and poor fitness value as expected.
Evolutionary algorithm was working properly, as
observed, since the values of MSE were decreasing.
Having satisfied the termination criteria (number of
generations), the GP model would be achieved. The
following is the best GP model:

P1 ¼ ð�X1 þ X2X5 þ 3X2 � X3Þ þ X5ðX2X3 � X2X4Þ
þ X2X4 � ee

ffiffiffiffi
X3

p

P2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P1 � ð2X1 þ X2ð1� 3X3ÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�X1 þ X2ðX4 þ 1Þ � 2eX3

p
� X4ðX1 � 3X2Þ

q

P3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X3ðX2 � X1Þ � X1X4 þ X2X3

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2X3 þ X2 � X1

p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X1 �

ffiffiffiffiffiffi
X1

p
X3X4

ffiffiffiffiffiffi
eX4

pq
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X3

p
þ eX3

q

P4 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�X1 þ X2ð2X4 þ 1Þ � eX5

p
� X2 � X3X4e

X4
2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X1

p
ðX3X4ð�

ffiffiffiffiffiffiffiffiffiffiffi
X3X4

p
� 1Þ � 1Þ þ X1 þ X2X3ð1� X2

4Þ
q

P ¼ P2 þ P3 þ P4

where X1 = filtration time (s), X2 = feed temperature
(˚C), X3 = TMP (bar), X4 =CFV (m/s), X5 = pH and

P=permeate flux (l/m2 h). In this formulation,
ffiffiffiffi
X

p
will return zero if X is negative and equals roots of X
if it is positive.Fig. 5. GP flowchart.
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3.2. Permeate flux prediction

Eight sets of the experimental data, obtained from
the literature [20], were utilized to investigate the
accuracy of the pore blocking, GP, and ANN models.
The operating conditions and experiment sets are
briefly described in Table 6.

Having constructed the aforementioned models,
their prediction performances were evaluated. Three
experimental sets associated with the model predic-
tion and experimental values are shown in Figs. 6–8.
Obviously, in the initial steps where the permeate flux
values are sharply declining, all models have lower
accuracies and among them, pore-blocking model
exhibits the worst outcome. As time passes, the rate of
permeate flux decline decreases due to fouling of the
pore volume, and in this interval, the experimental
measurements and predicted values are in an excel-
lent agreement. Generally, the ANN model presented
a better prediction precision; the reason lies in the fact
that ANN is a powerful interpolator.

Through all the experiment sets, three permeate
fluxes have been chosen in the range of initial, middle,

and last times and the experimental measurements,
modeled values, and their related errors are shown in
Table 7.

3.3. Error analysis

The regression lines for ANN, GP, and pore block-
ing models are shown in Figs. 9–11. The respective
values of R2 are 0.9999, 0.9723, and 0.9799. As clearly
can be seen in Fig. 9, the ANN model and experimen-
tal measurements are in a complete coincidence.
Although R2 values obtained for pore blocking model
and GP are in the same range, the data points of the
GP model are more scattered around the regression
line and one can say that pore-blocking model is of
higher accuracy. In lower permeate flux values, both
GP and pore-blocking models are in good agreement
with experimental measurements; however, as the
permeate flux goes up, GP predicted values show
more deviation from unit slope line. It should be

Table 6
Operating conditions of filtration experiments

Experiment set T (˚C) TMP (bar) CFV (m/s) pH

1 25.0 3.0 0.75 7

2 25.0 4.5 1.25 10

3 37.5 1.5 0.75 10

4 37.5 3.0 1.25 4

5 37.5 4.5 0.25 7

6 50.0 1.5 1.25 7

7 50.0 3.0 0.25 10

8 50.0 4.5 0.75 4

Fig. 6. Permeate flux prediction by pore blocking, GP and
ANN models (temperature = 25˚C, TMP=4.5 bar,
CFV=1.25m/s and pH=10).

Fig. 7. Permeate flux prediction by pore blocking, GP and
ANN models (temperature = 50˚C, TMP=4.5 bar,
CFV=0.75m/s and pH=4).

Fig. 8. Permeate flux prediction by pore blocking, GP and
ANN models (temperature = 37.5˚C, TMP=3bar, CFV=
1.25m/s and pH=4).
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noted that approximately the same values of R2 for
the models could not be the only judging factor in
comparing their precisions. To have a better view of
their accuracies, relative errors were calculated and
are presented in Table 7.

In Figs. 12–14, relative error of all the modeling
predictions has been represented with respect to each

other. It is clear from Fig. 12 that relative errors of GP
and ANN models lie in the range of 0–30 and 0–1.2%,
respectively. Fig. 13 shows the values of pore-blocking
model relative and ANN model error. As shown in
Fig. 13, it is clear that the ANN model has a greater
accuracy in comparison with pore-blocking model.
Fig. 14 also represents the same orders of relative

Table 7
Experimental measurement, model values and related errors of experiments

Output (l/m2h) Relative error (%)

