Desalination and Water Treatment

www.deswater.com

1944-3994/1944-3986 © 2013 Balaban Desalination Publications. All rights reserved doi: 10.1080/19443994.2013.765095



### Study of the distribution of 204 organic contaminants between the aqueous phase and the suspended particulate matter in treated wastewater for proper environmental control

### Nieves Barco-Bonilla<sup>a</sup>, Roberto Romero-González<sup>a</sup>, Patricia Plaza-Bolaños<sup>a,b</sup>, Antonia Garrido Frenich<sup>a,\*</sup>, José L. Martínez Vidal<sup>a</sup>, Juan J. Salas<sup>c</sup>, Isabel Martín<sup>c</sup>

<sup>a</sup>Department of Chemistry and Physics (Analytical Chemistry Area), Andalusian Center for the Assessment and Monitoring of Global Change (CAESCG), Agrifood Campus of International Excellence, ceiA3 University of Almería, Almería E-04120, Spain

Tel. +0034 950015985; Fax: +0034 950015483; email: agarrido@ual.es

<sup>b</sup>Department of Analytical Chemistry, University of Granada, Granada E-18071, Spain

<sup>c</sup>Department of Research and Development, Foundation Center for New Water Technologies (CENTA), Autovía Sevilla-Huelva (A-49), km 28, Carrión de los Céspedes, Seville E-41820, Spain

Received 24 September 2012; Accepted 23 December 2012

#### ABSTRACT

A distribution study of 204 organic contaminants, including polar and nonpolar pesticides, polycyclic aromatic hydrocarbons (PAHs), and phenolic compounds, between the two phases composing municipal wastewater (WW) from a small community (aqueous phase and suspended particulate matter (SPM)) has been performed to establish whether the compounds can be more prone to be in the aqueous or in the solid phase, depending on their hydrophobicity. Therefore, a general procedure is proposed to evaluate this issue. This study shows that nonpolar pesticides and PAHs are distributed between the aqueous phase and the SPM (e.g. pyrethroids are mainly found in the SPM), whereas polar pesticides and phenolic compounds are mainly present in the aqueous phase. This fact made clear the relevance of the analysis of both phases in WW samples, bearing in mind that if SPM is discarded, an important fraction of some contaminants is not determined and therefore, it does not assess the total load of pollutants discharged, underestimating the real impact on the environment.

*Keywords:* Wastewater; Organic contaminants; Aqueous phase; Suspended particulate matter; Distribution

#### 1. Introduction

Nowadays, there is an increasing interest in reusing wastewater (WW) in water-deficient regions. WW treatment plant (WWTP) effluents can be used in several applications such as agricultural irrigation [1,2], municipal and industrial purposes [3], and environmental aims (e.g. recharging of aquifers) or they can be directly discharged into rivers [4,5] or the sea. Certain groups of contaminants (e.g. pesticides, polycyclic aromatic hydrocarbons (PAHs), and phenolic compounds) are listed as priority pollutants by the European Union (EU) [6] and the United States Environmental Protection Agency (US-EPA) [7] because the presence of these compounds in the environment

<sup>\*</sup>Corresponding author.

The Third International Congress Smallwat11—Wastewater in Small Communities 25–28 April 2011, Seville, Spain

can be harmful to humans and environment, and they have been identified in WWs [8–12]. Consequently, these compounds need to be determined and controlled in WWTP effluents to assure their quality. An important question, which is not usually considered, is that WW is a complex multiphase matrix characterized by the presence of suspended particulate matter (SPM) in different amounts depending on the treatment received. In general, SPM is discarded and not submitted to analysis in WW monitoring and thus, this can have some influence in the determination.

WWTPs consist of a line of WW treatments composed on a pretreatment and consecutive primary, secondary, and tertiary treatments, employing nonconventional, conventional, and modern/recent technologies. Technologies, nonconventional such as maturation pond (MP), anaerobic pond (AP), or conventional as extended aeration (EA), are characterized by a relatively high amount of suspended solids or SPM. Currently, several treatments are being replaced by emerging technologies, such as membrane bioreactors (MBR). However, the high cost of the modern technologies complicate their implementation in small communities and most deprived areas in developing countries, and thus, nonconventional systems must still be taken into account.

Most of the analytical methods found in the literature for the analysis of organic contaminants in WW are only based on the analysis of the aqueous phase obtained after sample filtration, without regarding to the SPM that is retained in the filters [13–16]. However, several studies focused on superficial water samples demonstrate that some organic contaminants (e.g. PAHs) can be associated with SPM depending on their hydrophobicity and the nature and concentration of the particles [17,18]. This can also be observed for other type of organic contaminants, and they can be more or less prone to remain in one phase or another, depending on the hydrophobicity. Therefore, in WW analysis, it is necessary to evaluate the possible distribution of the contaminants between both phases in order to avoid underestimations in the total concentration of these compounds in the samples or to know, depending on the analyzed compound, which phase can be discarded in order to increase sample throughput in routine analysis, considering that the concentration in the discarded phase is negligible.

For that purpose, hydrophobicity is one of the most important physicochemical parameters governing the transport, distribution, and fate of chemicals in the environment. The octanol/water partition coefficient (log  $K_{ow}$ ) is a quantitative parameter of the hydrophobicity of organic chemicals that describes the tendency of distribution of a solute from aqueous phase into organic constituents of environmental compartments [19,20]. Therefore, it is frequently used to predict water solubility, and it can be a good indicator of the distribution of a compound between the aqueous phase and SPM.

In this work, a study of the distribution of 204 organic compounds, including pesticides (both polar and nonpolar compounds), PAHs and phenolic compounds, between the aqueous phase and the SPM in different WWTP effluents (AP, MP, EA, and MBR) has been performed. Moreover, a general approach to evaluate this effect is proposed. The selection of the compounds was performed considering current regulations in the EU [6] and relevant lists, such as the EPA list [7].

#### 2. Experimental

A brief summary of the compounds, reagents, solvents, instruments, apparatus, and methods used for the different analyses (sample extraction, instrumental determination, etc.) were provided in Appendix section.

#### 2.1. Treated WW collection

Urban WWTP effluents from four different treatments, namely, MBR, EA, MP, and AP (ordered from low to high SPM content) were collected from the Experimental Plant of Carrión de los Céspedes, Seville, South of Spain. This plant has an area of 45,000 m<sup>2</sup> and currently holds more than 20 WW treatment technologies, both conventional and nonconventional treatments applied to small agglomerations. Treated WW samples were stored at 4°C in the dark and processed within 24 h after the collection.

#### 2.2. Distribution study

#### 2.2.1. Pesticides

The scheme of the procedure carried out during the distribution study is shown in Fig. 1(a). Non-filtered effluent samples were spiked with  $4 \mu g L^{-1}$  of the target pesticides (Table 1), and then, they were shaken overnight at a rate of 100 oscillations per min to allow a thoroughly interaction between the compounds and the SPM. After this, samples were filtered consecutively using two different pore-size filters (47 mm glass microfibre filters and 0.45  $\mu$ m HNWP nylon membrane filters) in order to separate and analyze both phases. The aqueous phase was extracted by solid-phase extraction (SPE), whereas for the SPM, a pressurized liquid extraction process was carried out [21]. The distribution of the compounds between the



Fig. 1. Scheme of the procedure carried out during the distribution study: (a) pesticides and phenolic compounds and (b, c) PAHs. Abbreviations: SPM: suspended particulate matter.

phases was determined as the percentage of them present in each phase.

#### 2.2.2. PAHs

Nonfiltered-treated WW samples were spiked with the target PAHs (Table 1) at  $1 \mu g L^{-1}$  and agitated overnight (horizontal shaker, 100 oscillations per minute). After 24 h, samples were filtered and the aqueous phase was extracted by SPE (Fig. 1(b)) [22]. On the other hand, filtered WW samples were spiked ( $1 \mu g L^{-1}$ ) and analyzed following the same extraction procedure (Fig. 1(c)). The distribution of the PAHs was determined assuming that the difference in the PAH content between both results corresponded to the PAHs retained into the SPM.

#### 2.2.3. Phenolic compounds

Nonfiltered-treated WW effluent samples were spiked at  $0.5 \,\mu g \, L^{-1}$  of the studied phenolic compounds (Table 1), and then they were agitated overnight at a rate of 100 oscillations per min to allow a

thorough interaction between the analytes and both phases of WW (aqueous phase and SPM). After this, samples were filtered to separate and analyze both phases. The aqueous phase was extracted by SPE, whereas for the analysis of the SPM, a solid–liquid extraction-based method previously developed in our laboratory [23] was applied. The distribution of the compounds between both phases was determined as the percentage of them present in each phase as described for pesticides distribution. A brief scheme of the procedure is represented in Fig. 1(a).

#### 3. Results and discussion

The aim of this paper is the evaluation of the distribution of organic contaminants in aqueous phase and SPM. For that purpose, samples were obtained from an Experimental Plant for urban WW treatment, which employs more than 20 different WW treatment technologies that receive the same WW. Four of which were selected as the most representative and interesting technologies, considering their current use and covering a wide range of physicochemical properties. Table 2 shows several parameters of the treated WWs

