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ABSTRACT

In membrane separation processes, the film equation is frequently used since it is a fast and
easy way to predict the permeate velocity. In this work, the applicability of the film equation,
based on a convective–diffusive–electrophoretic migration model (CDE), is evaluated using
an in-house code. CDE model accounts for the transport of charged solutes in the boundary
layer over a charged membrane. Two versions of the film equation were developed: CDE I––
non-linear electric potential and total rejection of components; CDE II—uniform electric field
and transmission of components through the membrane. The Sherwood number profiles,
along the membrane length, for bovine serum albumin and lysozyme were determined by
film equations. The permeate velocities, concentrations and rejection coefficients, obtained by
solving numerically the conservative equations, were used as input to film equations. The
Sherwood number profiles, determined by CDE I, are independent of the electric potential at
the membrane surface, for low values of electric potential. The Sherwood number profiles,
determined by CDE II, are independent of the electric field, for low values of electric field.
In these ranges, Sherwood number profiles are identical to those in an impermeable cell and
the film equation can be used to make accurate predictions.

Keywords: Film equation; Convective–diffusive–electrophoretic migration model; Mass
transport; Protein separation; Computational fluid dynamics

1. Introduction

Numerical and analytical methods have been used
to predict the permeate velocity in membrane separa-
tion cells. Several methods have been developed to
deal with electrical effects on the vicinity of a charged
membrane. Numerical methods have been developed
by the authors of the present paper [1,2] and, also, by

other authors [3–7]. Karthik et al. [3], Sarkar et al. [4,5]
and Sarkar and De [6,7] developed numerical codes to
predict the permeate flux, the membrane surface
concentration and the permeate concentration along
the membrane length under a constant external
electric field [3–7]. Karthik et al. [3] modelled and
simulated the electric field enhanced cross flow
ultrafiltration of a bovine serum albumin (BSA)
solution under osmotic pressure-controlled regime.
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Sarkar et al. [4,5] studied the effect of the electric field
during gel-layer-controlled ultrafiltration of synthetic
juice and fruit juice [4] and predicted the permeate
flux during osmotic pressure-controlled electric ultra-
filtration [5]. Sarkar and De [6] developed a theoretical
analysis based on an integral method for quantifica-
tion of the permeate flux and mass transfer coefficient
in gel-layer-controlled ultrafiltration enhanced by an
electric field. They considered a developed mass
transfer boundary layer under turbulent flow regime.
Moreover, Sarkar and De [7] predicted the permeate
flux for turbulent flow in a cross flow electric field
assisted ultrafiltration. Apart from these studies
applied to ultrafiltration processes, a constant external
electric field is frequently used in electrodialysis
processes. Electrodialysis is a separation process that
arranges ion-exchange membranes alternately in a
direct constant electric field [8]. This technique
provides versatile tools for industrial separations and
has received attention recently [8].

Pinto et al. developed a numerical code [1,2] to
allow the determination of the flow, concentration
and variable electric potential in a bidimensional
membrane cell. The code allows the complete charac-
terization of the transport of solutes in the vicinity of
a charged membrane. Firstly, they studied the separa-
tion of ionic components assuming that the convective
flow effect on the ionic distribution was negligible [1].
The electric potential was determined by a simplified
method taking the Boltzmann distribution of the
charged ions. In a second study [2], the complete
Poisson–Boltzmann, Nernst–Planck and Navier–Stokes
equations were solved simultaneously. A numerical
method was developed to deal with the coupling
between electric and concentration fields of all species
in solution. The concentration, velocity and electric
fields were obtained in a bidimensional domain. In
these studies [1,2], the authors considered total rejec-
tion of the components by the membrane. However,
in macromolecules fractionation, different components
have different transmissions through the membrane
pores [9–12], and so the code was improved to take
them in consideration.

Most of the analytical methods in the literature are
based on the stagnant film model. Following this
model, an equation relating the permeate velocity with
the electric field is derived from a mass balance to a
stagnant film located in the vicinity of the membrane.
Sarkar et al. [13] used the film model to establish the
gel layer resistance in their study about fractionation
of BSA and lysozyme (LYS) for several values of pH
solution (7.4; 8.6; 11). The proteins have distinguished
and opposite electric charges and the fractionation
occurs under a constant external electric field.

Rabiller-Baudry et al. [14] studied the application of a
convective–diffusive–electrophoretic (CDE) migration
model to the ultrafiltration of LYS. The CDE model
developed accounts for the transfer of a charged solute
(LYS) in the boundary layer of an ultrafiltration mem-
brane. The authors assumed total rejection of LYS by
the membrane. The study was done for different pH
values of the solution and different ionic strengths of
the solute. The model was used to determine the
concentration of the solute at the membrane surface, as
well as the solute concentration profiles in the polar-
ized layer. Experimental data of the zeta-potential of
the membrane, experimental electrophoretic mobility
of the solute and convective and diffusive transport
data of the solute were the inputs to the model.
Rabiller-Baudry et al. [14] also compared the results
obtained with the CDE model with data from a
convective–diffusive model (CD). The concentration
profiles along the boundary layer taken with the CDE
model show a maximum in a very small distance to
the membrane. This maximum is not predicted by the
CD model [14]. Vasan et al. [15,16] also developed a
model to determine the concentration profile of a
charged solute in a polarized layer. The results showed
an excellent agreement with the numerical/experimen-
tal data reported by Rabiller-Baudry et al. [14].

