

Desalination and Water Treatment

www.deswater.com

1944-3994/1944-3986 © 2013 Desalination Publications. All rights reserved doi: 10.1080/19443994.2012.704693

51 (2013) 1776–1780 February

Taylor & Francis Taylor & Francis Group

NOM characterization by LC-OCD in a SWRO desalination line

F. Xavier Simon^{a,*}, Ywann Penru^a, Andrea R. Guastalli^a, Santiago Esplugas^a, Joan Llorens^a, Sylvie Baig^b

^aDepartment of Chemical Engineering, University of Barcelona, C/Martí i Franquès 1, 08028 Barcelona, Spain Tel. +34 934020155; Fax: +34 934021291; email: xsimon@ub.edu ^bDegrémont SA, 183 avenue du 18 juin 1940, 92508 Rueil-Malmaison cedex, France

Received 29 February 2012; Accepted 15 June 2012

ABSTRACT

The quantification and characterization of natural organic matter (NOM) in seawater reverse osmosis desalination (SWRO) is of great importance to improve our understanding of NOM role and to evaluate the performance of the different units involved in desalination facilities. In this study, we compared the effectiveness of two pre-treatment methods, operated in a pilot facility fed with Mediterranean seawater, in terms of determining NOM composition and NOM removal using liquid chromatography coupled with organic carbon detection (LC-OCD). LC-OCD was also used to assess the SWRO operation. Conventional pre-treatment using a flotation unit followed by dual-media filtration achieved 12% of dissolved organic carbon (DOC) removal. The same level of DOC removal was achieved by coupling flotation and ultrafiltration. In both pre-treatment methods, low-molecular-weight (LMW) neutrals and biopolymers were reduced by 33-40% and 18-19%, respectively. Reverse osmosis (RO) membranes acted as almost a complete barrier for humics, building blocks, and LMW neutrals, which had a rejection rate of over 97%. Despite this, $31 \,\mu g C L^{-1}$ of LMW acids and $48 \,\mu gC \, L^{-1}$ of biopolymers were found in the RO permeate. LMW acids could also be found in the RO permeate due to the affinity these compounds have with the membrane material. However, biopolymers should be more effectively rejected due to their structure and molecular weight (>20 kDa). The hypothesis proposed to explain the presence of biopolymers in permeate is a possible biofilm growth in the permeate side of the membrane module.

Keywords: Pre-treatment; SWRO; Seawater desalination; Reverse osmosis; Natural organic matter (NOM); Liquid chromatography with organic carbon detection (LC-OCD)

1. Introduction

The availability of freshwater resources is limited, due to overuse and misuse, and is being increasingly depleted at an alarming rate in many regions of the world [1–3]. Seawater and saline aquifers account for 97.5% of the Earth's water resources and thus repre-

*Corresponding author.

sent a potential source of water fit for human consumption, as long as it can be treated effectively [4]. Thus, desalination techniques involving seawater reverse osmosis (SWRO) have emerged as important candidates in securing these water supplies [1,3].

SWRO desalination has advanced significantly in the past decade, particularly due to the development of more robust membranes and improved energy

Presented at the International Conference on Desalination for the Environment, Clean Water and Energy, European Desalination Society, 23–26 April 2012, Barcelona, Spain

recovery systems [1], which reduce the final cost of the desalinated water to below 4 kWh m^{-3} [5,6]. Nevertheless, the issue of membrane fouling has not yet been resolved [3,7].

In SWRO desalination plants, the RO membranes are considered to be the backbone of the process while the pre-treatment methods are the key steps [2,8,9]. Pre-treatment is required to remove mineral, particulate, organic, and biological contaminants from seawater that negatively affect the performance of the RO membranes and which would otherwise accumulate onto the membrane surfaces [10-15]. The pretreatment configurations in SWRO desalination plants depend largely on the characteristics of the feedwater [3]. Conventional pre-treatments involve the process of conditioning raw seawater by coagulation and flocculation, followed by filtration through one or more layers of granular media (e.g. anthracite, sand) [16]. However, currently almost all new desalination plants are equipped with double barrier technology, consisting of an additional microfiltration (MF) or ultrafiltration (UF) system upstream from the RO membranes instead or in combination with the conventional pre-treatment system [15,17-20].