| 1 able 1<br>Selected compounds | evaluated in        | this study        |      |                    |             |                   |      |                  |             |                   |         |
|--------------------------------|---------------------|-------------------|------|--------------------|-------------|-------------------|------|------------------|-------------|-------------------|---------|
| Compound                       | Description         | $\log K_{\rm ow}$ | Type | Compound           | Description | $\log K_{\rm ow}$ | Type | Compound         | Description | $\log K_{\rm ow}$ | Type    |
| Pesticides                     |                     |                   |      | Cyproconazole      | FUNG        | 3.1               | NP   | Isodrin          | INS         | 6.7               | NP      |
| 2-Phenylphenol                 | FUNG <sup>a</sup>   | 2.9               | ΔŊ   | Cyprodinil         | FUNG        | 3.9               | ΝP   | Isophenphos      | INS         | 4.0               | ΝP      |
| Acrinathrin                    | INS/ACA             | 5.6               | ΔŊ   | Deltamethrin       | INS         | 4.6               | ΝP   | Isoproturon      | HB          | 2.5               | Ь       |
| Alachlor                       | HB                  | 3.1               | ΝP   | Diazinon           | INS/ACA     | 3.3               | NP   | Kresoxim methyl  | FUNG        | 3.4               | NP      |
| Aldrin                         | INS                 | 6.2               | NP   | Dichlobenil        | HB          | 2.7               | NP   | α-Lindane        | INS         | 3.5               | NP      |
| Atrazine                       | HB                  | 2.5               | Р    | Dichloran          | FUNG        | 2.8               | NP   | β-Lindane        | INS         | 3.5               | NP      |
| Atrazine desethyl              | $\operatorname{TP}$ | 1.5               | Ъ    | Dieldrin           | INS         | 4.8               | ΝP   | ô-Lindane        | INS         | 3.5               | NP      |
| Atrazine                       | $\operatorname{TP}$ | 0.4               | Ъ    | Diethofencarb      | FUNG        | 3.0               | NP   | γ-Lindane        | INS         | 3.5               | ΝP      |
| desisopropyl                   |                     |                   |      |                    |             |                   |      |                  |             |                   |         |
| Azinphos ethyl                 | INS/ACA             | 3.2               | ΝP   | Difenoconazole     | FUNG        | 4.4               | ΔŊ   | Lenacil          | HB          | 2.3               | Ъ       |
| Azinphos methyl                | INS                 | 2.9               | NP   | Dimetomorph        | FUNG        | 2.6               | NP   | Linuron          | HB          | 3.0               | Ь       |
| Benalaxyl                      | FUNG                | 3.5               | ΝP   | Diniconazole       | FUNG        | 4.3               | NP   | Malathion        | INS/ACA     | 2.7               | NP      |
| Benfluralin                    | HB                  | 5.3               | NP   | Diuron             | HB          | 2.8               | Р    | Mecarbam         | INS/ACA     | 2.3               | NP      |
| Bensulfuron methyl             | HB                  | 2.2               | Ь    | Endosulfan α       | INS         | 4.7               | NP   | Metalaxyl        | FUNG        | 1.7               | ΝP      |
| Bifenox                        | HB                  | 4.5               | ΔŊ   | Endosulfan $\beta$ | TP          | 4.8               | ΝP   | Metamitron       | HB          | 0.8               | Ь       |
| Bifenthrin                     | INS/ACA             | 6.0               | ΝP   | Endosulfan eter    | TP          | 4.0               | ΝP   | Metazachlor      | HB          | 2.1               | Ь       |
| Bromophos ethyl                | INS                 | 6.1               | ΝP   | Endosulfan lactone | TP          | 4.1               | ΝP   | Methidathion     | INS/ACA     | 2.2               | ΝP      |
| Bromophos methyl               | INS                 | 5.2               | ΝP   | Endosulfan suphate | TP          | 3.8               | ΝP   | Methoxychlor     | INS         | 4.9               | ΝP      |
| Bromopropylate                 | ACA                 | 5.4               | ΝP   | EPN                | INS/ACA     | 4.7               | ΝP   | Metobromuron     | HB          | 2.4               | Ь       |
| Bupirimate                     | FUNG                | 3.9               | ΝP   | Ethion             | INS/ACA     | 4.3               | ΝP   | Metolachlor      | HB          | 2.9               | Ъ       |
| Buprofezin                     | INS/ACA             | 4.3               | ΝP   | Ethofumesate       | HB          | 2.7               | NP   | Metoxuron        | HB          | 1.6               | Р       |
| Carbophenothion                | INS/ACA             | 4.7               | NP   | Ethoprophos        | INS /NM     | 3.6               | ΝP   | Metribucin       | HB          | 1.6               | Ъ       |
| Clodinafop                     | HB                  | 3.9               | NP   | Etrimfos           | INS         | 3.4               | ΔŊ   | Metsulfuron      | HB          | 0.01              | Ъ       |
| propargyl                      |                     |                   |      |                    |             |                   |      | methyl           |             |                   |         |
| Chlordane-cis                  | INS                 | 5.6               | ΔŊ   | Fenamiphos         | NEM         | 3.3               | ΔŊ   | Mevinphos        | INS/ACA     | 0.1               | NP      |
| Chlordane-trans                | INS                 | 5.6               | ΝP   | Fenitrothion       | INS         | 3.4               | ΔŊ   | Mirex            | INS         | 5.3               | NP      |
| Chloridazon                    | HB                  | 1.2               | Ь    | Fenoxaprop-P-ethyl | HB          | 4.6               | Ь    | Monolinuron      | HB          | 2.2               | Ь       |
| Chlorfenson                    | INS                 | 4.5               | ЧŊ   | Fenpropathrin      | INS/ACA     | 6.0               | ΔŊ   | Norflurazon      | HB          | 2.4               | ΔŊ      |
| Chlorfenvinphos                | INS/ACA             | 3.8               | NP   | Fenthion           | INS         | 4.8               | ΔŊ   | o,p-DDD          | TP          | 5.9               | NP      |
| Chlormephos                    | INS                 | 3.1               | ΝP   | Fenarimol          | FUNG        | 3.6               | ΝP   | o,p-DDT          | INS         | 6.8               | NP      |
| Chloropropylate                | ACA                 | 4.8               | NP   | Fipronil           | INS         | 4.0               | ΝP   | Oxadixyl         | FUNG        | 0.6 - 0.8         | NP      |
| Chlorpyriphos<br>methyl        | INS/ACA             | 4.2               | NP   | Fluacipop-butyl    | HB          | 4.5               | NP   | Oxyfluorfen      | HB          | 4.5               | NP      |
| Chlortal dimethyl              | HB                  | 4.3               | ΝP   | Flucythrinate      | INS         | 4.7               | ΝP   | p,p'-DDD         | TP          | 6.0               | NP      |
| Chlorthion                     | INS                 | 3.5               | ΝP   | Fluorochlorhidrone | HB          | 3.4               | ΝP   | <i>p,p</i> '-DDE | TP          | 6.5               | NP      |
| Chlortoluron                   | HB                  | 2.5               | Ъ    | Fludioxonil        | FUNG        | 4.1               | NP   | Parathion ethyl  | INS/ACA     | 3.8               | NP      |
|                                |                     |                   |      |                    |             |                   |      |                  |             | (Cor              | tinued) |

2500

| Table 1 (continued)     |             |                   |      |                                      |             |                   |      |                    |                 |                   |         |
|-------------------------|-------------|-------------------|------|--------------------------------------|-------------|-------------------|------|--------------------|-----------------|-------------------|---------|
| Compound                | Description | $\log K_{\rm ow}$ | Type | Compound                             | Description | $\log K_{\rm ow}$ | Type | Compound           | Description     | $\log K_{\rm ow}$ | Type    |
| Chlozolinate            | FUNG        | 3.1               | ΝP   | Fonophos                             | INS         | 3.9               | NP   | Parathion methyl   | INS/ACA         | 3.0               | NP      |
| Cycloate                | HB          | 3.9               | NP   | Formothion                           | INS         | 1.5               | NP   | Penconazole        | FUNG            | 3.7               | NP      |
| Cinidon-ethyl           | HB          | 4.5               | NP   | Furalaxyl                            | FUNG        | 2.7               | NP   | Pendimethalin      | HB              | 5.2               | NP      |
| Cinosulfuron            | HB          | 2.0               | Р    | Heptachlor                           | INS         | 5.4               | NP   | Pentachlorobenzene | FUNG            | 5.2               | NP      |
| γ-Cyhalothrin           | INS         | 6.9               | ΝP   | Heptachlor epoxide                   | TP          | 4.2               | ΝP   | Permethrin         | INS             | 6.1               | NP      |
| Cyanofenphos            | INS         | 4.2               | ΝP   | Heptenophos                          | INS         | 2.3               | NP   | Phenthoate         | INS/ACA         | 3.7               | NP      |
| Cycloxydim              | HB          | 1.4               | Ъ    | Hexachlorobenzene                    | FUNG        | 5.7               | NP   | Phorate            | INS/ACA/<br>NEM | 3.9               | NP      |
| Cvfluthrin              | INS         | 6.0               | ΔŊ   | Hexaconazole                         | FUNG        | 3.9               | ΔŊ   | Pvridaben          | INS/ACA         | 6.4               | NP      |
| Cypermethrin            | INS         | 6.6               | ďZ   | Iodosulfuron-methyl                  | HB          | 1.1               | 2    | Pyrifenox          | FUNG            | 3.4               | ЧN      |
| Pirimicarb              | INS         | 1.7               | ΝΡ   | Triasulfuron                         | HB          | 1.1               | Ъ    | 4-Tertoctylphenol  | IP/TP           | 4.1               | NP      |
| <b>Pirimiphos ethyl</b> | INS         | 5.0               | NP   | Vinclozoline                         | FUNG        | 3.0               | ΝP   | 4                  |                 |                   |         |
| Pirimiphos methyl       | INS/ACA     | 4.2               | NP   | PAHs                                 |             |                   |      |                    |                 |                   |         |
| Pyriproxyfen            | INS         | 5.4               | NP   | Acenaphthene                         | UB          | 4.0               | NP   |                    |                 |                   |         |
| Procymidone             | FUNG        | 3.1               | NP   | Acenaphthylene                       | UB          | 3.9               | NP   |                    |                 |                   |         |
| Prometryn               | HB          | 3.1               | Ъ    | Anthracene                           | UB          | 4.5               | NP   |                    |                 |                   |         |
| Propachlor              | HB          | 2.3               | NP   | Benz[a]anthracene                    | UB          | 5.6               | NP   |                    |                 |                   |         |
| Propazine               | HB          | 2.9               | Ъ    | Benzo[ <i>a</i> ]pyrene              | UB          | 6.0               | ΝP   |                    |                 |                   |         |
| Propiconazole           | FUNG        | 3.7               | ΝP   | Benzo[b]fluoranthene                 | UB          | 6.3               | NP   |                    |                 |                   |         |
| Propyzamide             | HB          | 3.2               | Ъ    | Benzo[k]fluoranthene                 | UB          | 6.4               | ΝP   |                    |                 |                   |         |
| Pyrazophos              | FUNG        | 3.8               | ΝP   | Benzo[ <i>ghi</i> ]perylene          | UB          | 6.7               | NP   |                    |                 |                   |         |
| Quinalphos              | INS/ACA     | 4.4               | ΝP   | Benzo[j]fluoranthene                 | UB          | 6.1               | NP   |                    |                 |                   |         |
| Quinmerac               | HB          | -1.1              | Ъ    | 2-Bromonaphthalene                   | UB          | 4.1               | ΝP   |                    |                 |                   |         |
| Quinoxyfen              | FUNG        | 4.7               | NP   | Chrysene                             | UB          | 5.7               | NP   |                    |                 |                   |         |
| Quintocene              | FUNG        | 5.1               | NP   | Cyclopenta[cd]                       | UB          | 4.9               | ΝP   |                    |                 |                   |         |
|                         |             |                   |      | pyrene                               |             |                   |      |                    |                 |                   |         |
| S421                    | INS         | 5.3               | NP   | Dibenzo[ <i>a,e</i> ]pyrene          | UB          | 7.4               | NP   |                    |                 |                   |         |
| Sebuthylazine           | HB          | 3.2               | Ъ    | Dibenzo $[a,h]$                      | UB          | 6.9               | NP   |                    |                 |                   |         |
|                         |             |                   |      | anthracene                           |             |                   |      |                    |                 |                   |         |
| Sethoxydim              | HB          | 4.5               | Ъ    | Dibenzo[ <i>a</i> , <i>h</i> ]pyrene | UB          | 7.4               | NP   |                    |                 |                   |         |
| Silafluofen             | INS         | 8.2               | NP   | Dibenzo[ <i>a</i> , <i>i</i> ]pyrene | UB          | 7.4               | NP   |                    |                 |                   |         |
| Simazine                | HB          | 2.1               | Ъ    | Dibenzo[ <i>a</i> , <i>l</i> ]pyrene | UB          | 7.4               | NP   |                    |                 |                   |         |
| Sulfotep                | INS/ACA     | 3.9               | NP   | Fluoranthene                         | UB          | 5.1               | NP   |                    |                 |                   |         |
| Tau fluvalinate         | INS/ACA     | 4.3               | NP   | Fluorene                             | UB          | 4.1               | NP   |                    |                 |                   |         |
| Tebufenozide            | INS         | 4.2               | ΝP   | Indeno[1,2,3- <i>cd</i> ]            | UB          | 7.1               | ΝP   |                    |                 |                   |         |
| Tebufenpirad            | ACA         | 5.0               | NP   | pyrene<br>5-Methylchrysene           | UB          | 6.3               | NP   |                    |                 |                   |         |
| 4                       |             |                   |      | ×                                    |             |                   |      |                    |                 | (Con              | tinued) |
|                         |             |                   |      |                                      |             |                   |      |                    |                 |                   |         |