Experiment set EXP ANN GP Pore blocking ANN GP Pore blocking

1 445.70 444.42 388.12 449.31 0.286 12.919 0.809

416.90 417.02 371.15 419.65 0.028 10.973 0.660

366.00 367.88 355.29 368.16 0.515 2.926 0.592

2 344.80 346.08 345.99 346.19 0.370 0.344 0.403

335.40 336.37 341.14 336.58 0.290 1.710 0.352

315.30 315.08 327.70 315.80 0.069 3.933 0.158

3 311.70 311.21 324.42 312.06 0.156 4.079 0.116

286.10 284.26 305.58 286.19 0.642 6.809 0.030

278.10 275.77 301.30 278.05 0.836 8.343 0.017

4 167.60 167.27 167.58 167.48 0.197 0.014 0.074

163.30 163.20 164.04 163.11 0.059 0.455 0.114

157.30 157.62 158.91 157.16 0.202 1.021 0.086

5 154.50 155.02 156.41 154.42 0.338 1.233 0.049

122.70 123.05 119.37 122.76 0.289 2.715 0.052

121.40 121.61 117.40 121.44 0.177 3.292 0.037

6 120.70 120.91 116.43 120.80 0.172 3.538 0.084

118.10 117.95 112.26 118.12 0.130 4.942 0.021

117.30 117.07 111.00 117.34 0.199 5.370 0.031

7 745.10 751.11 701.16 716.39 0.807 5.897 3.853

711.20 717.56 692.45 690.84 0.894 2.636 2.862

637.70 638.86 663.28 627.99 0.182 4.011 1.522

8 543.20 541.44 586.60 541.02 0.323 7.990 0.401

531.10 529.74 570.27 529.76 0.255 7.374 0.252

500.00 499.30 517.99 499.78 0.141 3.599 0.045

Fig. 9. ANN model values vs. experimental measurements. Fig. 10. GP model values vs. experimental measurements.
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error for both pore-blocking and GP models. Although
in both Figs. 12 and 13, the ANN relative error are
much less than GP and pore-blocking models, a closer
look at Fig. 13 shows that data points are more
accumulated near the horizontal axis which means
that pore-blocking model has a lower relative error
compared to GP. According to Figs. 12 and 13, most
of ANN prediction errors are less than 0.4% and in
Fig. 14, it is observed that relatively high numbers of
GP and pore-blocking errors lie in the range of 0–10
and 0–5%, respectively.

3.4. Performance evaluation

In Section 3.1 to 3.3, accuracies of the proposed
models were evaluated from different points of view,
for example, prediction precision in different time
intervals and for various values of permeates flux. R2

values of all these models were studied and it was
found that ANN predicted values accurately matched
experimental measurements. GP and pore-blocking

models had the same values of R2. Also, relative
errors of the models were analyzed with respect to
each other and it was concluded that the ANN errors
begin from near zero values up to 1.2%. These limits
for GP and pore-blocking model were zero and 30%,
respectively. Deeper analysis of the obtained results
showed that, most of the model predicted values for
ANN, pore blocking, and GP had relative errors
below 0.4, 5, and 10%, respectively. More detailed
analysis of relative error frequencies are depicted in
Figs. 15–17 which further confirm the observations.
These figures show how many data points lie in each
relative error interval. The vertical axis is number of
data points and the horizontal axis depicts relative
error.

It is worth to mention that error analysis can
hardly be the sole criterion in choosing the right
model as various parameters such as ease of use, run
time, giving an explicit relation between input and
output parameters, etc. also have to be taken into
account. With this vision, although GP and pore-
blocking models have higher error percentages, they

Fig. 11. Pore blocking model values vs. experimental
measurements.

Fig. 12. GP model relative error vs. ANN model relative
error.

Fig. 13. Pore blocking model relative error vs. ANN model
relative error.

Fig. 14. Pore blocking model relative error vs. GP model
relative error.
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return an explicit mathematical relation which could
be used in any experimental or simulation study.
Integration of ANN model into other studies comes
with its downsides. Also, the fact that ANN is a poor
extrapolator should not be overlooked.

Until today, pore-blocking model has been broadly
used for modeling in the experimental works. This
was due to the fact that this model gives a linear and
simple formula that predicts the permeate flux. In
some cases of controlling the permeate flux decline,
having some knowledge of the physical factor that
causes the fouling of membrane can well help us
reduce fouling phenomena by changing the operation
conditions or feed characteristics. Taking into account
this fact, pore-blocking models are of particular
importance since each model expresses a different
fouling mechanism.

The main advantages of GP model are returning
an explicit relationship which could be used anywhere
and eliminating the need for arrangement of the
model structure in contrary to ANN. This should be
considered especially where the nature of the problem
at hand is complicated. The main disadvantages of GP
are the high run time and higher relative error com-
pared with the other two models. Considering all the
strengths and weaknesses of each model for the sake
of constructing a model for membrane processes,
ANN, GP, and pore-blocking models can each be
taken into consideration.

4. Conclusion

A thorough comparison of three modeling tech-
niques in permeate flux decline prediction was put
under vast concentration in this article. These are
pore-blocking model, GP, and ANN. The aim was to
predict the permeate flux decline in membrane pro-
cess. To achieve this aim, the experimental data were
obtained from the published literature. Better pore-
blocking models for the data were the cake filtration
and standard pore-blocking models. In the case of
ANN modeling, optimum structure of the network
was obtained in a trial and error manner which is a
network with two hidden layers each consisting of
five and three neurons, respectively. FFBP learning
method was employed to train the network. For the
development of GP model, the population size of
each generation was set to be 700 and the maximum
depth of individuals was assumed 10. MSE was
selected as the fitness function where the crossover
and mutation were the genetic operations. Having
developed all the prediction models, experimental
measurements were modeled and relative error of
each predicted value was calculated. Error analysis

Fig. 15. Frequency of relative errors for ANN model.

Fig. 16. Frequency of relative errors for GP model.

Fig. 17. Frequency of relative errors for pore blocking
model.
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showed that ANN was the least erroneous among
the three. Returning an explicit relation and ease of
use were the main features of pore-blocking model.
GP not only gives a mathematical relation, but also
has no need for any previous knowledge on the
model structure. The key superiorities and blind
spots of the methods were also fully reviewed.
Therefore, it essentially depends on the case in hand
that which method would return the best model to
predict the permeate flux decline rate.
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