The present study focuses specifically on the effectiveness of size-exclusion liquid chromatography coupled with organic carbon detection (LC-OCD) in order to better characterize the natural organic matter (NOM) fractions and assess the impact of each pretreatment on the different LC-OCD fractions, as well as on the RO unit.

2. Material and methods

2.1. Seawater characteristics

The experiments were carried out in a pilot plant located at El Prat de Llobregat (Barcelona, Spain). A summary of raw seawater characteristics—the focus of this study—is detailed in Table 1.

Data retrieved for seawater temperature, pH, and conductivity were in accordance with that published in other studies in the Mediterranean region [21,22]. Compared with other water types, seawater samples have low levels of organic matter (dissolved organic carbon (DOC) = 0.89 mg C L^{-1} ; $A_{254} = 0.74 \text{ m}^{-1}$) and of biodegradability [23].

2.2. Desalination line

The seawater pre-treatment process used in this study consisted firstly of dissolved air flotation (DAF) using $FeCl_3$ as a coagulant. In DAF units, water is

Table 1 Characteristics of NW Mediterranean seawater

Parameter	Unit	Mean value (±SD)
Temperature	°C	19.2 (±4.2)
рН	-	8.1 (±0.1)
Conductivity	$\mathrm{mScm^{-1}}$	56.1 (±1.5)
Turbidity	NTU	2.4 (±4.2)
TDS	$gNaClL^{-1}$	32.1 (±1.5)
A ₂₅₄	m^{-1}	0.74 (±0.18)
DOC	$ m mgCL^{-1}$	0.89 (±0.10)
Total bacterial count	$cells mL^{-1}$	$6.7 \times 10^5 (\pm 3.0 \times 10^5)$
Algae	cells mL^{-1}	331 (±307)

Fig. 1. Flow diagram of the pilot treatment line.

brought into contact with small air bubbles to float light particles and organic substances (algae, fine silt, oil, grease, etc.) contained in seawater [24,25]. These particles are collected at the top of the unit, leaving an effluent with a low turbidity level further downstream. In the present study, the AquaDAF[®] unit was used, which was developed by Degrémont. The water then flowed along two different treatment pathways, as shown in Fig. 1.

In the first pathway, the seawater is fed through a dual-media filter (DMF) unit of anthracite–sand, which operates in down-flow mode at 14 m h^{-1} . The characteristics of the filter media are shown in Table 2. DMF is designed to reduce turbidity and the presence of colloids in the water by physically trapping them [15,26]. In the second pathway, seawater is passed through an out/in UF hollow fiber membrane (Polyvi-nylidene fluoride; 0.02 µm nominal pore size). The UF permeate is then passed through 5-µm security cartridge filters and fed through an RO module (thin film composite membrane operating at $14 \text{ Lm}^{-2} \text{ h}^{-1}$ and 45% of recovery).

Table 2 Media (height and size) of the DMF

Media	Height (cm)/size (mm)
Anthracite	55/0.95
Sand	45/0.28

Fig. 2. LC-OCD fractions over the SEC chromatogram with OCD.

2.3. Liquid chromatography with organic carbon detection

LC-OCD is a fractionation method based on sizeexclusion chromatography coupled with different online analyzers such as organic carbon detector (OCD) and UV absorbance at 254 nm. According to the literature, these facilitate the distribution of organic matter over five different fractions named: (1) biopolymers that are composed of polysaccharides and proteins, (2) humics (and fulvics), (3) building blocks that correspond to breakdown products of humics, (4) lowmolecular-weight (LMW) organic acids, and (5) LMW neutrals (alcohols, aldehydes, ketones, and amino acids) [27]. Fig. 2 shows the LC-OCD fractions, defined based on the size-exclusion chromatogram and size range. In order to assess the performances of the different treatments, the LC-OCD analysis was performed on raw seawater, DMF filtrate, UF permeate, and on both outlet streams in the RO: permeate and retentate.