| Table 1 (continued)                                       |                |                   |         |                             |               |                   |                           |                      |                        |     |
|-----------------------------------------------------------|----------------|-------------------|---------|-----------------------------|---------------|-------------------|---------------------------|----------------------|------------------------|-----|
| Compound                                                  | Description    | $\log K_{\rm ow}$ | Type    | Compound                    | Description   | $\log K_{\rm ow}$ | Type Compound             | Description          | log K <sub>ow</sub> Ty | ype |
| Tebutam                                                   | HB             | 3.0               | Ъ       | Naphthalene                 | UB            | 3.3               | NP                        |                      |                        |     |
| Tecnazene                                                 | FUNG           | 4.0               | NP      | Phenanthrene                | UB            | 4.5               | NP                        |                      |                        |     |
| Tepraloxydim                                              | HB             | 1.5               | Ρ       | Pyrene                      | UB            | 5.1               | NP                        |                      |                        |     |
| Terbumeton                                                | HB             | 3.0               | Ρ       | Phenolic compounds          |               |                   |                           |                      |                        |     |
| Terbutryn                                                 | HB             | 3.6               | NP      | 2,4,5-Trichlorophenol       | IP/TP         | 3.7               | Ρ                         |                      |                        |     |
| Terbuthylazine                                            | HB             | 3.2               | Ρ       | 2,4,6-Trichlorophenol       | IP/TP         | 3.7               | Ρ                         |                      |                        |     |
| Terbuthylazine<br>desethyl                                | TP             | 1.9               | Ъ       | 2,4-Dimethylphenol          | IP/TP         | 2.3               | Ρ                         |                      |                        |     |
| Tetrachlorvinphos                                         | INS/ACA        | 3.9               | NP      | 4-Chloro-3-<br>methylphenol | IP/TP         | 3.1               | Ρ                         |                      |                        |     |
| Tetraconazole                                             | FUNG           | 3.6               | ΝΡ      | 2,4-Dichlorophenol          | IP/TP         | 3.2               | Ρ                         |                      |                        |     |
| Tetradifon                                                | ACA            | 4.6               | NP      | 2-Chlorophenol              | IP/TP         | 2.1               | Ρ                         |                      |                        |     |
| Tetramethrin                                              | INS            | 4.6               | NP      | 4-Chlorophenol              | IP/TP         | 2.4               | Ρ                         |                      |                        |     |
| Thiazopyr                                                 | HB             | 3.9               | Ъ       | 2-Nitrophenol               | IP/TP         | 1.8               | Ρ                         |                      |                        |     |
| Thifensulfuron<br>methyl                                  | HB             | 1.1               | Ч       | 3-Nitrophenol               | IP/TP         | 2.0               | Ρ                         |                      |                        |     |
| Tolcophos methyl                                          | FUNG           | 4.6               | NP      | 4-Nitrophenol               | IP/TP         | 1.9               | Γ                         |                      |                        |     |
| Transfluthrin                                             | INS            | 5.5               | ΝΡ      | 4-n-Nonylphenol             | IP/TP         | 5.7               | NP                        |                      |                        |     |
| Triadimefon                                               | FUNG           | 3.1               | NP      | Pentachlorphenol            | IP/TP         | 5.2               | NP                        |                      |                        |     |
| <sup>a</sup> Abbreviations: ACA:<br>contaminant; NP: nonp | Acaricide; FUN | G: Fungici        | de; HB: | Herbicide; IN: Industrial   | product; INS: | Insecticid        | e; NEM: Nematicide; TP: T | ransformation produc | t; UB: Ubiquite        | sno |



Fig. 2. Percentage of pesticides found in the SPM according to the  $\log K_{ow}$  as a measure of the hydrophobicity of the compounds.

under study and it is important to notice that these outlets present different amounts of SPM, finding that the treatment that generated the effluent with higher amount of SPM was AP (99 mg L<sup>-1</sup>), followed by MP (59 mg L<sup>-1</sup>), and EA ( $38 \text{ mg L}^{-1}$ ). MBR contained a minimal amount of solids (9 mg L<sup>-1</sup>).

Due to the difference in the amount of SPM and other physicochemical properties in the evaluated effluents, the distribution study was carried out separately in the four treatments selected in order to establish if the same trend is observed irrespective of the type of effluent, or in contrast, it depends on the treatment received in the Experimental Plant. Repeatability of the experiments was carried out (n = 4).

#### 3.1. Distribution study for pesticides

Because of their different physicochemical properties, pesticides can be distributed in the two phases composing WWTP samples: aqueous phase and SPM ("solid phase"). Therefore, a study of their distribution between these phases was carried out to establish if the studied compounds are mostly detected in the aqueous phase or in the SPM, or, on the contrary, they can be detected in both phases. In consequence, this evaluation would indicate which phase(s) should be analyzed to determine the concentration of these organic contaminants in treated WWs.

This study was performed using the procedures described in Sections 3.1, 3.2, and 3.3 of the Appendix. It can be indicated that depending on the hydrophobicity of the compounds, they are mainly distributed in the aqueous phase or SPM. The same trend was observed irrespective of the type of effluent. These results were in accordance to those described previously [21]. As it has been previously commented, the  $\log K_{ow}$  is a quantitative measure of the hydrophobicity, and therefore, it provides an estimation of the tendency of the compounds to remain in the aqueous phase or the SPM. This trend is graphically shown in Fig. 2, and it can be observed that the compounds are more prone to remain in the SPM (the hydrophobicity of the compounds increases) at higher values of  $\log K_{ow}$ . Moreover, it is possible to fit the observed sigmoidal curve to a logistic equation, which may be useful to predict the distribution of the pesticide in the SPM according to its  $\log K_{ow}$ . Thus, if  $\log K_{ow}$  is < 2.5, the amount of compound detected in SPM is negligible, whereas at higher values the percentage of compound found in the SPM increases. Furthermore, it can be observed that if  $\log K_{ow}$  is > 5, most of the amount of the compound is detected in the SPM (% > 50%).

Therefore, for nonpolar pesticides, it was observed that most of the compounds were distributed in both the aqueous and the "solid phase" (SPM), except for pyrethroids and organochlorine pesticides (higher log  $K_{ow}$ ), which were more prone to remain in the SPM. As it can be seen in Table 1, pyrethroids are the pesticides with higher values of log  $K_{ow}$  (> 6.0). Therefore, the behavior shown by these compounds was similar to that expected from their hydrophobicity. This fact demonstrates the need for analyzing both phases, the aqueous and the "solid phase", which is normally discarded. Furthermore, as the content of

| Treatment | $\begin{array}{c} \mathrm{BOD}^{\mathrm{a}}\\ (\mathrm{mg}\mathrm{L}^{-1}\\ \mathrm{O}_{2}) \end{array}$ | $\begin{array}{c} \text{COD} \\ (\text{mg}\text{L}^{-1} \\ \text{O}_2) \end{array}$ | Ammonium $(\operatorname{mg} \mathrm{L}^{-1} \mathrm{N})$ | Phosphate<br>(mg L <sup>-1</sup> P) | Total<br>phosphorus<br>(mg L <sup>-1</sup> P) | Nitrates<br>(mg L <sup>-1</sup><br>N) | Total suspended<br>solids (mg L <sup>-1</sup> ) | Dissolved<br>oxygen (mgL <sup>-1</sup><br>O <sub>2</sub> ) | Conductivity<br>(μS cm <sup>-1</sup> , 20°C) | T pH<br>(°C) |
|-----------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------|-----------------------------------------------|---------------------------------------|-------------------------------------------------|------------------------------------------------------------|----------------------------------------------|--------------|
| MBR       | 12                                                                                                       | 35                                                                                  | ß                                                         | ß                                   | 6                                             | 34                                    | 6                                               | 6                                                          | 1,223                                        | 18 7         |
| EA        | 45                                                                                                       | 114                                                                                 | 34                                                        | IJ                                  | 7                                             | 7                                     | 38                                              | 2                                                          | 1,364                                        | 21 7         |
| MP        | 48                                                                                                       | 209                                                                                 | 25                                                        | IJ                                  | 7                                             | 7                                     | 59                                              | 4                                                          | 1,237                                        | 21 8         |
| AP        | 272                                                                                                      | 503                                                                                 | 50                                                        | 9                                   | 7                                             | 8                                     | 66                                              | 1                                                          | 1,386                                        | 20 7         |

Table 2

SPM of the different effluents increased (from MBR to AP), a higher number of compounds mainly retained in the solids were observed, indicating that treated WW samples do not show a unique analytical behavior. Moreover, Table 3 shows that the distribution of the selected pesticides was independent of the amount of SPM in WW, considering that similar distribution was obtained for the four treatments evaluated, except for some compounds such as endosulfan lactone, pyrifenox, tebupenfyrad, and  $\alpha$  and  $\beta$ -lindane. For these compounds, it can be observed that higher percentages of pesticides were detected in WW effluents with higher amount of SPM, such as AP. Therefore, the analysis of SPM in WW effluents from AP treatments is important, considering that this treatment provides higher amount of solids.

On the other hand, in order to cover a wide range of WWTP effluents, only two of them, those that present the higher and lower amount of SPM (AP and MBR, respectively) were evaluated for polar pesticides. In this case, the fraction of analytes bound to particles was negligible, and they were mainly found in the aqueous phase (these compounds present lower log  $K_{ow}$ , in general < 3.0). Thus, more than 86% of the analyzed compounds were detected mainly in the aqueous phase, whereas the rest of the compounds were distributed between the two phases. Therefore, the analysis of SPM was not necessary when polar pesticides are monitored.