The stagnant film model is a crude approximation
of the flow field in the vicinity of the membrane. The
resulting film equation has, therefore, limitations.
Miranda and Campos [17] studied the accuracy of the
stagnant film model applied to a convective–diffusive
transport (CD model), where the electrophoretic
mobility of the solute was disregarded. The authors
compared the Sherwood number of an impermeable
cell (considering uniform mass production or uniform
concentration at the wall), with the Sherwood number
of a permeable cell predicted by the film equation
using, as input, the surface concentrations and the
permeate velocities obtained numerically through an
in-house developed code. They concluded that the
film equation (using Sherwood number of an imper-
meable cell) is accurate for low and moderate Peclet
numbers and permeate velocities.

The accuracy of the stagnant film equation
obtained from a CDE migration model is a topic not
yet explored in the literature, as far as we know.

The present work contributes to the knowledge of
the accuracy of the stagnant film equation applied to
the study of electrophoretic migration of solutes near
an ultrafiltration membrane. The film equation is a
fast and easy tool to obtain permeate velocities in
membrane separation processes.

A membrane separation process of two proteins
with distinct electric charge and distinct molecular
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weight (example: BSA and LYS) in an ionic solution of
NaCl was considered to develop the present work. The
separation occurs under electric interactions between
membrane/components and through the transmission
of the components acrossing the membrane.

The film equation was obtained from a mass bal-
ance in the neighbouring of an ultrafiltration mem-
brane and it is supported on a CDE model. Two
analytical models of CDE film equation were
deducted: CDE I—non-linear electric potential and
total rejection of the components by the membrane;
CDE II—uniform electric field and transmission of the
components through the membrane.

The accuracy of the film equation models was
established through numerical computational fluid
dynamics (CFD) results. The in-house code solves
simultaneously all the conservative equations (Poisson–
Boltzmann, Nernst–Planck and Navier–Stokes
equations) and respective boundary conditions, consid-
ering transmission through the membrane. Permeate
velocities, concentrations at membrane surface and
rejection coefficients of the components, taken from the
in-house numerical code, will be the input values to the
film equation CDE. Sherwood number (Shi) obtained
will be compared with the Sherwood number of an

impermeable cell (ShI
i ). The comparison will be done

along the length of the membrane and for several val-
ues of non-dimensional numbers: jzi �P3j (for film
equation CDE I) or jzi � Ej (for film equation CDE II).
Those ranges where the non-dimensional numbers Shi

and ShI
i have identical values, will be the ranges where

the permeate velocities can be accurately obtained
using film equation CDE (I or II).

2. Cell description, general assumptions and
physical properties

The parallel plate cell under study is composed by
a membrane with negative zeta-potential, Uw, which is
permeable to the solvent and partially permeable to
the solutes (Fig. 1).

The feed stream is separated into two streams: the
retentate stream, which leaves the cell through the
principal channel and the permeate stream that
crosses the membrane. The feed stream is composed
by a mixture of two proteins, BSA and LYS, in an
ionic solution of NaCl (Na+ and Cl–). The feed stream
is electrically neutral.

The separation is done according to the solutes-
membrane electric interactions and also to the
transmission of the solutes through the membrane.

The characteristics of the cell are listed in Table 1.
The cell is bidimensional—length (Lm)�height (H)––

and so the width (W) is considered infinite. Moreover,
the static pressure difference (DP0) between the two

sides of the membrane is 1� 104 Pa.
Some general assumptions were considered:

• The pH of the buffer solution is constant and equal
to 7.4;

• The osmotic pressures of the proteins, BSA and
LYS, and of the ionic species, Na+ and Cl–, are con-
sidered negligible since the film equation is only
valid under non-polarized conditions. Therefore,
the concentrations of these species are, everywhere
in the cell, including over the semi-permeable
membranes, very low (dilute solution);

• The transport properties (viscosity and diffusivity)
of all the species are considered constant. In a very
diluted solution, viscosity and diffusivity are practi-
cally independent of the concentration of the
species, including in the vicinity of the membrane
surface;

• The viscosity of the solution is considered identical
to that of pure water everywhere inside the cell
(very diluted solution);

• Electric effects inside the membrane pores are not
considered;

• The proteins are assumed to be non-interacting;
diluted feed solution and low feed velocity were
used to make this assumption accurate [10].

The properties of the proteins (BSA and LYS) and ions
(Na+ and Cl–) of the solution are presented in Table 2.

The equivalent molecular radius (r�i ) of proteins
BSA and LYS are listed in Table 3. The equivalent
molecular radius of BSA was determined from data

Fig. 1. Cell composed of a negatively charged membrane.

