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ABSTRACT

Measurement data are used to calibrate and validate the effect of models. In this study, four
types of uncertainty categories covering flow measurement, sample collection, sample preser-
vation/storage and laboratory analysis were quantified for flow, sediment and water quality
measurement data under best-, typical- and worst-case scenarios. The root mean square error
propagation method was used to calculate the overall uncertainty. A case study was con-
ducted in the Daning River with the Soil and Water Assessment Tool. Based on the results,
the probable error range values of flow were lower than those of sediment and nutrients,
indicating greater uncertainty in the sediment and total phosphorus results. It is also indi-
cated that the uncertainty was smaller when the model outputs had a normal distribution.
This research provides scientific data of measurement uncertainty in China, which can assist
modelers in evaluating model performance by quantifying the “quality” of the response data.

Keywords: Uncertainty; Measurement data; SWAT model; Daning River watershed; Flow;
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1. Introduction

Watershed models are widely used to support
sound practices in hydrology and water quality man-
agement [1]. The response data, including measured
flow, sediment and pollution date, are always used to
calibrate and validate watershed models [2–4].
However, uncertainties during the process of sample

collection and measurement are important and cannot
be ignored [5,6]. Hence, the uncertainty of measured
water quality data and its effect on modeling have
become an important research subject in the field of
water pollution [7].

Four procedural categories—flow measurement,
sample collection, sample preservation/storage and
laboratory analysis—will introduce uncertainties into
measured water quality data [8]. Previous studies
have provided valuable knowledge of the uncertainty*Corresponding author.
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related to sampling and chemical analysis procedures.
The Guide to the Expression of Uncertainty in
Measurement [9], from the international organization
for standardization (ISO), is the standard for the eval-
uation of measurement uncertainty in metrology.
Compatible with the ISO Guide for the expression of
uncertainty in measurement, data on fuzzy uncer-
tainty propagation in measurement have been avail-
able thanks to fuzzy arithmetic, which is a
generalization of interval analysis, yielding both
worst-case results and best estimates simultaneously
[10]. The Bayesian approach to uncertainty evaluation
is put into effect by employing numerical integration
techniques [11]. Gerd et al. [12] evaluated measure-
ment uncertainty on the basis of probability density
functions (PDFs) using a Monte Carlo method. Chew
Gina and Walczyk Thomas [13] also developed a
guide to express the uncertainty in measurement by
using both the partial derivative approach and the
Monte Carlo approach. The Robust analysis of vari-
ance is applied [14] to estimate the total measurement
uncertainty and to quantify the contributions to the
uncertainty that arise from the processes of primary
sampling and chemical analysis.

However, few complete error propagation analyses,
including all error sources, have been conducted for
measured water quality data. The scientific community
has not gained an adequate understanding of the
uncertainty of measured flow water quality data and
has not adequately described the effects of uncertainty
on water quality management. Thus, describing the
effects of measured water quality data uncertainty on
water quality management is particularly important.

The aims of this study were: (1) to evaluate the error
of measured flow and water quality data and (2) to
evaluate the uncertainty caused by measurement data
in the Soil and Water Assessment Tool (SWAT) model.

2. Materials and methods

2.1. The study site and available data

The upper Daning River watershed, covers an area
of 2,027 km2, is located in Wuxi County in the Three
Gorges Reservoir Region of China (Fig. 1). The
watershed is characterized by a northern subtropical
monsoon climate and has an annual mean precipita-
tion of 1,182mm and an annual mean temperature of
16.6˚C. The altitude of the region ranges from 200 to
2,588m. The primary land uses in the watershed
include 12.5% grassland, 25.3% cropland and 61.8%
forest. The crops consist of corn, wheat, rice and pota-
toes. The primary soil types include yellow brown
soil, yellow cinnamon soil and purple soil.

Due the lack of measured flow and water quality
data in China, only flow, sediment and TP data in the
study area were available. Monthly stream flow data
from the Wuxi gauge for 2000–2007 and monthly sedi-
ment yield data from the Wuxi gauge for 2000–2007
were obtained from the Changjiang Water Resource
Commission, China. Monthly TP concentration data
from the Wuxi gauge for 2000–2007 were obtained
from the Wuxi County Environment Protection
Agency.