#### 3.2. Distribution study of PAHs

PAHs are nonpolar compounds showing high lipophilic character. However, in spite of PAHs show hydrophobic properties, they are also found in water due to their ubiquitous nature. Thus, in order to establish the need for analyzing both phases in treated WWs, it is necessary to evaluate the distribution of these compounds between the aqueous phase and the SPM. For that purpose, PAHs were extracted from samples using the procedures described in Section 3.4 of the Appendix, and the results obtained were evaluated. Table 4 shows the distribution of the target compounds between both phases, expressed as percentage. PAHs were principally retained in the SPM, although it can be noted that higher percentages (> 10%) of light PAHs, such as naphthalene, acenaphthylene, and acenaphthene, were found in the aqueous phase. The PAH content determined in the samples spiked after the filtration step was considerably higher than the content in the nonfiltered-spiked sample. Consequently, it is necessary to analyze both phases when these compounds are determined in

| Distribution percentages of p | esticides betwee | n the SPM and t | חפ אמופר עומסכ עי<br>דע | vi / according to | MID  |     | C V  |     |
|-------------------------------|------------------|-----------------|-------------------------|-------------------|------|-----|------|-----|
|                               | MIBIK            |                 | EA                      |                   | MI   |     | Ar   |     |
| Compound                      | %SPM             | %WP             | %SPM                    | %WP               | %SPM | %WP | %SPM | %WP |
| 2-Phenylphenol                | 06               | 10              | 75                      | 25                | 74   | 26  | 95   | ъ   |
| Achrinatrin                   | 100              | 0               | 97                      | ю                 | 98   | 2   | 66   | 1   |
| Alachlor                      | 14               | 86              | Ŋ                       | 95                | 14   | 86  | 57   | 43  |
| Aldrin                        | 81               | 19              | 98                      | 2                 | 95   | IJ  | 98   | 2   |
| Benfluralin                   | 80               | 20              | 92                      | 8                 | 93   | 7   | 95   | Ŋ   |
| Bifenthrin                    | 100              | 0               | 97                      | ю                 | 98   | 2   | 66   | 1   |
| Bromacil                      | 66               | 34              | 72                      | 28                | 100  | 0   | 86   | 14  |
| Bromophos ethyl               | 93               | 7               | 96                      | 4                 | 96   | 4   | 98   | 2   |
| Bromophos methyl              | 76               | 24              | 84                      | 16                | 92   | 8   | 96   | 4   |
| Bromopropylate                | 63               | 37              | 71                      | 29                | 86   | 14  | 96   | 4   |
| Bupirimate                    | 0                | 100             | 0                       | 100               | 14   | 86  | 0    | 100 |
| Buprofezin                    | 63               | 37              | 67                      | 33                | 81   | 19  | 0    | 100 |
| Butraline                     | 68               | 32              | 100                     | 0                 | 100  | 0   | 0    | 0   |
| Carbophenothion               | 94               | 9               | 95                      | 5                 | 96   | 4   | 97   | ю   |
| Chlordane-cis                 | 87               | 13              | 98                      | 7                 | 96   | 4   | 100  | 0   |
| Chlorfenson                   | 83               | 17              | 80                      | 20                | 94   | 9   | 96   | 4   |
| Chlorfenvinphos               | 21               | 79              | 15                      | 85                | 51   | 49  | 47   | 53  |
| Chlormephos                   | 7                | 93              | 16                      | 84                | 18   | 82  | 37   | 63  |
| Chlorpyriphos-methyl          | 43               | 57              | 42                      | 58                | 73   | 27  | 79   | 21  |
| Chlortal-dimethyl             | 63               | 37              | 54                      | 46                | 79   | 21  | 86   | 14  |
| Cicloate                      | 23               | 77              | 17                      | 83                | 25   | 75  | 56   | 44  |
| Cinidon-ethyl                 | 97               | б               | 94                      | 6                 | 100  | 0   | 66   | 1   |
| Clodinafop-propargyl          | 89               | 11              | 65                      | 35                | 100  | 0   | 100  | 0   |
| Cyanophenphos                 | 57               | 43              | 62                      | 38                | 87   | 13  | 96   | 4   |
| Cyfluthrin                    | 100              | 0               | 97                      | 3                 | 97   | ю   | 98   | 7   |
| Cypermethrin                  | 100              | 0               | 98                      | 7                 | 97   | ю   | 66   | 1   |
| Cyproconazole                 | 0                | 100             | 4                       | 96                | 7    | 93  | 19   | 81  |
| Cyprodinil                    | 15               | 85              | 13                      | 87                | 51   | 49  | 82   | 18  |
| Delta-lindane                 | 7                | 93              | 23                      | 77                | 53   | 47  | 77   | 23  |
| Deltamethrin                  | 100              | 0               | 98                      | 7                 | 98   | 2   | 66   | 1   |
| Diazinon                      | 13               | 87              | 8                       | 92                | 23   | 77  | 44   | 56  |
| Dichlobenil                   | 20               | 80              | 59                      | 41                | 30   | 70  | 55   | 45  |
| Dichloran                     | ю                | 67              | 8                       | 92                | 31   | 69  | 0    | 0   |
| Dieldrin                      | 65               | 35              | 87                      | 13                | 92   | œ   | 97   | С   |

2505

(Continued)

| Table 3 (continued) |           |     |      |     |      |     |      |             |
|---------------------|-----------|-----|------|-----|------|-----|------|-------------|
|                     | $MBR^{a}$ |     | EA   |     | MP   |     | AP   |             |
| Compound            | %SPM      | %WP | %SPM | %WP | %SPM | %WP | %SPM | %WP         |
| Difenoconazole      | 69        | 31  | 70   | 30  | 77   | 23  | 89   | 11          |
| Dimethomorph        | 8         | 92  | 6    | 94  | 24   | 76  | 41   | 59          |
| Dinobuton           | 65        | 35  | 57   | 43  | 82   | 18  | 100  | 0           |
| Dinoconazole        | 7         | 93  | 18   | 82  | 27   | 73  | 54   | 46          |
| Disulfoton          | 29        | 71  | 47   | 53  | 61   | 39  | 43   | 57          |
| Endosulfan ether    | 14        | 86  | 29   | 71  | 50   | 50  | 29   | 21          |
| Endosulfan lactone  | 59        | 41  | 11   | 89  | 47   | 53  | 7    | 93          |
| Endosulfan sulfate  | 0         | 100 | 59   | 41  | 80   | 20  | 0    | 100         |
| Endosulfan $\alpha$ | 63        | 37  | 78   | 22  | 89   | 11  | 97   | ю           |
| Endosulfan $eta$    | 61        | 39  | 74   | 26  | 89   | 11  | 98   | 2           |
| EPN                 | 75        | 25  | 84   | 16  | 92   | 8   | 96   | 4           |
| Ethion              | 81        | 19  | 85   | 15  | 92   | 8   | 98   | 7           |
| Ethofumesate        | 14        | 86  | 7    | 93  | 23   | 77  | 31   | 69          |
| Ethoprophos         | 8         | 92  | Ŋ    | 95  | 13   | 87  | 23   | 77          |
| Etrimfos            | 13        | 87  | 10   | 90  | 32   | 68  | 42   | 58          |
| Fenamiphos          | 64        | 36  | 57   | 43  | 83   | 17  | 88   | 12          |
| Fenarimol           | ς         | 97  | 8    | 92  | 15   | 85  | 30   | 70          |
| Fenitrothion        | 48        | 52  | 40   | 60  | 71   | 29  | 71   | 29          |
| Fenpropathrin       | 100       | 0   | 98   | 2   | 97   | С   | 66   | 1           |
| Fenthion            | 64        | 36  | 75   | 25  | 91   | 6   | 86   | 14          |
| Fentoate            | 61        | 39  | 33   | 67  | 68   | 32  | 83   | 17          |
| Fipronil            | 2         | 98  | 1    | 66  | 18   | 82  | 68   | 32          |
| Fluacipop-butyl     | 95        | Ŋ   | 85   | 15  | 94   | 6   | 100  | 0           |
| Flucythrinate       | 100       | 0   | 98   | 2   | 98   | 2   | 66   | 1           |
| Fludioxonil         | 5         | 95  | 24   | 76  | 53   | 47  | 87   | 13          |
| Flurochloridone     | 28        | 72  | 16   | 84  | 46   | 54  | 38   | 62          |
| Fonofos             | 18        | 82  | 19   | 81  | 42   | 58  | 48   | 52          |
| Furalaxyl           | 15        | 85  | 7    | 93  | 1    | 66  | 28   | 72          |
| Gamma-lindane       | 11        | 89  | 22   | 78  | 37   | 63  | 54   | 46          |
| Heptachlor          | 68        | 32  | 95   | ß   | 94   | 6   | 96   | 4           |
| Heptachlor epoxide  | 56        | 44  | 78   | 22  | 94   | 6   | 93   | 7           |
| Heptenophos         | 4         | 96  | 0    | 100 | 6    | 16  | 14   | 86          |
| Hexachlorobenzene   | 53        | 47  | 87   | 13  | 91   | 6   | 87   | 13          |
| Hexaconazole        | 0         | 100 | 0    | 100 | 0    | 100 | 0    | 100         |
| Iprodione           | 66        | 1   | 96   | 4   | 97   | Ю   | 66   | 1           |
|                     |           |     |      |     |      |     |      | (Continued) |