Table 1
Characteristics of the cell

Membrane OMEGA polysulfone membrane 50 kDa
MWCO

Rm 5.714�1012m�1

H 0.001m

Lm 0.040m

Lin = Lout 0.02m
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of Tencer et al. [20] and the equivalent molecular
radius of LYS from Sarkar et al. [13]. The specific
area of the pores (s) of the OMEGA Polysulfone
Membrane 50 kDa MWCO was obtained from experi-
mental data of Opong and Zydney [11] and is equal
to 1.86 nm.

Values of rejection coefficient (Ri) of the compo-
nents were determined through a convective–diffusive
transport model through the membrane developed by
Opong and Zydney [11]. The transmission model was
implemented in the numerical code. More details
about the procedure are described in Pinto et al. [12].

3. Theory

3.1. Conservative equations and boundary conditions

The Poisson–Boltzmann (for the film equation CDE
I) or constant electric field (for the film equation CDE
II), the Nernst–Planck, the Navier–Stokes equations
and respective boundary conditions were solved,
simultaneously, by numerical methods CFD. Permeate
velocities, surface concentrations and rejection coeffi-
cients of the components along the total length of the
membrane, taken from the in-house code, are the
input values to the film equation CDE I and II.

The equations were solved in the numerical
domain represented in Fig. 2. Grid for simulations
was selected after performing several grid tests
according to the procedure described by Pinto et al.
[1,2]. The grid selected is composed by 117� 501
nodes.

In the conservative equations described below, the
uppercase variables symbolize dimensional variables
and the lowercase normalized variables. The elec-
tric potential is normalized by the absolute value
of the membrane potential (Uw), concentrations by
the inlet concentrations of the solutes (C0

i ), velocities by
the inlet velocity (V0) and geometric dimensions by the
height of the cell (H).

The conservative electric potential equation,
Poisson–Boltzmann equation, used to study the
accuracy of film equation CDE I, is:

@/
@t

¼ @2/
@x2

þ @2/
@y2

� �
þP2re ð1Þ

where / is the non-dimensional electric potential, re the
sum of the ionic concentrations of all the components
and P2 a non-dimensional electric number defined by:

P2 ¼
FC0

refH
2

eMrefUw

ð2Þ

where F is the Faraday constant, C0
ref the concentration

of the reference component in the bulk, Mref the molar
mass of the reference component and e the permittiv-
ity. The cation, Na+, was arbitrarily chosen as the
reference component.

The sum of the normalized ionic concentrations was
determined according to the local ionic concentrations:

Table 3
Values of equivalent molecular radius (r�i ) for BSA and
LYS

Component r�i (nm)

BSA 3.04

LYS 2.09
Fig. 2. Schematic representation of the domain of a cell with
a permeable membrane and respective boundaries (I – cell
inlet; II – symmetric axis; III – cell outlet; IV – impermeable
wall; V – impermeable wall; VI – membrane with negative
zeta-potential).

Table 2
Properties of proteins, BSA and LYS, in an ionic solution of NaCl

Component BSA[a] LYS[a] Na+[a] Cl�[a]

Mi (kg/kmol) 69000 14600 23 35.45

Zi �21 [b] +3 [c] +1 �1

Di (m
2/s) 7.0� 10�11[d] 11.8� 10�11[d] 1.33� 10�9[e] 2.30� 10�9[e]

Co
i (kg/m3) 6.90� 10�5 1.02� 10�4 2.30� 10�8 3.545� 10�8

Co
Mi (kmol/m3) 1.0� 10�9 7.0� 10�9 1.0� 10�9 1.0� 10�9

[a] solutes are those used by Sarkar et al. [13]; [b]electric charge of BSA was taken from Chun and Lee [18]; [c]electric charge of LYS was

determined through its zeta-potential value - fLYS ¼ 6:7 mV – Sarkar et al. [13]; [d]diffusivities of BSA and LYS were taken from Sarkar

et al. [13]; [e]diffusivities of Na+ and Cl� were taken from Pivonka et al. [19].
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re ¼
XN
t¼1

zi
C0

i

C0
ref

Mref

Mi

ci ð3Þ

where zi is the electric charge of component i, ci the
normalized concentration of component i and Mi

the molar mass of component i. The index ref refers to
the reference component.

A constant electric field (Ef) was considered to
study the accuracy of film equation CDE II. The
constant electric field is defined by:

@U
@Y

¼ �Ef ð4Þ

or after normalization by:

@/
@y

¼ �E ð5Þ

where the non-dimensional number E is given by:

E ¼ EfH

Uw
ð6Þ

Then, the linear electric potential equation becomes:

/ ¼ /w � Ey ð7Þ

where /w is the normalized electric potential at the
membrane surface.

The Navier–Stokes, Nernst–Planck equations and
boundary conditions are described in Appendix A.
The convergence of the numerical method is also
shown in Appendix B.

3.2. Film equation

A mass balance considering convection, diffusion,
electrophoretic mobility and transmission through the
membrane, to a stagnant film in the vicinity of the
membrane surface is schematically represented in
Fig. 3.

