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ABSTRACT

To conserve water in the mandarin orange canning industry, a water reclamation system was
designed for a production scale of 50 kL/h. The discharged water from mandarin
transportation using a conveyor belt was collected in a pool, chlorinated, filtered by active
carbon, and then UV-sterilized. This water was then reused for the processes of segmenting,
transportation, and washing after alkaline solution treatment. The water quality had been
monitored during the water reclamation. The results showed that the reused water quality
was improved by the system and the main physicochemical properties and sensory index
were conformed to the requirements of Chinese National Standard GB5749 except the index
of chemical oxygen demand. The reused water contained about 0.4 ppm of chlorine and
10 lg/mL of pectin. The total bacterial count was� 10 CFU=mL and no Escherichia coli was
detected. The seasonal production monitoring results showed that the quality of disposed
water from this system remained stable. This technology might be useful for water
reclamation in other fruit processing plants.
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1. Introduction

Although water is ubiquitous, only about 0.4% is
suitable for human consumption [1]. A report from the
Committee of Environment and Development of the
World in 1988 claims that water is replacing petroleum
as a valuable commodity and is causing a worldwide
crisis [2]. The World Health Organization (WHO) has
estimated that 1,000 cubic meters per person per year

is the benchmark level below which chronic water
scarcity is considered to impede development and
harm human health [3]. A few companies and research
institutions had studied water reclamation technology
and put into practice [4–6]. China consumes less than
one-quarter of the world average per capita water
usage, and has one of the 13 poorest water resources
in the world [7]. The shortage of water is a serious
problem in China. It was estimated that the water sup-
plies fall short of 300–400 million cubic meters every
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year and 70% of the river systems are polluted to
various extents [8]. For example, the Huang He is the
second longest river in China and 73% of the sewage
disposed into the river originates from industrial
discharge. The direct economic loss caused by waste
water has reached 1.8–2.5 billion USD per year [9]. It is
well known that water shortage is one of the most
important challenges to mankind in this century [10].

Water conservation contributes to sustainable
development and market competitiveness of the food
industry. Implementation of water conservation and
reuse practices in the food industry faces a great chal-
lenge for limiting production costs and maintaining
the environment and public health through knowl-
edge, technical expertise, and documentation [11,12].
The Codex Committee on food hygiene proposed
guidelines in 2001 for the hygienic processing of
reclaimed water in food plants [13], which is a widely
accepted standard for water reclamation in food
industries. Richard evaluated the public health impli-
cations of water reclamation in the food and beverage
industry [14], which found that conservative reuse of
water had no negative effects on human health. Legis-
lation has been enacted to address water quality, other
than drinking water. The US Environment Protection
Agency (EPA) in 2004 [15] described guidelines for
water reuse. There has been a focus on water reuse
technology in canned food factories in Thailand and
South Africa. The water reuse rate is greater than 40%
in these countries, which reduces production costs
and environmental pollution [16,17].

Presently, China ranks first in total fruit canning
production worldwide, with exports totaling approxi-
mately 1.1 million tons per year. China also ranks first
in total canned orange output in the world, accounting
for 60–70% of the world’s trade volume [18]. Using
current processing technologies, the water requirement
is quite high, as up to 30–50 kL of water is required to
produce a single metric ton of canned mandarin
oranges. The environment could be seriously impacted
if wastewater is not properly treated. To make matters
even worse, wastewater from canning mandarin
oranges contains large amounts of organic compo-
nents, including carbohydrates, acids, pectin, pig-
ments, and essential oils. The biochemical oxygen
demand (BOD) is about 6.4 kg/ton and liquid suspen-
sions account for approximately 1.3 ppt of water [19].
Treatment of this type of wastewater is both complex
and difficult, and the cost is expected to be very high.

Since there is a higher standard for the safety of
food products, water treatment in the food industry
must address the potential toxicity of disinfectants
and microbiological contamination [11]. Casani and
Knøchel [20] proposed a Hazard Analysis and Critical

Control Points (HACCP)-based approach for evaluat-
ing microbiological contamination to ensure accept-
able water quality for different purposes when
reusing water from the food industry.

To conserve water in the mandarin orange canning
industry, a water reclamation system was designed
using a production scale of 50,000L of water per hour.
This project commenced in 2008, some technological
improvements and upgrades were introduced, they
included the following: sump inlet located stainless
steel mechanical grid, which used to intercept pollu-
tants in suspension or floating state; parallel in the
original bag filter on the basis of a set of bag filters,
each set of bag filter was used in rotation every 12 h,
then the bag filter can be cleaned regularly; between
the bag filters and activated carbon filter, and between
activated carbon filter and UV filter set pressure
pump, then the water can be smoothly driven flow
through the water treatment system. Its trial run over
two production seasons indicated that the quality of
reclaimed water met the designated requirements.