|                        | $MBR^{a}$ |     | EA   |     | MP   |     | AP   |             |
|------------------------|-----------|-----|------|-----|------|-----|------|-------------|
| Compound               | %SPM      | %WP | %SPM | %WP | %SPM | %WP | %SPM | %WP         |
| Isodrin                | 57        | 43  | 97   | ю   | 95   | ы   | 97   | Э           |
| Isophenphos            | 12        | 88  | 13   | 87  | 36   | 64  | 55   | 45          |
| Kresoxim methyl        | 21        | 79  | 12   | 88  | 45   | 55  | 0    | 100         |
| Lambda-cyhalothrin     | 100       | 0   | 98   | 2   | 98   | 2   | 66   | 1           |
| Malathion              | 32        | 68  | 18   | 82  | 42   | 58  | 60   | 40          |
| Mecarbam               | 16        | 84  | 40   | 60  | 61   | 39  | 0    | 100         |
| Metalaxyl              | 36        | 64  | 23   | 77  | 68   | 32  | 86   | 14          |
| Methidathion           | 13        | 87  | 23   | 77  | 56   | 44  | 0    | 100         |
| Methoxychlor           | 80        | 20  | 90   | 10  | 95   | IJ  | 66   | 1           |
| Mevinphos              | 0         | 100 | 0    | 100 | 0    | 100 | 0    | 100         |
| Mirex                  | 66        | 1   | 97   | ю   | 98   | 2   | 66   | 1           |
| Norflurazon            | 2         | 98  | 4    | 96  | 16   | 84  | 13   | 87          |
| o,p'-DDT + $p,p'$ -DDD | 95        | IJ  | 97   | ς   | 96   | 4   | 66   | 1           |
| o,p'-DDD               | 89        | 11  | 97   | С   | 95   | IJ  | 66   | 1           |
| Oxadixyl               | 0         | 100 | 0    | 100 | 0    | 100 | 0    | 100         |
| Oxyfluorfen            | 95        | ъ   | 95   | ŋ   | 97   | б   | 66   | 1           |
| <i>p,p</i> '-DDE       | 66        | 1   | 98   | 2   | 97   | С   | 66   | 1           |
| Parathion ethyl        | 46        | 54  | 36   | 64  | 70   | 30  | 75   | 25          |
| Parathion methyl       | 40        | 60  | 32   | 68  | 62   | 38  | 40   | 60          |
| Penconazole            | 0         | 100 | 13   | 87  | 18   | 82  | 0    | 100         |
| Pendimethalin          | 81        | 19  | 87   | 13  | 93   | 7   | 98   | 7           |
| Pentachlorobenzene     | 42        | 58  | 78   | 22  | 74   | 26  | 06   | 10          |
| Permethrin             | 100       | 0   | 97   | 3   | 96   | 4   | 66   | 1           |
| Phorate                | 27        | 73  | 31   | 69  | 58   | 42  | 47   | 53          |
| Pirimicarb             | 0         | 100 | 0    | 100 | 0    | 100 | 0    | 100         |
| Procymidone            | 32        | 68  | 15   | 85  | 39   | 61  | 36   | 64          |
| Propachlor             | 0         | 100 | 0    | 100 | 0    | 100 | 0    | 100         |
| Propargite             | 98        | 7   | 87   | 13  | 95   | ß   | 97   | ю           |
| Propiconazole          | 19        | 81  | 11   | 89  | 34   | 66  | 54   | 46          |
| Propoxur               | 19        | 81  | 0    | 100 | 6    | 91  | 0    | 100         |
| Pyrazophos             | 37        | 63  | 42   | 58  | 68   | 32  | 74   | 26          |
| Pyridaben              | 98        | 7   | 96   | 4   | 96   | 4   | 98   | 0           |
| Pyrifenox              | 12        | 88  | 56   | 44  | 43   | 57  | 88   | 12          |
| Pyrimiphos ethyl       | 38        | 62  | 45   | 55  | 70   | 30  | 89   | 11          |
| Pyrimiphos methyl      | 23        | 77  | 23   | 77  | 52   | 48  | 69   | 31          |
|                        |           |     |      |     |      |     |      | (Continued) |

Table 3 (continued)

N. Barco-Bonilla et al. / Desalination and Water Treatment 51 (2013) 2497–2515

2507

| Table 3 (continued)                         |                    |                   |                     |                   |                    |                     |                     |     |
|---------------------------------------------|--------------------|-------------------|---------------------|-------------------|--------------------|---------------------|---------------------|-----|
|                                             | $MBR^{a}$          |                   | EA                  |                   | MP                 |                     | AP                  |     |
| Compound                                    | %SPM               | %WP               | %SPM                | %WP               | %SPM               | %WP                 | %SPM                | %WP |
| Pyriproxyfen                                | 87                 | 13                | 91                  | 6                 | 92                 | 8                   | 67                  | ю   |
| Quinalphos                                  | 32                 | 68                | 28                  | 72                | 54                 | 46                  | 59                  | 41  |
| Quinoxyfen                                  | 0                  | 100               | 89                  | 11                | 95                 | ъ                   | 0                   | 100 |
| Quintozene                                  | 45                 | 55                | 58                  | 42                | 83                 | 17                  | 80                  | 20  |
| S421                                        | 87                 | 13                | 67                  | 33                | 94                 | 6                   | 97                  | ю   |
| Silafluofen                                 | 98                 | 2                 | 95                  | IJ                | 98                 | 2                   | 66                  | 1   |
| Sulfotep                                    | 23                 | 77                | 16                  | 84                | 39                 | 61                  | 48                  | 52  |
| Tau-fluvalinate                             | 66                 | 1                 | 96                  | 4                 | 98                 | 2                   | 66                  | 1   |
| Tebufenozide                                | 0                  | 100               | 0                   | 100               | 10                 | 90                  | 27                  | 73  |
| Tebufenpyrad                                | 47                 | 53                | 42                  | 58                | 67                 | 33                  | 87                  | 13  |
| Tecnazene                                   | 31                 | 69                | 39                  | 61                | 59                 | 41                  | 64                  | 36  |
| Terbutryn                                   | 0                  | 100               | 0                   | 100               | 0                  | 100                 | 0                   | 100 |
| Tetrachlorvinphos                           | 0                  | 100               | 25                  | 75                | 49                 | 51                  | 0                   | 100 |
| Tetraconazole                               | 18                 | 82                | 13                  | 87                | 30                 | 70                  | 0                   | 100 |
| Tetradifon                                  | 89                 | 11                | 89                  | 11                | 95                 | IJ                  | 98                  | 7   |
| Thiometon                                   | 32                 | 68                | 34                  | 66                | 77                 | 23                  | 43                  | 57  |
| Tolclofos methyl                            | 54                 | 46                | 50                  | 50                | 78                 | 22                  | 87                  | 13  |
| Transfluthrin                               | 91                 | 6                 | 94                  | 6                 | 96                 | 4                   | 98                  | 7   |
| Triadimefon                                 | 14                 | 86                | 6                   | 91                | 21                 | 79                  | 29                  | 71  |
| Vinclozoline                                | 96                 | 4                 | 48                  | 52                | 84                 | 16                  | 98                  | 7   |
| α-Lindane                                   | 21                 | 79                | 18                  | 82                | 16                 | 84                  | 66                  | 34  |
| β-Lindane                                   | 0                  | 100               | 34                  | 66                | 43                 | 57                  | 54                  | 46  |
| <sup>a</sup> Abbreviations: AP: anaerobic l | pond; EA: extended | aeration; MBR: me | embrane bioreactor; | MP: maturation pc | and; SPM: suspende | d particulate matte | r; WP: water phase. |     |

| 0 | _      |     | $\mathbf{n}$ |
|---|--------|-----|--------------|
|   | h      | ( ) | ×            |
| _ | $\sim$ | U   | o            |

5

| Table 4                      |          |           |             |
|------------------------------|----------|-----------|-------------|
| Distribution of PAHs between | the aque | ous phase | and the SPM |

| Compound                             | Abbreviation | PAHs in aqueous phase (%) | PAHs in SPM (%) |
|--------------------------------------|--------------|---------------------------|-----------------|
| Acenaphthene                         | ACP          | 9.7                       | 90.3            |
| Acenaphthylene                       | ACY          | 16.7                      | 83.3            |
| Anthracene                           | ANT          | 8.2                       | 91.8            |
| Benz[a]anthracene                    | BaA          | 7.3                       | 92.7            |
| Benzo[a]pyrene                       | BaP          | 3.8                       | 96.2            |
| Benzo[b]fluoranthene                 | BbFA         | 2.7                       | 97.3            |
| Benzo[ghi]perylene                   | BghiP        | 2.2                       | 97.8            |
| Benzo[j]fluoranthene                 | BjFA         | 2.5                       | 97.5            |
| Benzo[k]fluoranthene                 | BkFA         | 2.2                       | 97.8            |
| 2-Bromonaphthylene                   | BrNPH        | 30.2                      | 69.8            |
| Chrysene                             | CHR          | 3.2                       | 96.8            |
| Cyclopenta[cd]pyrene                 | CPcdP        | 2.8                       | 97.2            |
| Dibenzo[ <i>a,e</i> ]pyrene          | DBahA        | 3.4                       | 96.6            |
| Dibenzo[a,h]anthracene               | DBaeP        | 2.8                       | 97.2            |
| Dibenzo[ <i>a,h</i> ]pyrene          | DBahP        | 3.9                       | 96.1            |
| Dibenzo[ <i>a</i> , <i>i</i> ]pyrene | DBaiP        | 3.6                       | 96.4            |
| Dibenzo[ <i>a</i> , <i>l</i> ]pyrene | DBalP        | 6.0                       | 94.0            |
| Fluoranthene                         | FA           | 3.9                       | 96.1            |
| Fluorene                             | FLR          | 7.0                       | 93.0            |
| Indeno[1,2,3-cd]pyrene               | IP           | 8.2                       | 91.8            |
| 5-Methylchrysene                     | MCHR         | 20.4                      | 79.6            |
| Naphthalene                          | NPH          | 10.9                      | 89.1            |
| Phenanthrene                         | PHE          | 4.4                       | 95.6            |
| Pyrene                               | PYR          | 6.2                       | 93.8            |

treated WW samples. In this sense, and in order to increase sample throughput, instead of analyzing both phases separately, only one extraction can be applied and for that purpose it was observed that the application of stir bar sorptive extraction (SBSE) can be used [22]. Thus, SBSE procedure can be applied to raw WW effluent (nonfiltered) for the simultaneous extraction of PAHs from both phases.

#### 3.3. Distribution study of phenolic compounds

Although phenolic compounds show polar nature, and theoretically must be present in the aqueous phase, it is necessary to verify whether the compounds are also present in the SPM. If they are present quantitatively in the SPM, the analysis of WWTP effluents should not be limited to the aqueous phase. The distribution study was therefore carried out, applying the procedure described in Section 3.5 of the Appendix. As it is observed for polar pesticides, only MBR and AP were analyzed since they can be considered as representative WW effluents with low and high SPM. It can be noted that the phenolic compounds were mainly found in the aqueous phase, although those compounds with high  $\log K_{ow}$  (4-*n*-nonylphenol, 4-tert-octylphenol, and pentachlorophenol) were also found in the SPM, but at negligible percentages (< 5%). This study revealed that when phenolic compounds are analyzed in treated WW samples, it is possible to limit the analysis to the aqueous phase, discarding the SPM.