The equation representing the mass balance is:

VmCi ¼ �Di
dCi

dY
� liCi

dU
dY

þ liC
P
i

dU
dY

����
Y¼0

þVmC
p
i ð8Þ

where Vm is the velocity at the membrane surface, Di

the diffusivity of component i, Ci the concentration of
component i, C

p
i the concentration of component i in

the permeate flux, U the electric potential and li the

electrophoretic mobility of component i. The electro-
phoretic mobility is given by:

li ¼ zi
FDi

RT
ð9Þ

where zi is the electric charge of component i.
The mass boundary conditions (Fig. 3) are:

Ci ¼ C0
i ! Y ¼ d

Ci ¼ Cm
i ! Y ¼ 0

�
ð10Þ

where C0
i is the concentration of component i in the

feed solution, Cm
i the concentration of component i at

the membrane surface and d the thickness of the
boundary layer.

According to the Debye approximation (for
U< 27mV) [14], the electric potential (U) changes in a
non-linear way along the normal direction Y to the
membrane:

U ¼ Uwe
�kDbY ð11Þ

where kDb is the reciprocal of the Debye length, which
at 25˚C is given by:

kDb ¼ 3:28� 109 � I0:5 ð12Þ
where I is the ionic strength in mol L–1.

Taking non-dimensional variables, the mass bal-
ance equation becomes:

dci
dy

¼ �Peivmðci � c
p
i Þ þ ziP3kDbHðcie�kDbyH � cPi Þ ð13Þ

Fig. 3. Mass balance to the control volume in the boundary
layer at the membrane surface.
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According to the equation, the concentration pro-
file depends on the Peclet number of component i
(Pei) and on the non-dimensional electric number P3.

However, Eq. (13) can only be solved by numerical
methods (e.g. Euler´s method [21]).

Two versions of the film equation CDE were devel-
oped assuming simplifications: one for total rejection of
the components through the membrane and a non-
linear electric potential along the normal direction to
the membrane—film equation CDE I; another considers
transmission of the components through the membrane
and a linear electric potential along the normal
direction to the membrane—film equation CDE II.

3.2.1. Total rejection and non-linear electric potential (I)

Supposing total rejection, C
p
i ¼ 0, the mass balance

becomes:

VmCi ¼ �Di
dCi

dY
� liCi

dU
dY

ð14Þ

The Debye approximation (for U< 27mV [14]), Eq.
(11), is taken to represent the non-linear relation
between the electric potential (U) and the normal
direction Y to the membrane.

Then, integrating Eq. (14) with mass boundary
conditions (10), the film equation CDE I, is:

Vm ¼ Di

d
ln

Cm
i

C0
i

� �
þ ziP3½1� expð�kDbdÞ�

� �
ð15Þ

and taking non-dimensional variables becomes:

vm ¼ Shi

Pei
lnðcmi Þ þ ziP3 1� exp �kDbH

Shi

� �� �� �
ð16Þ

According to the equation, the normalized permeate
velocity (vm) depends on the normalized concentration
of component i at the membrane surface (cmi ) and on
the Sherwood number of component i (Shi) defined
by:

Shi ¼ kiH

Di

ð17Þ

where ki is the mass transfer coefficient of component
i given by:

ki ¼ Di

d
ð18Þ

Previous work [17] has shown that the appropriate
Sherwood number for the film equation is the Sher-
wood number of the analogous impermeable cell (ShI

i ):

vm ¼ ShI
i

Pei
lnðcmi Þ þ ziP3 1� exp �kDbH

ShI
i

 !" #" #
ð19Þ

3.2.2. Transmission of the components and constant
electric field (II)

The other film equation (II) based on a CDE model
is established considering a constant electric field (Ef)
defined by Eq. (4). An analytical equation can be
obtained even for transmission of the components
through the membrane (C

p
i–0).

The mass balance near the membrane surface
becomes:

VmCi ¼ �Di
dCi

dY
� lið�EfÞðCi � C

p
i Þ þ VmC

p
i ð20Þ

Then, replacing C
p
i by Cm

i ð1� RiÞ and integrating
Eq. (20) with mass boundary conditions (10), the film
equation CDE II, is expressed by:

Vm � liEf ¼ Di

d
ln

RiCm
i

C0
i � ð1� RiÞCm

i

� �� �
ð21Þ

After normalization the film equation becomes:

vm � liEf

V0

¼ ShI
i

Pei
ln

Ricmi
1� ð1� RiÞcmi

� �� �
ð22Þ

3.2.3. Evaluation of the accuracy of the film equation

The accuracy of the film equation can be evaluated
by comparing the Sherwood number for an imperme-
able system, ShI

i ; with the Sherwood number given by

the film equation, Shln
i . In the case of the film equation

CDE I, the following equation, to determine Shln
i ; is

used:

Shln
i ¼ vmPei

lnðcmi Þ þ ziP3 1� exp �kDbH

Shlni

� 	h i ð23Þ

If electric interactions are negligible, Eq. (23) becomes:

Shln
i ¼ vmPei

lnðcmi Þ
ð24Þ
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In the case of film equation CDE II, the Sherwood
number given by the film equation is:

Shln
i ¼

vm � liEf

V0

� 	
Pei

ln
Ric

m
i

1�ð1�RiÞcmi

� 	 ð25Þ

If electric effects are negligible, Eq. (25) becomes:

Shln
i ¼ vmPei

ln
Ric

m
i

1�ð1�RiÞcmi

� 	 ð26Þ

The values of cmi , vm and Ri will be determined by the
numerical code. For film equation CDE I, cmi and vm
were taken considering Poisson–Boltzmann equation
and total rejection coefficient. For film equation CDE
II, they were taken assuming constant electric field
and transmission of the components through the
membrane.