3. Results

3.1. Pre-treatment effectiveness on NOM removal

The results of NOM distribution over treatment line by LC-OCD are shown in Table 3. Seawater was mainly composed of LMW neutrals and humic substances, which represented more than 70% of the total DOC. Seawater was also characterized by a low content of biopolymers (8% of total DOC) that were the more readily biodegradable substances [23]. It also emerged that they may be possible biofouling precursors [28].

The combination of the AquaDAF[®] + DMF unit affected the LMW neutrals and the biopolymer fraction, eliminating 113 and $35 \,\mu gC \, L^{-1}$, respectively, which in turn caused a reduction of these fractions by 18 and 33%, respectively. The combination of Aqua-DAF[®] + UF removed 40% of biopolymers and 19% of LMW neutrals. Although UF could act as a barrier for Table 3

LC-OCD results of seawater, DMF filtrate, and UF permeate and % of DOC removal (% rem) referred to seawater inlet

LC-OCD	Seawater	ater DMF filtrate		UF permeate	
fractions	$(\mu g C L^{-1})$	$(\mu g C L^{-1})$	(% rem)	$(\mu g C L^{-1})$	(% rem)
Biopolymers	105 ± 5	70 ± 4	33	63 ± 3	40
Humics	361 ± 18	361 ± 18	0	361 ± 18	0
Building blocks	220 ± 11	214 ± 11	3	214 ± 11	3
LMW neutrals	636 ± 32	523 ± 26	18	515 ± 26	19
LMW acids	73 ± 4	66 ± 3	10	69 ± 3	5
DOC _{TOTAL}	$1,395 \pm 70$	$1,234 \pm 62$	12	$1,222 \pm 61$	12

the biopolymer fraction, $63 \ \mu \text{gC} \ \text{L}^{-1}$ of biopolymers were found in the UF permeate, meaning that the RO feed could contain biopolymers even downstream from the UF membrane. This is highlighted in similar studies [29]. No significant impact was observed on humics, building blocks, or LMW acid fractions.

Both pre-treatment processes achieved overall DOC removals rates of 12%, with the biopolymers and the LMW neutrals being the most effectively removed fractions. Thus, for the raw seawater inlet quality used in this study, the AquaDAF[®] + DMF and AquaDAF[®] + UF pre-treatments were equally efficient at removing NOM from seawater. The LC-OCD compositions of seawater and the effluents of both pre-treatments are shown in Fig. 3. These results do not differ significantly with those described by other authors [30], who achieved 13% of overall DOC removal using coagulation-flocculation + DMF and <5% using a MF alone as a pre-treatment. Furthermore, results show that membrane processes such MF or UF remove only a small fraction of the NOM [8,22,31].

Fig. 3. Seawater inlet, DMF filtrate, and UF permeate composition.

3.2. Distribution of NOM in the RO unit

In the RO unit was achieved a rejection rate of 92% for DOC, using the UF permeate as feed water (see Table 4). RO should act as a complete barrier for the humics, building blocks, and LMW neutrals (97–100% rejected); however, poor rejections were observed for LMW acids (55%)—as reported by other authors [32,33]—and biopolymers (24%). In the RO permeate were found 31 and $48 \,\mu \text{gC L}^{-1}$ of LMW acids and biopolymers, respectively.

Organic molecules included in the LMW acid fractions may be able to cross the RO membranes due to their affinity with the material composing the RO membrane [34], but biopolymers should be retained, given their high molecular weight (>20 kDa) and macromolecular structure.