#### 3.4. Analysis of real samples

Finally, the aqueous phase and the SPM of 6 WWTP effluents from different treatments, namely rotating biological contactor (RBC), MP, horizontal subsurface-flow constructed wetland (SSF), Imhoff tank, AP, and a combination of EA + sand filters + UV, were analyzed. An internal quality control was carried out in order to guarantee that the measurement process was under statistical control. WW samples were previously analyzed to check the occurrence of the compounds under study. This sample eliminated possible false positives produced by contamination. In

|                | -                  |                     |             |                                                                                                           |                 |                |                 |                                                                     |                 |           |                  |                     |
|----------------|--------------------|---------------------|-------------|-----------------------------------------------------------------------------------------------------------|-----------------|----------------|-----------------|---------------------------------------------------------------------|-----------------|-----------|------------------|---------------------|
| Treatment      | Concentration      | Compoun             | рı          |                                                                                                           |                 |                |                 |                                                                     |                 |           |                  |                     |
|                |                    | 2-Phen-<br>ylphenol | Alachlor    | Chlorfenvinphos                                                                                           | Chlormephos     | Cyfluthrin     | Cyproconazole   | Diazinon                                                            | Ethoprophos     | Isodrin   | Mevinphos        | Pirimicarb          |
| RBC            | AqP <sup>a</sup>   | N.D. <sup>d</sup>   | N.D.        | N.D.                                                                                                      | N.D.            | N.D.           | N.D.            | 0.11                                                                | N.D.            | N.D.      | N.D.             | N.D.                |
|                | $SPM^b$            | 21                  | 37          | N.D.                                                                                                      | 8               | 179            | N.D.            | <loq< td=""><td>N.D.</td><td>N.D.</td><td>176</td><td>8</td></loq<> | N.D.            | N.D.      | 176              | 8                   |
|                | Total <sup>c</sup> | 0.08                | 0.15        | I                                                                                                         | 0.03            | 0.72           | I               | 0.11                                                                | I               | I         | 0.70             | 0.03                |
| MP             | AqP                | N.D.                | N.D.        | N.D.                                                                                                      | N.D.            | N.D.           | N.D.            | 0.12                                                                | N.D.            | N.D.      | N.D.             | N.D.                |
|                | SPM                | 47                  | N.D.        | N.D.                                                                                                      | N.D.            | 96             | N.D.            | N.D.                                                                | N.D.            | N.D.      | N.D.             | N.D.                |
|                | Total              | 0.19                | I           | I                                                                                                         | I               | 0.38           | I               | 0.12                                                                | I               | I         | Ι                | I                   |
| SSF            | AqP                | N.D.                | N.D.        | 0.20                                                                                                      | N.D.            | N.D.           | 0.09            | 0.07                                                                | N.D.            | 0.05      | N.D.             | N.D.                |
|                | SPM                | 2065                | N.D.        | N.D.                                                                                                      | N.D.            | N.D.           | N.D.            | N.D.                                                                | N.D.            | N.D.      | N.D.             | N.D.                |
|                | Total              | 8.26                | I           | 0.20                                                                                                      | I               | I              | 0.09            | 0.07                                                                | I               | 0.05      | I                | I                   |
| EA + sand      | AqP                | N.D.                | N.D.        | <loq<sup>e</loq<sup>                                                                                      | N.D.            | N.D.           | N.D.            | 0.92                                                                | 0.02            | N.D.      | N.D.             | N.D.                |
| filters $+ UV$ | SPM                | 21                  | N.D.        | N.D.                                                                                                      | N.D.            | N.D.           | N.D.            | N.D.                                                                | N.D.            | N.D.      | N.D.             | N.D.                |
|                | Total              | 0.08                | I           | <loq< td=""><td>I</td><td>I</td><td>I</td><td>0.92</td><td>0.02</td><td>I</td><td>I</td><td>I</td></loq<> | I               | I              | I               | 0.92                                                                | 0.02            | I         | I                | I                   |
| Imhoff tank    | AqP                | N.D.                | N.D.        | 0.02                                                                                                      | N.D.            | N.D.           | N.D.            | N.D.                                                                | 0.14            | N.D.      | N.D.             | N.D.                |
|                | SPM                | 73                  | N.D.        | 14                                                                                                        | N.D.            | 725            | N.D.            | N.D.                                                                | N.D.            | N.D.      | N.D.             | N.D.                |
|                | Total              | 0.29                | I           | 0.08                                                                                                      | I               | 2.90           | I               | Ι                                                                   | 0.14            | I         | I                | I                   |
| AP             | AqP                | 0.70                | N.D.        | 0.15                                                                                                      | N.D.            | N.D.           | N.D.            | N.D.                                                                | 0.36            | N.D.      | N.D.             | N.D.                |
|                | SPM                | 66                  | N.D.        | 17                                                                                                        | N.D.            | 407            | N.D.            | 17                                                                  | N.D.            | N.D.      | N.D.             | <loq< td=""></loq<> |
|                | Total              | 0.96                | I           | 0.22                                                                                                      | I               | 1.63           | I               | 0.07                                                                | I               | I         | I                | <loq< td=""></loq<> |
| Abbreviations: | RBC: rotating bi   | iological coi       | ntactor; MP | : maturation pond;                                                                                        | SSF: horizontal | l subsurface-f | low constructed | wetland; EA                                                         | A: extended aer | ation; UV | : ultraviolet; / | AP: anaero-         |

bic pond.

<sup>a</sup>Concentration obtained in the aqueous phase (AqP) expressed in  $\mu g \ L^{-1}$ . <sup>b</sup>Amount detected in the SPM obtained from 250 mL of WW effluent, expressed as ng.

°Total concentration detected considering both phases (expressed in  $\mu g \ \tilde{L}^{-1}$ ).

<sup>d</sup>N.D.: not detected.

<sup>e</sup>LOQ: limit of quantification.

| Analysis of polar pesticides, 1 Aris, and phenone compounds in www endents |                      |                                                                                        |                                                            |                        |                   |                     |
|----------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------|------------------------|-------------------|---------------------|
| Compound                                                                   | RBC                  | MP                                                                                     | SSF                                                        | EA + sand filters + UV | Imhoff tank       | AP                  |
| Polar pesticides ( $\mu g L^{-1}$ )                                        |                      |                                                                                        |                                                            |                        |                   |                     |
| Diuron                                                                     | 0.05                 | 0.06                                                                                   | 0.06                                                       | 0.09                   | N.D. <sup>a</sup> | 0.05                |
| Sebuthylazine + terbuthylazine                                             | <loq<sup>b</loq<sup> | <loq< td=""><td><loq< td=""><td>0.01</td><td>N.D.</td><td>0.03</td></loq<></td></loq<> | <loq< td=""><td>0.01</td><td>N.D.</td><td>0.03</td></loq<> | 0.01                   | N.D.              | 0.03                |
| Phenolic compounds ( $\mu g L^{-1}$ )                                      |                      |                                                                                        |                                                            |                        |                   |                     |
| 2,4,6-Trichlorophenol                                                      | 0.11                 | N.D.                                                                                   | 0.14                                                       | 0.12                   | N.D.              | N.D.                |
| 2,4,5-Trichlorophenol                                                      | 0.15                 | 0.16                                                                                   | N.D.                                                       | N.D.                   | N.D.              | N.D.                |
| 4-Tertoctylphenol                                                          | 0.10                 | 0.09                                                                                   | 0.11                                                       | 0.18                   | 73.45             | 83.71               |
| Pentachlorophenol                                                          | 0.04                 | N.D.                                                                                   | N.D.                                                       | N.D.                   | N.D.              | N.D.                |
| $PAHs (\mu g L^{-1})^{-1}$                                                 |                      |                                                                                        |                                                            |                        |                   |                     |
| Fluoranthene                                                               | 0.01                 | 0.01                                                                                   | 0.01                                                       | 0.01                   | N.D.              | <loq< td=""></loq<> |
| Fluorene                                                                   | 0.11                 | 0.09                                                                                   | 0.11                                                       | 0.07                   | 0.03              | 0.03                |
| Phenanthrene + anthracene                                                  | 0.04                 | 0.03                                                                                   | 0.05                                                       | 0.03                   | 0.03              | 0.03                |
| Pyrene                                                                     | 0.01                 | 0.01                                                                                   | 0.01                                                       | 0.01                   | 0.01              | 0.01                |
| -                                                                          |                      |                                                                                        |                                                            |                        |                   |                     |

Table 6 Analysis of polar pesticides, PAHs, and phenolic compounds in WW effluents

Abbreviations: RBC: rotating biological contactor; MP: maturation pond; SSF: horizontal subsurface-flow constructed wetland; EA: extended aeration; UV: ultraviolet; AP: anaerobic pond.

<sup>a</sup>N.D.: not detected.

<sup>b</sup>LOQ: limit of quantification.

positive samples, the presence of compounds was taken into account in the quantification stage by subtracting the blank area. Only 23 out of the 204 evaluated compounds were detected including 11 nonpolar pesticides, 3 polar pesticides, 4 phenolic compounds, and 5 PAHs.

Table 5 shows the obtained results for nonpolar pesticides and it can be observed that the most detected pesticides in the aqueous phase were chlorfenvinphos, diazinon, and ethoprophos, whereas in SPM, 2-phenylphenol ( $\log K_{ow}$  2.9) and cyfluthrin  $(\log K_{ow} 6.0)$  were the most frequently detected. In these cases, the removal of the SPM would imply that the final concentration of the compounds in treated water would have been significantly different, indicating the relevance of the analysis of both phases. In general, the obtained results are in accordance with those obtained for nonpolar pesticides in other reports [9,10,12,24,25], indicating that these compounds are usually found in WW but at low concentrations. Due to no legislation establishing maximum concentration levels of organic contaminants is set in WW, the results obtained were compared with the limits established in surface and drinking water. Considering EU legislation for surface water [26] concentrations above these maximum concentrations were only reported for chlorfenvinphos  $(0.20 \,\mu\text{g/L} > 0.1 \,\mu\text{g/L})$  and isodrin  $(0.05 \,\mu\text{g/L} > 0.005 \,\mu\text{g/L})$ . In contrast, concentrations above the maximum established by the EPA in drinking water [27] were not reported. Finally, it is important to highlight that the ratios between the concentration found in SPM and water phase were similar to those shown in Table 3.

In Table 6, the concentrations determined for polar pesticides, phenolic compounds, and PAHs are shown. It is important to notice that SPM was not submitted to analysis of polar pesticides and phenolic compounds because according to the distribution study, these analytes are mainly found in the aqueous phase. On the contrary, for PAHs, SPM was simultaneously analyzed with the aqueous phase, using a single method. It must be indicated that herbicides such as diuron and transformation products of atrazine were the compounds most frequently found in the samples. Among PAHs, fluorene, pyrene, and the sum of phenanthrene and anthracene were detected in all the samples, fact that highlights the ubiquity of these compounds. Regarding phenolic compounds, 4-tertoctilphenol was the compound showing higher concentration. The obtained results were in accordance with those reported in the literature where it is demonstrated that the compounds found in this study are the most commonly detected in WW samples [8,10–12,28]. Concentrations of these compounds were always below the maximum established by both the EU in surface water [26] and the EPA in drinking water [27], except for 4-tertoctylphenol, which was found at concentrations slightly higher.