4. Results and discussion

The Sherwood numbers of the components along
the length of the membrane x, predicted by Eqs. (23)
and (25), are compared with the Sherwood numbers
in an impermeable cell. This comparison is done to
study the range of applicability of the film equation.
The effect of the electrical interactions on the applica-
bility of the film equation is determined by studying
the effect of the non-dimensional numbers |zi�P3|
(for film equation CDE I) and |zi�E| (for film
equation CDE II).

Reynolds number of the solution and Peclet
number of each component are represented in Table 4.

4.1. Range of applicability of the film equation CDEI
(non-linear electric potential)

Sherwood number profiles of BSA and LYS are in
Fig. 4(a) and (b). Three Sherwood number profiles are
represented: the Sherwood profile determined by the
film equation based in a CD model––Eq. (24), the

Sherwood profile determined by the film equation (I)
based on a CDE model—Eq. (23), and the Sherwood
profile for an impermeable cell. While the Sherwood
number profiles based on the CDE model are coinci-
dent with the Sherwood profile for an impermeable
cell, the Sherwood profiles obtained with the CD
model are higher (BSA) and lower (LYS). This behav-
ior stresses the importance of the electric effects to
make predictions with the film equation.

The accuracy of the film equation CDE I depends on
the non-dimensional number |zBSA�P3|. Fig. 5 shows
the Sherwood number profiles of BSA and LYS, deter-
mined by Eq. (23). Total rejection of both components
was considered in the numerical calculations. Fig. 5(a)
and (b) show Sherwood profiles for low zeta-potential
values of a negatively charged membrane while Fig. 5
(c) and (d) represent the Sherwood profiles for high
zeta-potential values of a negatively charged mem-
brane. When the non-dimensional number |zBSA�P3|
is lower than 0.284 (Fig. 5a), the Sherwood profiles of
BSA are independent of the electric potential at the
membrane surface and they are equal to the Sherwood
profile in an impermeable cell. When the non-dimen-
sional number |zBSA�P3| is high, for example,
|zBSA�P3| = 8.119 (Fig. 5c), the membrane, with a
strong negative zeta-potential (Uw=�10mV) combined
with the high negative BSA charge (zBSA =�21), induces
a strong BSA repulsion by the membrane. A maximum

Table 4
Reynolds number (Re) of the solution and Peclet number
of each component (PeBSA, PeLYS, PeNa+, Pe

�
cl )

Re 95

PeBSA 1.36� 106

PeLYS 8.05� 105

PeNa+ 7.14� 104

PeCl
� 4.68� 104

Fig. 4. Sherwood number along the length of the
membrane, x, determined through film equations (CD and
CDE model – film equation I): (a) BSA; (b) LYS.
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of BSA concentration (Fig. 6), at the end of the
membrane and far from the surface, can be observed,
see Fig. 6. At the membrane surface, the normalized
BSA concentrations are lower than 1, that is, the concen-
trations at the membrane surface are lower than the
concentrations in the bulk (Fig. 6).

For a non-dimensional number |zLYS�P3| lower
than 0.116 (see Fig. 5(b) and (d)), Sherwood profiles of
LYS overlap and are equal to the Sherwood profile in
an impermeable cell. When the potential at the
membrane surface is higher (e.g. |zLYS�P3| = 1.160),

Sherwood number is much higher than that in an
impermeable cell (Fig. 5d). For |zLYS�P3| = 1.160,
LYS (electric charge equal to +3) is strongly attracted
to the membrane and its concentration increases with
higher percentage (Fig. 7) comparatively to the
concentration when |zLYS�P3| = 0.116. Film equation
I based on the CDE model is accurate, that is,
Sherwood number of an impermeable cell can be used
in the film equation, for a component i, when the
value of the non-dimensional number |zi�P3| is
lower than 0.284.

Fig. 5. Sherwood number along the length of the membrane, x, determined thought film equation CDE I: (a) for BSA and
low zeta-potential values at the membrane surface; (b) for LYS and low zeta-potential values at the membrane surface;
(c) for BSA and high zeta-potential values at the membrane surface; (d) for LYS and high zeta-potential values at the
membrane surface.

Fig. 6. BSA iso-concentration lines for Uw ¼ �10 mV ¼
ðjzBSA �P3j ¼ 8:119Þ, P1 ¼ 1:07� 10�4, P2 ¼ 1:36� 105,
P3 ¼ 0:387.