2.2. Uncertainty expression

2.2.1. Error of measured data

Error in the measured data can be introduced in
each step of the measurement process. Bed scour/
deposition, bank erosion, vegetation changes and
deposition changes in channel dimensions are the
major sources of uncertainty in measured flow for nat-
ural channels. Despite whether manual or automated
sampling is used, ignorance of the spatial and temporal
variability in constituent concentrations will introduce
substantial uncertainties in point sampling at random
times and/or locations during flow events. Numerous
factors, such as the container’s characteristics, the stor-
age environment, chemical preservatives and the filtra-
tion methodology, will all influence these physical,
chemical and biological processes during the interval
between sample collection and analysis. The main
potential sources of uncertainty in the laboratory are
associated with sample handling, chemical prepara-
tion, analytical method and equipment, personal exper-
tise, calibration standards and reference materials.

2.2.2. Root mean square error propagation

The root mean square error propagation method
[15] shown in Eq. (1), designed to combine all
potential errors and to produce realistic estimates of
cumulative uncertainty, was used to estimate the
cumulative probable uncertainty for the overall
resulting flow and water quality data in this
study.

PER ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

ðE2
1 þ E2

2 þ E2
3 þ . . .þ E2

nÞ
s

ð1Þ

where PER is the probable error range (±%), n is the
number of potential error sources, and E1;E2;E3:::En is
the uncertainty associated with each potential error
source (±%).
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2.3. The effect of measurement uncertainty on model
evaluation

2.3.1. Effect on output deviations

To more appropriately calculate the deviation
between each pair of measured and predicted values
based on the measured uncertainty, modification devi-
ations [16] were made to calculate the difference
between each pair of measured and modeled values.
The modifications are shown in Eq. (2).

eu2i ¼ CFi

0:5
� ðOi � PiÞ ð2Þ

where eu2i is the modified deviation between mea-
sured and predicted data, CFi is the correction factor
based on the probability distribution, Oi is the mea-
sured data, and Pi is the modeled data.

The uncertainty range of the modeled results can
be obtained based on Eq. (2), as Eq. (3) shown. When
the modeled result is a uniform distribution, the mean
of the modeled results is the observed data, and the
uncertainty range is ðOi � ei;Oi þ eiÞ. For normal
distribution modeled results, the confidence range is
ðl� 3r; lþ 3rÞ and the confidence level is 0.997.

Pi ¼ Oi � ei ð3Þ

2.3.2. Effect on error deviation

The SWAT model was calibrated by using
the highly efficient Sequential Uncertainty Fitting

version-2 (SUFI-2) procedure [17]. The calibration data
covered 2004–2007, and data of 2000–2003 were used
in the validation period. Two goodness-of-fit indicator
values (Ens and R2) for the calibration and validation
periods are listed in Table 1. The values are all above
the suggested lower Ens limit of 0.5 [18], which indi-
cates the satisfactory performance of the model.

The Monte Carlo method was selected to provide
approximate solutions to a variety of mathematical
problems by performing statistical sampling experi-
ments on a computer. Because too many dates needed
to be sampled, a Latin Hypercube method was used
to obtain 10,000 random samples in the modified
uncertainty range of the modeled flow and the sedi-
ment and TP results to improve sampling efficiency.
Then, the mean simulated value (M), standard devia-
tion (SD), 90% confident interval and coefficient of
variation (CV) were calculated based on the random
sampling in the uncertainty range of the modeled
results, which was based on the Monte Carlo

Table 1
The good-of-fit indicator values for calibration and
validation period

Period Variable R2 ENS

Calibration Flow 0.79 0.66

Sediment 0.83 0.73

TP 0.86 0.76

Validation Flow 0.95 0.89

Sediment 0.83 0.67

TP 0.81 0.51

Fig. 1. Location of the Upper Daning River Watershed.
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method, to characterize the uncertainty of the
modeled results.

3. Results and discussion

3.1. The probable error range of measured flow and water
quality data

Due to the limitations of the measured data types
in the studied watershed, only the measurement
uncertainty intervals of flow, sediment and TP data
were calculated in this study. Various “data quality”
scenarios (best, typical and worst case) were created
for each step in measuring the water quality loads.
The classification of scenarios (best, typical and worst)
was based on a quality assurance/quality control
effort constrained by financial and personal resources
and hydrologic conditions. The classification of indi-
vidual steps in these data quality scenarios was based
on professional experience and judgment [19]. Based
on the conditions in China, the uncertainty range of
the measured water quality data was calculated as the
basis of the uncertainty analysis using the SWAT
model. Cumulative uncertainties introduced by differ-
ent sources of error in the best, typical and worst
measurement conditions of flow, sediment and TP are
shown in Table 2.

For flow, the worst-case scenario involved flow
estimation with Manning’s equation with a stage-dis-
charge relationship for an unstable, mobile bed and a
shifting channel. The typical scenario involved a range
of individual run-off measurement techniques, chan-
nel types, and channel conditions. The best-case sce-
nario included flow measurement under ideal
hydrologic conditions, specifically a pre-calibrated
flow control structure (stable bed and channel) and a
stilling well for stage measurement. Under these three
conditions, the calculated cumulative probable uncer-
tainty (±%) errors were 2, 9 and 36%, respectively.