#### 4. Conclusions

A distribution study of a variety of organic contaminants between the two phases composing trea-

ted WW samples, aqueous phase and SPM, has been carried out. Although the SPM is not usually analyzed, the study of the distribution between the aqueous phase and the SPM has revealed that for some contaminants it is necessary to analyze both phases to consider the total concentration in the sample and properly assess the possible effects of such pollutants on the environment. Thus, for the analysis of nonpolar pesticides and PAHs, both phases should be submitted to analysis due to these compounds are more prone to remain in the SPM. However, for polar pesticides and phenolic compounds, this analysis does not provide significant information because this type of compounds is mainly found in the aqueous phase. The same trend was observed for all the compounds despite of the type of treatment that WW had undergone. However, according to the chemical oxygen demand (COD) of the WWTPs effluents evaluated, colloidal phase should be significant. Thus, the description of the partitioning of the target compounds based not only on Kow but also considering the colloidal phase should be object of further studies.

#### Acknowledgments

The authors gratefully acknowledge Andalusian Regional Government (Regional Ministry of Innovation, Science, and Enterprise) and FEDER (Project Ref. P08-RNM-03892), as well as Spanish Ministry of Economy and Finance and FEDER, POCTEFEX program, (Project Ref. 0072\_CAMPUS\_EAGUA\_2\_E). NBB is grateful for her predoctoral grant from the aforementioned project. PPB acknowledges for personal funding through Juan de la Cierva Program (Spanish Ministry of Economy and Competitiveness-European Social Fund). RRG is also grateful for personal funding through Ramón y Cajal Program (Spanish Ministry of Economy and Competitiveness-European Social Fund).

#### References

- I. Muñoz, M.J. Gómez-Ramos, A. Agüera, J.F. García-Reyes, A. Molina-Díaz, A.R. Fernández-Alba, Chemical evaluation of contaminants in wastewater effluents and the environmental risk of reusing effluents in agriculture, Trac-Trends Anal. Chem. 28 (2009) 676–694.
- [2] M. Petrović, S. González, D. Barceló, Analysis and removal of emerging contaminants in wastewater and drinking water, Trac-Trends Anal. Chem. 22 (2003) 685–696.
- [3] L.C. Rietveld, D. Norton-Brandão, R. Shang, J. van Agtmaal, J.B. van Lier, Possibilities for reuse of treated domestic wastewater in The Netherlands, Water Sci. Technol. 64 (2011) 1540–1546.
- [4] M.J. García-Galán, M.S. Díaz-Cruz, D. Barceló, Occurrence of sulfonamide residues along the Ebro river basin. Removal in wastewater treatment plants and environmental impact assessment, Environ. Int. 37 (2011) 462–473.

- [5] M. Gros, M. Petrović, D. Barceló, Wastewater treatment plants as a pathway for aquatic contamination by pharmaceuticals in the Ebro River basin (northeast Spain), Environ. Toxicol. Chem. 26 (2007) 1553–1562.
- [6] Decision No 2455/2001/EC of the European Parliament and of the Council of 20 November 2001, establishing the list of priority substances in the field of water policy and amending Directive 2000/60/EC, Off. J. Eur. Communities L 331/1, 16.12.2001, March 2012. Available from: http://www.eur723lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ: L:2001:331:0001:0005:EN:PDF
- [7] List of the 129 priority pollutants by United States Environmental Protection Agency (US-EPA), Appendix A to part 423, September 2012. Available from: http://www.epa.gov/waterscience/methods/pollutants.htm
  [8] M. Blanchard, M.J. Teil, D. Ollivon, L. Legenti, M. Chevreuil,
- [8] M. Blanchard, M.J. Teil, D. Ollivon, L. Legenti, M. Chevreuil, Polycyclic aromatic hydrocarbons and polychlorobiphenyls in waswaters and sewage sludges from the Paris area (France), Environ. Res. 95 (2004) 184–197.
- [9] M. Kahle, I.J. Buerge, A. Hauser, M.D. Müller, T. Poiger, Azole fungicides: Occurrence and fate in wastewater and surface waters, Environ. Sci. Technol. 42 (2008) 7193–7200.
- [10] N. Martí, D. Aguado, L. Segovia-Martínez, A. Bouzas, A. Seco, Occurrence of priority pollutants in WWTP effluents and Mediterranean coastal waters of Spain, Mar. Pollut. Bull. 62 (2011) 615–625.
- [11] J. Sánchez-Avila, J. Bonet, G. Velasco, S. Lacorte, Determination and occurrence of phthalates, alkylphenols, bisphenol A, PBDEs, PCBs and PAHs in an industrial sewage grid discharging to a municipal wastewater treatment, Sci. Total Environ. 407 (2009) 4157–4167.
- [12] N. Stamatis, D. Helac, I. Konstantinou, Occurrence and removal of fungicides in municipal sewage treatment plant, J. Hazard. Mater. 175 (2010) 829–835.
- [13] M.C. Alonso, Ll. Tirapu, A. Ginebreda, D. Barceló, Monitoring and toxicity of sulfonated derivatives of benzene and naphthalene in municipal sewage treatment plants, Environ. Pollut. 137 (2005) 253–262.
- [14] R. Loos, G. Hanke, G. Umlauf, S.J. Eisenreich, LC-MS-MS analysis and occurrence of octyl- and nonylphenol, their ethoxylates and their carboxylates in Belgian and Italian textile industry, waste water treatment plant effluents and surface waters, Chemosphere 66 (2007) 690–699.
- [15] E. Pitarch, C. Medina, T. Portolés, F.J. López, F. Hernández, Determination of priority organic micro-pollutants in water by gas chromatography coupled to triple quadrupole mass spectrometry, Anal. Chim. Acta 583 (2007) 246–258.
- [16] S. Terzić, I. Senta, M. Ahel, M. Gros, M. Petrović, D. Barceló, J. Müller, T. Knepper, I. Martí, F. Ventura, P. Jovančić, D. Jabučar, Occurrence and fate of emerging wastewater contaminants in Western Balkan region, Sci. Total Environ. 399 (2008) 66–77.
- [17] M.S. García-Falcón, C. Pérez-Lamela, J. Simal-Gándara, Strategies for the extraction of free and bound polycyclic aromatic hydrocarbons in run-off waters rich in organic matter, Anal. Chim. Acta 508 (2007) 177–183.
- [18] W. Guo, M.C. He, Z.F. Yang, C.Y. Lin, X.C. Quan, H.Z. Wang, Distribution of polycyclic aromatic hydrocarbons in water, suspended particulate matter and sediment from Daliao River watershed, China, Chemosphere 68 (2007) 93–104.
- [19] S.Y. Han, J.Q. Qiao, Y.Y. Zhang, L.L. Yang, H.Z. Hong-zhen Lian, X. Ge, H.Y. Chen, Determination of n-octanol/water partition coefficient for DDT-related compounds by RP-HPLC with a novel dual-point retention time correction, Chemosphere 83 (2011) 131–136.
- [20] X.Q. Kong, D. Shea, R.E. Baynes, J.E. Riviere, X.R. Xia, Regression method of the hydrophobicity ruler approach for determining octanol/water partition coefficients of very hydrophobic compounds, Chemosphere 66 (2007) 1086–1093.

- [21] N. Barco-Bonilla, R. Romero-González, P. Plaza-Bolaños, A. Garrido-Frenich, J.L. Martínez Vidal, Analysis and study of the distribution of polar and non-polar pesticides in wastewater effluents from modern and conventional treatments, J. Chromatogr. A 1217 (2010) 7817–7825.
- [22] N. Barco-Bonilla, R. Romero-González, P. Plaza-Bolaños, J.L. Fernández-Moreno, A. Garrido Frenich, J.L. Martínez Vidal, Comprehensive analysis of polycyclic aromatic hydrocarbons in wastewater using stir bar sorptive extraction and gas chromatography coupled to tandem mass spectrometry, Anal. Chim. Acta 693 (2011) 62–71.
- [23] J.A. Padilla-Sánchez, P. Plaza-Bolaños, R. Romero-González, A. Garrido Frenich, J.L. Martínez Vidal, Application of a quick, easy, cheap, effective, rugged and safe-based method for the simultaneous extraction of chlorophenols, alkylphenols, nitrophenols and cresols in agricultural soils, analyzed by using gas chromatography-triple quadrupole-mass spectrometry/mass spectrometry, J. Chromatogr. A 1217 (2010) 5724–5731.
- [24] N. Berenzen, S. Hummer, M. Liess, R. Schulz, Pesticide peak discharge from wastewater treatments plants into streams during the main period of insecticide application: Ecotoxicological evaluation in comparison to runoff, Bull. Environ. Contam. Toxicol. 70 (2003) 891–897.
- [25] K. Haarstad, H.J. Bavor, T. Mæhlum, Organic and metallic pollutants in water treatment and natural wetlands: A review, Water Sci. Technol. 65 (2012) 76–99.
- [26] Directive 2008/105/EC of the European Parliament and of the Council of 16 December 2008 on environmental quality standards in the field of water policy, amending and subsequently repealing Council Directives 82/176/EEC, 83/513/ EEC, 84/156/EEC, 84/491/EEC, 86/280/EEC and amending Directive 2000/60/EC of the European Parliament and of the Council. Off. J. Eur. Communities L 348/84, 24.12.2008.
- [27] US-EPA list of contaminants and their maximum contaminant level (MCLs), December 2012. Available from: http://www. water.epa.gov/drink/contaminants/index.cfm
- [28] W. Qi, H. Liu, J. Qu, Ch. Hu, H. Lan, M. Berg, H. Ren, W. Xu, Polycyclic aromatic hydrocarbons in effluents from wastewater treatment plants and receiving streams in Tianjin, China, Environ. Monit. Assess. 177 (2011) 467–480.

#### Appendix

#### 1. Chemicals and materials

Pesticide analytical standards were purchased from Dr. Ehrenstorfer GmbH (Augsburg, Germany), as well as the isotopically labeled pesticides parathion ethyl-d<sub>10</sub> and simazine-d<sub>5</sub>, which were employed as internal standards (ISs) for nonpolar and polar pesticides, respectively.

A mix solution  $(200 \text{ mg L}^{-1})$  of acenaphthene (ACP), acenaphthylene (ACY), anthracene (ANT), benz[*a*]anthracene (BaA), benzo[*a*]pyrene (BaP), benzo [*b*]fluoranthene (BbFA), benzo[*ghi*]perylene (BghiP), chrysene (CHR), dibenz[*a*,*h*]anthracene (DBahA), fluoranthene (FA), fluorene (FLR), indeno[1,2,3-cd]pyrene (IP), naphthalene (NPH), phenanthrene (PHE), pyrene (PYR), and 2-bromonaphthalene (BrNPH) (purities  $\geq$  96.6%) in dichloromethane was provided by Supelco (Bellefonte, PA, USA). 5-Methylchrysene (MCHR) (99.6% purity), benzo[*j*]fluoranthene (BjFA)

(98.6% purity), benzo[*k*]fluoranthene BkFA (99.5% purity), and fluoranthene-d<sub>10</sub> (FA-d<sub>10</sub>), which was used as IS, were also obtained from Supelco. Dibenzo[*a*,*e*]pyrene (DBaeP), dibenzo[*a*,*i*]pyrene (DBaiP), dibenzo[*a*,*h*] pyrene (DBahP), dibenzo[*a*,*l*]pyrene (DBalP), and cyclopenta[*c*,*d*]pyrene (CPcdP) (purities  $\geq$  99%) were obtained from Dr. Ehrenstorfer.