Fig. 7. LYS normalized concentration profiles along the
longitudinal direction x and for different values of zeta-
potential at the membrane surface: (Uw ¼ �10mV
(jzLYS �P3j ¼ 1:160), Uw ¼ �6:5mV(jzLYS �P3j ¼ 0:754),
Uw ¼ �3:5mV (jzLYS �P3j ¼ 0:406), Uw ¼ �1:0mV(jzLYS�
P3j ¼ 0:116).
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4.2. Range of applicability of the film equation CDE II
(constant electric field)

Fig. 8 shows Sherwood profiles of BSA and LYS
along the surface of the membrane. Three Sherwood
number profiles are represented: the Sherwood
profile determined by the film equation based on the
CD model, Eq. (26), the Sherwood profile determined
by the film equation (II) based on the CDE model,
Eq. (25), and the Sherwood profile for an imperme-
able cell. The Sherwood profiles determined by the
film equation (II) based on the CDE model are coin-
cident with the Sherwood profile for an impermeable
cell. Those based on the CD model over-predict
(BSA) and under-predict (LYS) the Sherwood profile
for an impermeable cell. This behavior illustrates,
once again, the importance of the electric term of the
film equation.

Film equation CDE II was used to determine the
Sherwood profiles along the membrane for several
values of constant electric field (Ef). For non-dimen-
sional number |zBSA�E| of BSA lower than 21
(Fig. 9(a)) and for non-dimensional number |zLYS�E|
of LYS lower than 60 (Fig. 9(b)), Sherwood number
profiles are coincident along the longitudinal direction
x of the membrane. The Sherwood profiles are also
identical to those in an impermeable cell (Fig. 9(a) and
(b)) along the total length of the membrane.

However, for values of non-dimensional number
jzBSA � Ej of BSA higher than 105, there is a non-over-
lapping of BSA Sherwood number profiles (Fig. 9(a))
at the beginning of the membrane (x< 15). The
inaccuracy of the film equation for jzBSA � Ej P 105 is
associated with very low BSA concentrations at the
membrane surface (Fig. 10). Since the repulsion of
BSA from the membrane surface is high, the concen-
tration over the membrane surface becomes much
lower than the concentration in the bulk (normalized

Fig. 8. Sherwood number along the length of the
membrane, x, determined through film equations (CD and
CDE model – film equation II) (a) BSA; (b) LYS.

Fig. 9. Sherwood number profiles along the length of the
membrane, x, determined thought film equation CDE II
for: (a) BSA; (b) LYS; and different values of constant
electric field: Ef ¼ �0:1 V=m, Ef ¼ �1 V=m, Ef ¼ �10 V=m,
Ef ¼ �50 V=m, Ef ¼ �100 V=m, Ef ¼ �200 V=m.

Fig. 10. BSA normalized concentration profiles along the
longitudinal direction, x, of the membrane, for two values
of constant electric field: Ef ¼ �10 V=m(jzBSA � Ej ¼ 21);
Ef ¼ �200 V=m (jzBSA � Ej ¼ 420).
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concentration lower than 1––Fig. 10) and it decreases
along the membrane surface (Fig. 10).

For values of jzLYS � Ej 6 60 (Fig. 9b), the LYS
concentration at the membrane surface increases
moderately along the length of the membrane (Fig. 11).
Since LYS has an electric charge +3, its attraction to the
negatively charged membrane surface is not so strong
compared with the repulsion of BSA. Moreover, LYS is
also the component with higher transmission through
the membrane. For these reasons, LYS Sherwood pro-
file determined by film equation CDE II is coincident,
along the total length of the membrane, with Sherwood
profile of an impermeable cell.

Film equation II based on CDE model is accurate,
that is, ShI

i can be used in the film equation when
the value of non-dimensional number jzi � Ej of
component i is lower than 60.

5. Conclusions

Two versions of the film equation based on a CDE
model were developed: one supposing total rejection
of the components and a non-linear variation of the
electric potential along the normal direction Y to the
membrane—film equation I; other considering trans-
mission of the components through the membrane
pores and a constant electric field—film equation II.

The applicability of the film equations CDE was
studied. Sherwood number profiles of BSA and LYS,
along the length of the membrane, obtained with the
film equations CDE (I and II) were compared with
the Sherwood number profile of an impermeable cell.
Normalized concentrations, normalized permeate
velocities and rejection coefficients along the length of
the membrane, obtained through a numerical code
developed to solve the conservative equations, were
used as input into the film equations.

For the film equation CDE I, the Sherwood
number obtained by the film equation is independent
of the electric potential at the membrane surface (Uw)
for values of the non-dimensional number |zi�P3|
lower than 0.284. Considering constant electric field,
film equation CDE II, Sherwood number profile is
also independent of the constant electric field (E)
along the membrane, for values of the non-dimen-
sional number |zi�E| lower than 60. For both ranges
of the non-dimensional numbers, |zi�P3| and
|zi�E|, Sherwood number profiles are also equal to
that in an impermeable cell. The film equations, with

ShI
i ; are then accurate for these ranges.