Mass balances for all the LC-OCD fractions were performed on the RO unit accordingly to Fig. 4.

Terms of generation, Δ_G , have been considered in the mass balances to explain the results. In an ideal case of 100% rejection of all the LC-OCD fractions by RO and no term of generation, the DOC found in the feed should be found in the retentate. Nevertheless, as shown above, some DOC was also found in the RO permeate. However, even considering the DOC present in permeate and retentate, a term of generation is needed to meet the mass balance in some of the fractions. This may mean some transformation of DOC among fractions, because no generation is detected in the global mass balance.

Table 5 shows the terms of the mass balance starting from $100 \text{ L} \text{ h}^{-1}$ of RO feed and a recovery rate of 45%.

The results highlight that some fractions of the LC-OCD need a significant term of generation in order to satisfy the mass balance. In this sense, Δ_G obtained for biopolymers and LMW acids were significantly different from zero. The presence of biopolymers in the permeate stream could be associated to a possible membrane damage. However, this hypothesis was rejected because the salt rejection of the RO membrane

Table 4

LC-OCD results of the RO feed, RO permeate, and % DOC rejected (% rej) referred to raw seawater

LC-OCD fractions	RO feed	RO permeat	RO permeate	
	$(\mu g C L^{-1}]$	$(\mu g C L^{-1})$	(% rej)	
Biopolymers	63 ± 3	48 ± 2	24	
Humics	361 ± 18	1 ± 1	100	
Building blocks	214 ± 11	3 ± 1	99	
LMW neutrals	515 ± 26	14 ± 1	97	
LMW acids	69 ± 3	31 ± 2	55	
DOC _{TOTAL}	$1,222 \pm 61$	97 ± 5	92	

Fig. 4. RO unit operation and mass balance.

Table 5 RO mass balance (feed = 100 L h^{-1} ; recovery = 45%)

			-	
LC-OCD	RO feed	RO	RO	Generation
fractions	$F \cdot C_F$	permeate	retentate	$ \Delta_{ m G} $
		$P \cdot C_P$	$R \cdot C_R$	
	$(mgC h^{-1})$	$(mgC h^{-1})$	$(mgC h^{-1})$	$(mgC h^{-1})$
Biopolymers	6.3 ± 0.3	2.2 ± 0.1	6.7 ± 0.3	2.5 ± 0.8
Humics	36.1 ± 1.8	0.0 ± 0.1	39.3 ± 2.0	3.3 ± 3.8
Building blocks	21.4 ± 1.1	0.1 ± 0.1	19.4 ± 1.0	1.9 ± 2.1
LMW neutrals	51.5 ± 2.6	0.6 ± 0.1	49.6±2.5	1.3 ± 5.1
LMW acids	6.9 ± 0.3	1.4 ± 0.1	7.1 ± 0.4	1.6 ± 0.8
Total	122 ± 6.1	4 ± 0.2	122 ± 6.1	4 ± 12.4

(99.9% without taking into account boron), which was monitored during all experimental period, underwent no change. The salt rejection level showed a normal operation of the membrane. It is important to note that values of $\Delta_{\rm G}$ obtained for humics, building blocks, and LMW neutrals were not significantly different from zero. However, this does not mean that it can actually be slightly negative. Probably, this is the case because the generation term in the overall balance is not significantly different from zero. The generation of biopolymers could be linked with the growth of microorganisms and therefore the release of extracellular polymeric substances in the permeate side of the membrane module.

Nevertheless, it is important to consider that the fractions that increase slightly in the RO module are those with a lower contribution of DOC (10%) to the total DOC in the RO feed. Thus, more research is required to establish the LC-OCD composition in each RO stream and to confirm whether biological activity is taking place.