2. Materials and methods

2.1. Water reclamation treatment

The basic processing steps of mandarin orange
canning factories were similar to typical canning oper-
ations, which included raw material selection, wash-
ing, peeling/preparation, blanching, sorting/grading,
filling, sealing, retorting, cooling, labeling, or storage
[21]. The discharged water from these different steps
largely varied in quality and quantity. The processing
of sorting/grading accounted for 55% of the total
water consumption, but the other processing
accounted, which include washing, peeling/prepara-
tion, blanching, filling, sealing, retorting, and cooling,
only for 45% [19]. A conveyor belt was used to trans-
port the fruit in the processing of sorting/grading.
Great deal of the fresh water was emptied into the
conveyor belt and discharged. This discharged water
was selected for reclamation. As shown in Fig. 1, the
discharged water from mandarin orange transporta-
tion over a conveyor belt was collected in a pool. After
chlorination, active carbon filtering, and ultraviolet
(UV) sterilization, water was reused for blanching, seg-
menting, transportation, and washing following alka-
line solution treatment. The investment cost of this
water reuse treatment system was about $460,000 and
the operational cost was approximately $52,000 per
production season. Six water quality monitoring points
were selected in the system for research purposes.

Three 350mL water samples were collected at each
monitoring point every 4 h during each sampling date
and conducted continually throughout the production
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season. The samples were analyzed in the factory
laboratory immediately after collection. The results
were reported as means with standard deviations.

2.2. Analytical methods

The water quality parameters of chloride content,
pectin content, total bacterial count, Escherichia coli
and coliform bacteria, and physicochemical parame-
ters of turbidity, chemical oxygen demand (COD),
color, perceivable material, total soluble solids, and
pH were selected for the analysis.

The chloride content in the samples was deter-
mined using a waterproof ExStik CL200 Chlorine
Meter (Shanghai San-Xin Instrumentation, Inc. Shang-
hai, China). The total bacterial count was determined
according to the plate count method and the E. coli
and coliform bacteria contents were determined using
the Petrifilme method, as described in the literatures
of China’s Ministry of Public Health GB/T4789.2 and
GB/T4789.3 [22].

The pectin content in the water samples was
determined by the carbazole and sulfuric acid

spectrophotometric method [23] using a Shima-
dzuUV2550 spectrophotometer (Shimadzu Scientific
Instruments, Columbia, MD, USA).

The physicochemical wastewater parameters of
turbidity, color, perceivable material, total soluble sol-
ids, and pH were determined according to the
National Standard Method of Drinking Water Stan-
dard Test Methods, Sensory Characteristics, and Phys-
ical Indicators (Chinese National Accreditation Service
for Conformity Assessment, GB/T 5750.44) [24]. The
COD was determined according to the Standard
Examination Methods for Drinking Water (Chinese
National Accreditation Service for Conformity Assess-
ment, GB/T 5750.7) [24].

3. Results and discussion

3.1. The residual chloride content in the water reclamation
system

The residual chloride contents from monitoring
points in the water reclamation system during the
canning process are presented in Fig. 2. The water

Fig. 1. The water reclamation system and monitoring points in a mandarin orange canning factory.
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obtained from monitoring point 1 was polluted,
whereas water at monitoring point 6 was cleaned fol-
lowing treatment. The former had a lower chloride
concentration compared with the latter. The untreated
water (monitoring point 1) was obtained from the con-
veyor belt, which was directly supplied to the factory
through a long pipeline from the commercial water
company, and the chloride content was less than
0.30 ppm. After treatment, the chloride content (moni-
toring point 6) ranged from 0.30 to 0.40 ppm, which
met the free chlorine requirement on disinfectants as
set by the Chinese National Standard [25]. The resid-
ual chloride content at monitoring point 2 was rela-
tively high (1.5 ppm), mainly because of chlorination
treatment. The cloth bag filter had little influence, and
the chloride levels at monitoring point 3 were almost
the same as that of monitoring point 2. When the
water flowed through the activated carbon purifier
(monitoring point 4), the level of residual chloride
decreased sharply by approximately 70%. The acti-
vated carbon purifier’s tank was 2,600mm in diameter
and 1,500mm in height that stored 5 kL of filtration
material of core absorbent carbon. It is designed for a
production scale of 50 kL/h. The activated carbon had
a good adsorption capacity for residual chloride in
water, and its efficiency was primarily dependent on
the residual chloride concentration [26]. To inhibit
microbial growth, a second chlorination unit was
added and the level of residual chloride remained at
about 1.0 ppm (monitoring point 5). However, the
chloride concentration decreased when the water

flowed through the UV sterilization device at monitor-
ing point 6, which reduced the remaining chloride by
more than 60%. The UV sterilization device was made
up of three ultraviolet sterilizers, all of them were in
parallel. Each ultraviolet sterilizer was designed for a
production scale of 1,620 kL/h, in which nominal
capacity was 220W. It was 219mm in diameter and
1,200mm in length, the input pipe diameter was
80mm. The UV treatment is very effective for chloride
degradation, which is dependent on light intensity and
treatment duration [27].