Phenolic compounds standards, 2-nitrophenol (2-NTP), 4-nitrophenol (4-NTP), 2,4-dimethylphenol (2,4-DMP), 2-chlorophenol (2-CP), 4-chlorophenol (4-CP), 2,4-dichlorophenol (2,4-diCP), 2,4,5-trichlorophenol (2,4,5-triCP), 2,4,6-trichlorophenol (2,4,6-triCP), and 4-n-nonylphenol (4-n-NP) were obtained from Fluka (Steinheim, Germany). On the other hand, 3-nitrophenol (3-NTP), 4-chloro-3-methylphenol (4-C-3-MP), 4-tertoc-tylphenol (4-tertOP), and pentachlorophenol (PCP) were supplied by Supelco. Purities were always>97%. Isotopically labeled PCP ( $[^{13}C_6]$ -PCP) was used as IS and it was obtained from Dr. Ehrenstorfer.

Ethyl acetate (EtOAc), acetonitrile (ACN) and methanol (MeOH) were supplied by J.T. Baker (Deventer, Holland). Acetone was purchased from Fluka and dichloromethane (DCM) was obtained from Riedel-de Haën (Seelze, Germany). All organic solvents were of analytical grade. Ultrapure water was obtained from a Milli-Q Gradient water system (Millipore, Bedford, MA, USA). Formic acid (purity > 98%) and magnesium sulfate anhydrous (MgSO<sub>4</sub>) were purchased from Panreac (Barcelona, Spain). Sodium chloride (NaCl) and hydrochloric acid (HCl, purity 37–38%) were obtained from J.T. Baker. Anhydride acetic acid (AAA) (purity 99.9%), and pyridine (Py) (purity 99.8%) were purchased from Sigma–Aldrich (Madrid, Spain).

For filtration stages, 47 mm glass microfibre filters from Whatman (Maidstone, England, UK) and  $0.45 \,\mu$ m HNWP nylon membrane filters from Millipore (Carrigtwohill, County Cork, Ireland) were used.

For solid-phase extraction (SPE),  $C_{18}$  Sep-Pak cartridges (500 mg, 6 cc) as well as Oasis HLB (200 mg, 6 cc) cartridges, obtained from Waters (Milford, MA, USA), were employed. 30 mm cellulose filters (Whatman) and Hydromatrix (Varian) were used for pressurized liquid extraction (PLE).

#### 2. Apparatus

Nonpolar pesticide, PAHs and phenolic compounds analyses were carried out using a GC system Varian 3800 (Varian Instruments, Sunnyvale, CA, USA) equipped with electronic flow control (EFC). Samples were injected into an SPI/1079 split/splitless programmed-temperature injector, utilizing the large volume injection (LVI) technique and a Combi Pal (CTC Analytics AG, Zwingen, Switzerland) autosampler, using a 100  $\mu$ L syringe. The glass liner was equipped with a plug of carbofrit (Resteck, Bellefonte, PA, USA). A fused-silica untreated capillary column (2 m × 0.25 mm i.d.) from Supelco was used as precolumn connected to a Factor Four capillary column VF-5ms (30 m × 0.25 mm i.d. × 0.25 µm film thickness). The carrier gas was helium (99.9999%) at a constant flow rate of 1 mL min<sup>-1</sup>. The GC was interfaced to a 1200 L QqQ mass spectrometer (Varian Instruments) operating in electron ionization (EI) at 70 eV. Argon (99.999%) was used as collision gas. The mass spectrometer was calibrated every four days with perfluorotributylamine. Varian Workstation software was used for instrument control and data analysis.

Polar pesticide analyses were performed in an Acquity UPLC system using an Acquity UPLC BEH  $C_{18}$  column (100 mm × 2.1 mm), with a 1.7 µm particle size (both from Waters). Chromatographic separations were carried out using gradient elution with eluent A, being MeOH, and eluent B, consisting of an aqueous solution of formic acid (0.01%, v/v). MS analysis was carried out using a Waters Acquity TQD QqQ mass spectrometer (Waters, Manchester, UK). The instrument was operated using positive electrospray ionization (ESI+). Data acquisition was performed using MassLynx 4.0 and QuanLynx software (Waters).

The horizontal shaker used in the distribution study was obtained from P-Selecta (Selecta, Barcelona, Spain). PLE was performed using an ASE 100 Accelerated Solvent Extraction system (Dionex, Sunnyvale, CA, USA) equipped with 34 mL stainless steel extraction cells. A Reax-2 rotary agitator from Heidolph (Schwabach, Germany) was used for agitation of the derivatization mixture for phenolic compounds. An analytical balance AB204-S from Mettler Toledo (Greifensee, Switzerland) and a rotary evaporator R-114 (Büchi, Flawil, Switzerland) were also used.

#### 3. Extraction procedures

Due to the difficulty of finding real blank WW samples, during the distribution study nonspiked WW samples were always used as "blank" samples in order to check possible looses or contamination of the analytes during the procedure. In positive samples, the presence of the compounds was taken into account in the quantification stage by subtracting the blank area.

## 3.1. Extraction of the aqueous phase by SPE for nonpolar pesticides

Filtered water samples (250 mL) were adjusted to pH 3.0 with 2 M HCl (all samples showed pH > 7), and

2.5 g of NaCl was added in order to adjust the conductivity to 50 mS. An organic modifier (MeOH) was added (1%, v/v) before performing the SPE procedure in order to avoid possible analyte adsorptions in the glass material. The C<sub>18</sub> cartridges were previously conditioned with 3 mL of EtOAc, followed by 3 mL of MeOH, and 3 mL of ultrapure water without allowing the cartridges to dry out. Then, the WW samples were passed through the cartridges under vacuum at a flow rate of 10 mL min<sup>-1</sup>. The cartridges were dried for 3 h and the pesticides were eluted with 5 mL of EtOAc. The extracts were evaporated with a vacuum rotary evaporator at 45°C, and the residues were redissolved adding 25 µL of parathion ethyl-d<sub>10</sub> (500 µg L<sup>-1</sup>) and EtOAc (final volume: 2 mL) before chromatographic analysis.

# 3.2. Extraction of the aqueous phase by SPE for polar pesticides

Conductivity and pH adjustments were performed to 250 mL of each filtered WW sample as described for the analysis of nonpolar pesticides. Depending on the type of WW effluent, two conditioning/elution conditions were utilized. Oasis HLB cartridges were conditioned with 5 mL of EtOAc (for MBR, EA, and MP effluents) or DCM (for AP samples) followed by 5 mL of MeOH and 5 mL of ultrapure water. The cartridges were dried for 3h after passing the sample and the pesticides were eluted with 5 mL of MeOH, followed by 5 mL of EtOAc (MBR, EA, and MP) or DCM (AP). The extracts were evaporated with a vacuum rotary evaporator at 45°C, and the residues were redissolved adding 25  $\mu$ L of simazine-d<sub>5</sub> (500  $\mu$ g L<sup>-1</sup>) and a mixture of MeOH/aqueous solution of formic acid 0.01% (50:50, v/v) to a final volume of 2 mL before chromatographic analysis.

### 3.3. Extraction of nonpolar pesticides from the SPM by *PLE*

The filters containing the SPM were dried and submitted to the PLE extraction. Briefly, a cellulose filter was placed at the bottom of a 34 mL stainless steel extraction cell. Filters with the SPM were cut into small pieces and placed into the cell mixed with Hydromatrix up to filling it. The extraction was performed using EtOAc:MeOH (3:1, v/v) under the PLE conditions described by Martínez-Vidal et al. [1] for the extraction of pesticides in agricultural soils. The extracts were then evaporated and redissolved as explained for the SPE samples.

#### 3.4. Extraction of the aqueous phase by SPE for PAHs

The  $C_{18}$  cartridges were previously conditioned with 5 mL of ACN followed by 10 mL of ultrapure water without allowing the cartridges to dry out. Then, WW samples (100 mL WW + 30 mL ACN) were passed through the cartridges under vacuum at a flow rate of 10 mL/min. The glass material containing the samples was washed with 20 mL of a mixture of ACN/water (30:100, v/v), and the solution was subsequently passed through the cartridges. These were dried for 3 h and the elution was performed with 5 mL of *n*-hexane. All the extracts were evaporated with a vacuum rotary evaporator at 40 °C and finally the residues were reconstituted adding 25 µL of fluoranthene-d<sub>10</sub> (final concentration: 500 µg L<sup>-1</sup>) and EtOAc to a final volume of 2 mL before chromatographic analysis.

### 3.5. *Extraction of the aqueous phase by SPE for phenolic compounds*

As the filtered WW effluents showed pH values between 7.7 and 8.3, then pH was adjusted to 2.5–2.7 with HCl (2 M) to ensure the protonated form of the phenolic compounds, facilitating the absorption into the solid phase, and an adequate preservation of the samples. The Oasis HLB cartridges were conditioned with 5 mL of acetone followed by 5 mL of MeOH and  $3 \times 5$  mL of ultrapure water without allowing the cartridges to dry out. Then, the filtered WW sample (250 mL) was passed through the cartridges under vacuum at a flow rate of  $10 \text{ mL min}^{-1}$ . The cartridges were dried for 2 h and the phenolic compounds were eluted sequentially with 3 mL of acetone and 2 mL of DCM. The extracts were collected into 5 mL volumetric flasks, adjusting the total volume with DCM, without any evaporation step. Then, the derivatization stage was performed according to the procedure described by Padilla-Sánchez et al. [2]. Briefly, 860 µL of the extract was transferred to a 2 mL vial and 20 µL of [ $^{13}C_6$ ]-PCP (IS), 20 µL of Py and 100 µL of AAA were added to carry out the derivatization reaction. The mixture was shaking in a rotary agitator for 2 min before chromatographic analysis.

#### References

- [1] J.L. Martínez Vidal, J.A. Padilla Sánchez, P. Plaza-Bolaños, A. Garrido Frenich, R. Romero González, Use of pressurized liquid extraction for the simultaneous analysis of 28 polar and 94 non-polar pesticides in agricultural soils by GC/QqQ-MS/MS and UPLC/QqQ-MS/MS, J. AOAC Int. 93 (2010) 1715–1731.
- [2] J.A. Padilla-Sánchez, P. Plaza-Bolaños, R. Romero-González, A. Garrido Frenich, J.L. Martínez Vidal, Application of a quick, easy, cheap, effective, rugged and safe-based method for the simultaneous extraction of chlorophenols, alkylphenols, nitrophenols and cresols in agricultural soils, analyzed by using gas chromatography-triple quadrupole-mass spectrometry/mass spectrometry, J. Chromatogr. A 1217 (2010) 5724– 5731.