4. Conclusions

Seawater contains low levels of NOM, measured as DOC. NOM has low aromaticity despite the fact that humics (and building blocks) account for more than 40% of the total DOC. Two conventional pretreatment processes, one using AquaDAF[®] + DMF, and another using AquaDAF[®] + UF, both achieved a DOC removal rate of 12%. The most effectively removed fractions were biopolymers (33–40%) and LMW neutrals (18–19%). Nevertheless, 63 μ gC L⁻¹ of biopolymers were still found in the RO feed.

The RO membranes were capable of rejecting almost all (97–100%) the humics, building blocks, and LMW neutrals. However, poor rejections were achieved for the biopolymers and LMW acids (24 and 55%, respectively). Therefore, $48 \,\mu \text{gC} \,\text{L}^{-1}$ of biopolymers were found in the RO permeate. These results highlight the possibility that biomass growth may occur in the permeate side of the membrane module.

Acknowledgement

The authors are grateful to CDTI (Spain) through the project CENIT-Sostaqua (CEN20071039).

References

- A.D. Khawaji, I.K. Kutubkhanah, J. Wie, Advances in seawater desalination technologies, Desalination 221 (2008) 47–69.
- [2] J. Xu, G. Ruan, X. Chu, Y. Yao, B. Su, A pilot study of UF pretreatment without any chemicals for SWRO desalination in China, Desalination 207 (2007) 216–226.
- [3] L.F. Greenlee, D.F. Lawler, B.D. Freeman, B. Marrot, P. Moulin, Reverse osmosis desalination: Water sources, technology, and today's challenges, Water Res. 43 (2009) 2317–2348.
- [4] S.H. Schneider, M.D. Mastrandrea, Encyclopedia of climate and weather, Oxford University Press, New York, NY, 2011.
- [5] S.A. Avlonitis, K. Kouroumbas, N. Vlachakis, Energy consumption and membrane replacement cost for seawater RO desalination plants, Desalination 157 (2003) 151–158.
- [6] S. Veerapaneni, B. Long, S. Freeman, R. Bond, Reducing energy consumption for seawater desalination, J. Am. Water Works Assoc. 99 (2007) 95–106, +12.
- [7] L. Malaeb, G.M. Ayoub, Reverse osmosis technology for water treatment: State of the art review, Desalination 267 (2011) 1–8.
- [8] H.K. Shon, S. Vigneswaran, J. Cho, Comparison of physicochemical pretreatment methods to seawater reverse osmosis: Detailed analyses of molecular weight distribution of organic matter in initial stage, J. Membr. Sci. 320 (2008) 151–158.
- [9] V. Bonnelye, M. Sanz, J. Durand, L. Plasse, F. Gueguen, Reverse osmosis on open intake seawater: Pre-treatment strategy, Desalination 167 (2004) 191–200.
- [10] S. Bou-Hamad, M. AbdelJawad, S. Ebrahim, M. AlMansour, A. AlHijji, Performance evaluation of three different pretreatment systems for seawater reverse osmosis technique, Desalination 110 (1997) 85–91.
- [11] B. Durham, A. Walton, Membrane pretreatment of reverse osmosis: Long-term experience on difficult waters, Desalination 122 (1999) 157–170.
- [12] R. Rautenbach, T. Linn, D. AlGobaisi, Present and future pretreatment concepts—Strategies for reliable and lowmaintenance reverse osmosis seawater desalination, Desalination 110 (1997) 97–106.