For sediment and TP, the worst-case scenario
involved liberal estimates of error associated with

sample collection at a single point, infrequent time-
interval sampling at a high minimum flow threshold,
and disregard of conditions outside the sampling per-
iod. Also involved was unpreserved, unrefrigerated
sample storage for 144 h and then refrigerated storage
for 48 h prior, with liberal estimates of error for con-
stituents present in very low concentrations to analy-
sis. The typical-case scenario involved moderate
errors associated with frequent flow- or time-interval
sample collection at a single point and estimation of
conditions outside a high flow threshold during sam-
pling. Also involved was refrigerated sample storage
for 54 h prior, with moderate error estimates for low
constituent concentrations to analysis. The best-case
scenario involved conservative error estimates associ-
ated with frequent flow- or time-interval sample col-
lection at a single point and estimation of conditions
outside a low flow threshold during sampling. Also
involved was iced sample storage for 6 h prior, with
conservative error estimates for constituents present
in moderate concentrations during the analysis per-
iod. Under the three conditions, the calculated cumu-
lative probable uncertainty (±%) errors were 2, 16
and 102% for sediment and 2, 26 and 221% for TP,
respectively.

Overall, the PER values of flow were the smallest,
while TP had the largest PER values, indicating that
the reliability of measured flow was much higher than
that of the measured pollutants load. The large uncer-
tainty of sediment and nutrient load may be due to
the errors of sediment and nutrients coming from
both flow measurement and other steps, including
sample collection, sample storage and laboratory anal-
ysis. The measurement uncertainty of the sediment
was lower than that of nutrition because the sediment
was more stable than the nutrient loading (especially
dissolved nitrogen and phosphorus) without the effect
of storage time and storage conditions.

Proceeding from China’s actual conditions, there
were insufficient funds to obtain the best instruments
and professional staff at any monitoring station, so it
was difficult to obtain measured data with the best
“quality”. However, the reliability and accuracy are
the baseline of the measurement. If the data quality is
out of demand, it is better to do nothing than obtain a
set of wrong data. The results of this study indicated
a large gap between the typical- and worst-case sce-
narios, but there was less difference between the typi-
cal- and best-case scenarios. Thus, for important
stations, such as those for drinking water resources
and certain rivers, the best monitoring conditions
would be most acceptable; for other sites, if there are
insufficient funds, a typical monitoring condition
might also be feasible.

Table 2
Cumulative uncertainty, represented by PER, for run-off,
sediment and TP for best case, typical case and worst
scenarios (±%)

Scenarios Run-off Sediment Total P

Worst case scenario 36 102 221

Typical scenario maximum 16 48 95

Typical scenario average 9 16 26

Typical scenario minimum 4 5 7

Best case scenario 2 2 2
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3.2. Effect on SWAT modeling

3.2.1. The modified deviation of measured data

As Eq. (3) shows, the uncertainty interval
ðOi � ei;Oi þ eiÞ of the model results is available when
the observation and correction errors eu2i are known.
Because most of the measured data were normally
distributed [16], this study focused on measuring the
modified deviation eu2i of normally distributed mea-
surement data (Fig. 2). The results show that the dif-
ference between the modified measurement data and
the model results decreased gradually as the PER val-
ues increased. The average modified deviation of flow
was 18.74, 18.45 and 11.17m3/s when the PER was 2,
9 and 36%, respectively, which indicates a better mod-
ification effect in the SWAT model for the simulation
results of flow.

Because there were less data of measured sediment
and TP, only the average results of annual sediment
and TP were given (Table 3). The modified deviation
change tendency of sediment and TP were the same
as flow: all decreased as the PER value increased,
indicating that after considering the measurement
uncertainty, the model effect improved. Considering
China’s national conditions and the most common dis-
tribution patterns of measured data, the PER values
under the typical case (i.e. 9% for flow, 16% for sedi-
ment, and 26% for TP) were selected. The modified
deviation eu2i of the measurement data under the nor-
mal distribution conditions was selected as the error
to calculate the uncertainty values.

3.2.2. Expression of measurement uncertainty

The statistical results of the 10,000 samples under
the uniform and normal distribution conditions were
calculated (Fig. 3). The average range of flow was
from 34.36 (2006) to 89.22m3/s (2003) under the uni-
form distribution condition and was from 34.42 (2006)
to 89.28m3/s (2003) under the normal distribution.
There was little difference between the average simu-
lated flow data of different distribution patterns.
However, when the data were normally distributed,
the standard deviation and CV values were 6.10m3/s
and 0.101, respectively, both lower than those under
the uniform distribution, which was 10.68m3/s and
0.178, respectively. This result indicates that the uncer-
tainty of the normally distributed data was less than
that of the uniformly distributed data.