Notation

Ci — concentration of component i

ci — normalized concentration of component i

ckg;h — normalized concentration of a component in a
node (g,h) at a current iteration k

C0
i

— concentration of component i at the feed/bulk

C0
ref

— concentration of the reference component at the
feed/bulk

C0
M;i

— molar concentration of component i at the feed/
bulk

Cm
i — concentration of component i at membrane

surface

cmi — normalized concentration of component i at
membrane surface

C
p
i

— concentration of component i in the permeate
flux

c
p
i

— normalized concentration of component i in the
permeate flux

cki;crit — normalized concentration of component i on a
critical location

Di — molecular diffusivity of component i

Di;eff — effective diffusivity of component i along the
membrane pores

Ef — constant electric field

F — Faraday constant

H — distance between parallel plates

I — ionic strength

k — current time step

ki — mass transfer coefficient of component i

kDb — reciprocal of the Debye length

Lout — length of the outlet section

Lin — length of the inlet section

Lm — total length of the membrane

L — total length of the cell

Mi — molar mass of component i

Mref — molar mass of the reference component

R — gas constant

Ri — local rejection coefficient of component i

Fig. 11. LYS normalized concentration profiles at the
membrane surface and in the permeate stream along the
tangential direction, x, for two values of constant electric
field: Ef ¼ �10 V=m (jzLYS � Ej ¼ 3) and Ef ¼ �200 V=m
(jzLYS � Ej ¼ 60).
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Ri — mean rejection coefficient of component i along
the total length of the cell

Rg;1 — rejection coefficient of a component in a node
(g,1) at membrane surface

Rm — membrane resistance of the semi-permeable
membrane

R/ — sum of the residues of the electric potential
equation

re — sum of the normalized ionic concentrations

r�i — equivalent molecular radius of component i

Si — real transmission of component i

Si;1 — asymptotic intrinsic sieving coefficient of
component i

s — specific area of the pores of the membrane

T — temperature

t — non-dimensional time

V0 — mean feed velocity

Vx — longitudinal component of the velocity

vx — normalized longitudinal component of the
velocity

v̂xi — normalized pseudo-velocity in the longitudinal
direction, x, of component i

Vy — vertical component of the velocity

vy — normalized vertical component of the velocity

Vm — velocity at membrane surface (vertical
component)

vm — normalized velocity at membrane surface
(vertical component)

v̂yi — normalized pseudo-velocity in vertical direction,
y, of component i

v̂yg;h — normalized pseudo-velocity (component y) in a
node (g,h)

v̂yg;1 — normalized pseudo-velocity (component y) in a
node (g,1)

v̂myu — incoming pseudo-velocity (normal direction) to
the discretized node (g,1) at membrane surface

v̂myd — outgoing pseudo-velocity (normal direction)
from the discretized node (g,1) at membrane
surface

W — width of the cell

X — longitudinal coordinate

x — normalized longitudinal coordinate

Y — vertical coordinate

y — normalized vertical coordinate

zi — electric charge of component i

Non-dimensional numbers

Pei — Peclet number of component i: Pei ¼ V0H
Di

Re — Reynolds number of the solution: Re ¼ qV0H
l

Shi — Sherwood number of component i

ShI
i

— Sherwood number of component i in an
impermeable cell

Shln
i

— Sherwood number of component i given by film
equation

E — non-dimensional number defined by equation 8

P1 — non-dimensional electric number: P1 ¼
FC0

ref
Uw

MrefqV2
0

P2 — non-dimensional electric number: P2 ¼
FC0

ref
H2

eMrefUw

P3 — non-dimensional electric number: P3 ¼ FUw

RT

Greek symbols

DP0 — static pressure difference across the
semi-permeable membrane

Dt — time step range

Dy — step range in the normal direction

e — permittivity

ecicrit — numerical error of the concentration of
component i in a critical location

e/crit
— numerical error of the electric potential in a

critical location

excrit
— numerical error of the vorticity in a critical

location

w — stream function

x — vorticity

xk
crit

— vorticity in a critical location

q — density

li — electrophoretic mobility of component i

l — mean viscosity of the solution

lp — mean viscosity at the permeate flux

dm — membrane thickness

d — thickness of the boundary layer

rap — apparent selectivity

U — electric potential

/ — normalized electric potential

�w — membrane electric potential

/w — normalized membrane electric potential

/k
crit

— normalized electric potential in a critical
location

fi — zeta-potential of component i
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Appendix A

Navier–Stokes, Nernst–Planck equations and bound-
ary conditions

The flow in the cell is described by the Navier–
Stokes equations. In cartesian coordinates (x and y), the
vorticity transport equation is given by:

@x
@t

þ vx
@x
@x

þ vy
@x
@y

¼ 1

Re

@2x
@x2

þ @2x
@y2

� �

�P1

@re
@y

@/
@x

� @re
@x

@/
@y

� �
ðA:1Þ

Re is the Reynolds number and P1 a non-dimensional
electric number defined by:

P1 ¼
FC0

refUw

MrefqV2
0

ðA:2Þ

where q is the fluid density and V0 the feed velocity.
The Poisson equation for the stream function is:

x ¼ @2w
@x2

þ @2w
@y2

ðA:3Þ

and the velocity components are related to the stream
function by:

vx ¼ @w
@y

; vy ¼ �@w
@x

ðA:4Þ

The Nernst–Planck equation of each component i is
given by:

@ci
@t

þ @ðv̂xiciÞ
@x

þ @ðv̂yiciÞ
@y

¼ 1

Pei

@c2i
@x2

þ @c2i
@y2

� �
ðA:5Þ

where

v̂xi ¼ vx � ziP3

Pei

@/
@x

� �
ðA:6Þ

v̂yi ¼ vy � ziP3

Pei

@/
@y

� �
ðA:7Þ

The pseudo-velocity components, v̂xi and v̂yi, are
specific of each component i, since they depend on the
respective Peclet number (Pei) and on the non-dimen-
sional electric number P3 defined by.