- [13] N. Isaias, Experience in reverse osmosis pretreatment, Desalination 139 (2001) 57–64.
- [14] A. Matin, Z. Khan, S.M.J. Zaidi, M.C. Boyce, Biofouling in reverse osmosis membranes for seawater desalination: Phenomena and prevention, Desalination 281 (2011) 1–16.
- [15] N. Voutchkov, Considerations for selection of seawater filtration pretreatment system, Desalination 261 (2010) 354–364.
- [16] P.H. Wolf, S. Siverns, S. Monti, UF membranes for RO desalination pretreatment, Desalination 182 (2005) 293–300.
- [17] R. Rosberg, Ultrafiltration (new technology), a viable cost-saving pretreatment for reverse osmosis and nanofiltration—A new approach to reduce costs, Desalination 110 (1997) 107–113.
- [18] D. Vial, G. Doussau, R. Galindo, Comparison of three pilot studies using Microza[®] membranes for Mediterranean seawater pre-treatment, Desalination 156 (2003) 43–50.
- [19] D. Halpern, J. McArdle, B. Antrim, UF pretreatment for SWRO: Pilot studies, Desalination 182 (2005) 323–332.
- [20] V. Bonnelye, L. Guey, J. Del Castillo, UF/MF as RO pre-treatment: The real benefit, Desalination 222 (2008) 59–65.
- [21] C. Fritzmann, J. Loewenberg, T. Wintgens, T. Melin, State-ofthe-art of reverse osmosis desalination, Desalination 216 (2007) 1–76.
- [22] J. Leparc, S. Rapenne, C. Courties, P. Lebaron, J.P. Croué, V. Jacquemet et al., Water quality and performance evaluation at seawater reverse osmosis plants through the use of advanced analytical tools, Desalination 203 (2007) 243–255.
- [23] S.A. Baghoth, S.K. Maeng, S.G.S. Rodriguez, M. Ronteltap, S. Sharma, M.D. Kennedy et al., An urban water cycle perspective of natural organic matter (NOM): NOM in drinking water, wastewater effluent, storm water, and seawater, Water Sci. Technol.: Water Supply 8 (2008) 701–707.
- [24] Suez Degrémont, Water Treatment Handbook, Degrémont, Reuil-Malmaison, 2007.
- [25] E. Peleka, K. Matis, Application of flotation as a pretreatment process during desalination, Desalination 222 (2008) 1–8.
- [26] G. Micale, A. Cipollina, L. Rizzuti, Seawater Desalination: Conventional and Renewable Energy Processes, Springer, Palermo, 2009.
- [27] S.A. Huber, A. Balz, M. Abert, W. Pronk, Characterisation of aquatic humic and non-humic matter with size-exclusion chromatography—organic carbon detection—organic nitrogen detection (LC-OCD-OND), Water Res. 45 (2011) 879–885.
- [28] L.O. Villacorte, M.D. Kennedy, G.L. Amy, J.C. Schippers, The fate of transparent exopolymer particles (TEP) in integrated membrane systems: Removal through pre-treatment processes and deposition on reverse osmosis membranes, Water Res. 43 (2009) 5039–5052.
- [29] L.O. Villacorte, M.D. Kennedy, G.L. Amy, J.C. Schippers, Measuring transparent exopolymer particles (TEP) as indicator of the (bio)fouling potential of RO feed water, Desalin. Water Treat. 5 (2009) 207–212.
- [30] P.J. Remize, J.F. Laroche, J. Leparc, J.C. Schrotter, A pilotscale comparison of granular media filtration and low-pressure membrane filtration for seawater pretreatment, Desalin. Water Treat. 5 (2009) 6–11.
- [31] O. Lorain, B. Hersant, F. Persin, A. Grasmick, N. Brunard, Ultrafiltration membrane pre-treatment benefits for reverse osmosis process in seawater desalting. Quantification in terms of capital investment cost and operating cost reduction, Desalination 203 (2007) 277–285.
- [32] R.K. Henderson, R.M. Stuetz, S.J. Khan, Demonstrating ultra-filtration and reverse osmosis performance using size exclusion chromatography, Water Sci. Technol. 62 (2010) 2747–2753.
- [33] J.E. Drewes, M. Reinhard, P. Fox, Comparing microfiltrationreverse osmosis and soil-aquifer treatment for indirect potable reuse of water, Water Res. 37 (2003) 3612–3621.
- [34] C. Bellona, J.E. Drewes, P. Xu, G. Amy, Factors affecting the rejection of organic solutes during NF/RO treatment—A literature review, Water Res. 38 (2004) 2795–2809.