To characterize the uncertainty range of the flow
model results, the 5th percentile of the 10,000 samples
of flow data was selected as the lower limit of the
90% confidence interval, and the 95th percentile was
the upper limit (Table 4). There was a narrower

uncertainty range of the normally distributed simu-
lated flow data than the uniformly distributed data.
The confidence interval width was closely related to
the flow values. The largest confidence interval width
was from 2003, which also had the largest simulated
flow, with 44.68m3/s under the uniform distribution
condition and 27.14m3/s under the normal distribu-
tion condition. In 2001, the flow was the smallest and
the confidence interval was the narrowest, at
20.39m3/s under the uniform distribution condition
and 11.90m3/s under the normal distribution
condition.

The statistical results (mean value, standard devia-
tion, CV values, and 90% confidence interval) of the
10,000 samples for sediment and TP under the uni-
form distribution and normal distribution conditions
were calculated (Table 5). There was no large differ-
ence of average sediment values between the uniform
distribution and normal distribution, at 283.65 and
280.34Kt, respectively. However, the standard devia-
tion value (50.70 tons) and CV value (0.181) under the
normal distribution were both less than under the uni-
form distribution condition, at 85.34 tons and 0.301,
respectively. In addition, the mean value, standard
deviation, CV value and confidence interval of the TP
had the same change tendency as the flow and sedi-
ment. The main reason for this result is that there was
a larger confidence interval in the normally distrib-
uted data than in the uniformly distributed data.
When the modified deviation was used to calculate
the difference of deviation between the measured and
modeled data, the difference was less for the normally
distributed data, resulting in narrower CV, mean and
standard deviation values.

Overall, the average CV value of the sediment was
the largest, followed by TP. The CV value of flow was

Fig. 2. Modified eu2i of measured flow.
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Table 3
Modified eu2i of measured sediment and TP

Sediment (103 t) TP (t)

Measured data PER Measured data PER

2% 16% 102% 2% 26% 221%

281.64 153.46 150.35 146.44 22.39 11.13 10.88 8.23

Fig. 3. CV value, Mean, and SD values of uncertainty analysis for flow data.

Table 4
90% confidence interval of runoff

Time Uniform distribution Normal distribution

5% percentile 95% percentile 5% percentile 95% percentile

2000 66.96 96.51 73.05 90.78

2001 43.59 63.98 48.12 60.02

2002 39.88 61.97 44.10 57.54

2003 66.96 111.64 75.52 102.66

2004 42.61 76.18 49.49 68.95

2005 55.12 99.50 64.65 90.71

2006 14.45 53.56 22.40 46.52

2007 50.83 85.74 57.66 77.82

Average 47.55 81.13 54.37 74.37

Table 5
Uncertainty analysis for sediment and TP data

Distribution M SD CV 90% confidence interval

5% lower limit 95% upper limit

Sediment Uniform 283.65 85.34 0.301 149.12 416.63

(103t) Normal 280.34 50.70 0.181 194.79 364.15

TP Uniform 22.24 6.31 0.284 12.58 32.29

(t) Normal 22.41 3.60 0.161 16.55 28.45
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the smallest, indicating that the measurement uncer-
tainty of the sediment had the greatest effect on the
simulation result, followed by TP. The measurement
uncertainty of flow had the least impact on the simu-
lation result.

4. Conclusions

This study found that the PER values of flow were
the smallest, while TP had the largest PER values. The
simulated results with a normal distribution had less
uncertainty under the same PER condition. When the
PER values were under the average typical-scenario,
the modified deviation values were 18.45m3/s for
flow, 150.35�103 t for sediment, and 10.88 t for TP.
The CV values of the multiple sampling results within
the uncertainty range were 0.101 for flow, 0.181 for
sediment, and 0.161 for TP. When the monitoring data
fell within a uniform distribution, the simulated
results of M, MD and CV values for sediment and TP
were both larger than the date, which fell into the nor-
mal distribution.

Overall, this article studied the impacts of uncer-
tainty on simulated results from measurement errors
in SWAT model response data by introducing the
PER value. The results showed that the reliability of
the measured flow was much higher than that of the
measured pollutants load, and uncertainties in the
simulated sediment and TP data errors were greater
than those of flow. The results presented could assist
the water resource community in assessing the
uncertainty of measured data for use in water quality
management.
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