P3 ¼ FUw

RT
ðA:8Þ
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More details about the discretization and iterative
method are described by Pinto et al. [1,2]. Conditions
for boundaries I–V (Fig. 2) are also given by Pinto et al.
[1,2,22]. However, in those studies [1,2,22], the mem-
brane totally rejects the solutes and so the numerical
code used in [1,2,22] cannot be used in the present
work. The numerical code was improved and the
boundary condition at membrane surface was imple-
mented to take on account the transmission of the
solutes through the membrane. The procedure is
described in the following paragraphs.

The mass boundary condition at the membrane sur-
face, boundary VI, was established by performing a
mass balance to a volume of fluid contiguous to the
membrane surface. The volume of fluid and the respec-
tive pseudo-velocities along the normal direction,
incoming v̂myup ; and, outgoing, v̂mydown ; are represented in
Fig. 1(A).

According to the finite volume method, the outcome
of a mass balance to the control volume of Fig. A 1 is:

ckþ1
g;1 � ckg;1

Dt
¼ � v̂myuc

kþ1
g;2 � v̂mydc

kþ1
g;1

Dy

 !
ðA:9Þ

where Dt is the time step, Dy the height of the node
and the subscripts (g, 1) and (g, 2) refer to the node
identification according to Fig. A 1.

The incoming pseudo-velocity to the node (g, 1), v̂myu
(Fig. A 1), is defined by the average between the
pseudo-velocities at node (g, 1) and (g, 2):

v̂myu ¼
v̂yg;2 þ v̂yg;1

2
ðA:10Þ

The pseudo-velocity along the normal direction, leaving
the discretized node (g, 1), v̂myd (Fig. A 1), depends on
the rejection coefficient (Rg,1) of the component and also
on the pseudo-velocity at the node (g, 1).

v̂myd ¼ v̂yg;1ð1� Rg;1Þ ðA:11Þ

Since the osmotic pressure is negligible (diluted solu-
tion), the permeate velocity [23] through the membrane
is given by:

�vy ¼ DP0

�lpRmV0

ðA:12Þ

where DP0 is the applied pressure difference across the
membrane. The pressure drop along the membrane
was not taken on account (in previous studies [24], in
identical flow conditions, this approximation has a
maximum error of 5% in the flow field). Rm is the
resistance of the membrane and �lp the viscosity of the
permeate flux.

Fig. 1A. Discretization detail at the membrane surface.

Fig. 1B. (a) Normalized concentration of the species and
flow vorticity at the critical node versus the number of
iterations; (b) Normalized electric potential and total
residues of the electric potential equation at the critical
node versus the number of iterations (Re ¼ 95,
PeBSA ¼ 1:36� 106, PeLYS ¼ 8:05� 105, PeNaþ ¼ :14� 104,
PeCl� ¼ 4:68� 104, zBSA ¼ �21; zLYS ¼ þ3; Uw ¼
�10mV(jzBSA �P3j ¼ 8:119 and jzLYS �P3j ¼ 1:160), P1 ¼
1:07� 10�4, P2 ¼ 1:36� 105, P3 ¼ 0:387, �P0 ¼ 1� 104Pa).
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All the other conditions for boundary VI (Fig. 2)
have been presented by Pinto et al. [1,2,22].

Appendix B

Convergence

The study of the convergence of the numerical
method adopted was based on the following errors:

eci;crit ¼
cki;crit � ck�1

i;crit

cki;crit

�����
����� ðB:1Þ

e/crit
¼ /k

crit � /k�1
crit

/k
crit

�����
�����; ðB:2Þ

excrit
¼ xk

crit � xk�1
crit

xk
crit

����
���� ðB:3Þ

where crit refers to the critical node and k to the cur-
rent iteration. The variables are evaluated in a critical
node located near the cell exit, where the convergence

is slower. More details about the iterative process are
described by Pinto et al. [2].

The total sum of the residues of the electric potential
equation, R/, was determined to assure that conserva-
tive equations converge to the correct solution:

R/ ¼
Xn�1

g¼2

Xm�1

h¼2

@/
@t

����
����
g;h

ðB:4Þ

where @/
@t

�� ��
g;h

is the time derivative of the electric poten-

tial at node (g, h).

The following criteria were adopted to stop the
iterative process:

eci;crit\10�3

e/crit
\10�3

excrit
\10�3

R/\10�2

8>><
>>: ðB:5Þ

An example of the convergence of the numerical
method, for the most severe conditions used (highest
zeta-potential at the membrane surface), is presented in
Fig. 1(B). The normalized concentrations, electric poten-
tial and vorticity converge to a constant value. The total
residues of the Poisson–Boltzmann equation, Ru,
decreases to a very small value.
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