3.2. Total bacterial count and E. coli in the water
reclamation system

The total bacterial count and E. coli detected at
various monitoring points in the water reclamation
system during operation are presented in Figs. 3 and
4. Water samples obtained from monitoring point 1
contained between 10 and 100CFU/mL, while the
concentration of E. coli was less than 10CFU/mL.
Microbial contamination was virtually unavoidable,
because the fruit was manually handled during trans-
portation along the conveyor belt. Furthermore, con-
siderable amounts of organic compounds from
mandarin orange segments might have been dissolved
in the water, which offered nutrients for micro-organ-
ism growth. Following the chlorination treatments, the
total bacterial count and E. coli content of water sam-
ples at monitoring points 2 and 5 decreased to less
than 1CFU/mL, suggesting a good disinfection effect.
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Fig. 2. Residual chloride contents at monitoring points in
the water reclamation system.

Fig. 3. The total bacterial count at six monitoring points in
the water reclamation system of a mandarin orange
canning factory.
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At monitoring point 6, the total bacterial count
averaged less than 1CFU/mL and the E. coli was not
detected in the water after the reclamation process,
which met the Chinese National Standard (Standards
for Drinking Water Quality, [25], Table 1).

3.3. Changes in pectin content in the water reclamation
system

The pectin content of water samples from the
water reclamation system was presented in Fig. 5.
Monitoring showed that water from the conveyor belt
(monitoring point 1) contained the highest amount of
pectin (27ppm), and then gradually decreased as the
water passed through the system. Following activated
carbon adsorption, the pectin content was reduced to
13.36ppm (monitoring point 4 in Fig. 5). The cleaned
water (monitoring point 6) contained approximately
10ppm of pectin, but did not induce cloudiness in the
water and did not have any negative influences on
processing the canned fruit.

3.4. Changes in other physicochemical parameters in the
water reclamation system

The changes of other physicochemical water
parameters for the water reclamation system were
presented in Table 1. Before treatment, the water at
monitoring point 1 had a chroma value of 12Hazen
units (HU), turbidity of 6.3Nephelometric turbidity
unit (NTU), and total soluble solids of 157mg/L.
However, water after treatment (monitoring point 6)

Fig. 4. E. coli detection at six monitoring points in the
water reclamation system of a mandarin orange canning
factory.
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had a chroma value of 4HU, turbidity of 2.8NTU,
and total soluble solids of less than 100mg/L. The
data showed that the sensory index improved signifi-
cantly after the water passed through the reclamation
system. The pH values of the water were maintained
within the range of 6.4–6.9, which met the Chinese
National Standard (Table 1). The water was clear and
no abnormal smell was detected. The processed water
physicochemical parameters of turbidity, color, per-
ceivable material, total soluble solids, and pH met the
Chinese National Standard [25].

The COD value (52mg/L) was notably higher than
that of the Chinese National Standard, which may
have been caused by dissolved pectin in the water
[28,29]. Pectin is a constituent of oranges, therefore a
high COD value might not be a concern for the safety
and quality of the canned mandarin processing, pro-
viding that the micro-organisms were well controlled
(Section 3.2). The COD values indicate the organic
pollution levels in water. Many studies on organic
pollution in water treatment have addressed biochem-
ical treatments [30–33], while few have reported that
the COD value was sufficiently controlled within the
range of 100mg/L, if the wastewater had not been
biochemically treated. Soluble components of the raw
material were easily dissolved in water during the
production process. The water COD value of the pres-
ent reclamation system reached about 52mg/L, which
illustrated its efficiency in water quality improvement.

4. Conclusions

A water reclamation system was designed for a
mandarin orange canning factory with a production

rate of 50,000L/h. From the mandarin processing line,
the water from a conveyor belt area was collected and
treated by chlorination, active carbon filtration, and
UV sterilization. The water after reclamation was
clear, with most of the physicochemical parameters
meeting the Chinese National Standard [25].
Reclaimed water could then be reused for mandarin
grading, segmenting, conveying, and washing follow-
ing alkaline treatment. This system can save 100,000L
of water per hour, which equates to 840,000,000 L of
water that can be saved over one production season
(8 h/day and 105days/production season). As water
is a very important, but scarce, resource in China and
around the world, this water reclamation system
could be a practical and economical approach in other
fruit and vegetable canning factories.
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