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ABSTRACT

Generally, the model of forced diffusion of a penetrant through nonporous polymer mem-
branes can be quantitatively described by a partial differential equation of parabolic type,
which is known as Fick’s second law. In this article, the detailed explanation of application
of the integral transform method (especially Laplace transform) for the solution of Fick’s sec-
ond law at given initial and boundary conditions is presented. Obtained final expression for
the concentration profile inside a flat membrane and the diffusion flux through a membrane
were verified on permeability data of carbon dioxide and cyclohexane through low-density
polyethylene membrane. While CO2 permeation data can be successfully fitted by obtained
model, in the case of cyclohexane vapors, when the diffusion coefficient cannot be supposed
to be constant due to strong polymer–penetrant interactions (swelling), the agreement
between model and experimental data is lower.
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1. Introduction

The mass transport through polymer membranes
caused by the gradient of concentration is a complex
process, which depends on the nature of the mem-
brane and the penetrating substance as well. In isotro-
pic, nonporous polymer membranes the transport
mechanism can be described by the solution–diffusion
model [1], which can be considered as a sequence of
consecutive processes of sorption, activated diffusion
and desorption. The model is characterized by perme-
ability, diffusion and sorption coefficients [2].

Usually, two methods are used for the determina-
tion of diffusion coefficients by solving of Fick’s sec-
ond law at given initial and boundary conditions. The
first method is the separation of variables (solution is
in the form of Fourier series), the second one is the
Laplace transform. The solution of Fick’s second law
by the method of the separation of variables is in
detail described in the literature [3] in contrast to the
solution of this diffusion equation by Laplace trans-
form. Crank published [3 chapter 4, page 52] the rela-
tion for dependence of the diffusion flux on initial
concentration, diffusion coefficient, time and mem-
brane thickness only, without the derivation of this
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relation. He referred to the paper of Rogers et al. [4],
where is also only the reference to work of Courant
and Hilbert [5] and to Holsteins Westinghouse
Research Report. In fact Holstein applied the transfor-
mation formula

uðxÞ ¼ 1ffiffiffi
x

p u
1

x

� �
ð1Þ

where

uðxÞ ¼
X1
l¼�1

e�pl2x ð2Þ

which validity was proved on the mentioned book [5],
to the relation for diffusion flux in the form of Fourier
series only. Thus, to our best knowledge, no detailed
explanation of application of Laplace transform for
solving of diffusion equations has been published yet.

Therefore, in this work, we present a novel
approach with application of Laplace transform on
Fick’s second law in order to obtain the relation for
concentration profile in the membrane and for diffu-
sion flux through the flat polymer membrane at given
initial and boundary conditions.

Illustration and verification of presented Laplace
transform based diffusion model was done using car-
bon dioxide—Low-density polyethylene membrane
(LDPE) and cyclohexane—LDPE systems.

2. Laplace transform

Referring to the definition of Laplace transform
and some results following from this theory [6], the
real function of two variables cðx; tÞ describing the
dependence of concentration on coordinate and time
is considered. Variable x is understood as a parame-
ter. Further, the integral of the real function (Eq. (3))
has to exists and has finite value at least for some
complex number. Then, the function Mðx; pÞ can be
defined by the relation

Lfcðx; tÞg ¼ Mðx; pÞ ¼
Z 1

0

cðx; tÞ e�ptdt: ð3Þ

Obtained Laplace transform pair consists of the
original function cðx; tÞ and the transform function
with two variables Mðx; pÞ.

The real function cðx; tÞ must fulfill several require-
ments. The first of them is a piecewise continuity in
the interval t 2 0;1Þh . This is satisfied if the function
is piecewise continuous in all intervals t 2 h0; ai,
where a is an arbitrary positive number. In other

words, the function cðx; tÞ has to be continuous in this
finitely many intervals except in points with first
order discontinuity. A point of first-order discontinu-
ity if the function is discontinuous in this point and it
has finite one sided limits in this point. This property
can be used if the real function cðx; tÞ exhibits sharp
changes.

Next, requirement is that the real function cðx; tÞ
has to be of exponential order with index of increase
n0. This holds only if the point þ1 is an accumulation
point of the domain of the real function cðx; tÞ and if
there exists such t0 and such number K[0 that the

inequality jcðx; tÞj 6 Ken0t holds for all t[t0 for which
the real function cðx; tÞ is defined. Further, for all t\0,
the real function cðx; tÞ is equal to zero.

If the real function cðx; tÞ satisfies all above-men-
tioned conditions, the following theorem can be estab-
lished. If cðx; tÞ is continuous and @cðx; tÞ=@t is
piecewise continuous and if both functions of variable
t, then we can state

L
@cðx; tÞ

@t

� �
¼ p Lfcðx; tÞg � cðx; 0þÞ; ð4Þ

where cðx; 0þÞ ¼ lim
t!0þ

cðx; tÞ is the initial value of
cðx; tÞ.

However, the diffusion equations still contain
derivatives with respect to x coordinate in the defini-
tion of the Laplace transform (3).

Theorem 1 Let cðx; tÞ and @cðx; tÞ=@t are continuous func-
tions of variables x; t for x 2 h0; li and t P 0 and next let
constants K; n0 satisfy

jcðx; tÞj 6 Ken0t; j@c=@xj 6 Ken0t ð5Þ

for all x 2 h0; li and t P 0. Then

L
@cðx; tÞ
@x

� �
¼ dMðx; pÞ

dx
ð6Þ

holds for x 2 h0; li; Re p[n0.

This relation can be generalized for derivatives of
higher order with respect to x and also holds at the
boundary points of the interval.

It is necessary to emphasize that the above-men-
tioned theorem requires the continuity of the real
function cðx; tÞ. Thus, if the real function cðx; tÞ
contains discontinuities of the first order, then the dif-
fusion problem must be separated to identical quan-
tity to the number of appropriate discontinuities.
Alternatively, such problem can be solved using the
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generalized inverse Laplace transform. Contrary to
our proposed method, where diffusion problem is
formulated for the diffusion of gases or vapors in a
polymeric membrane and the points of first order
discontinuity did not occur, such problem therefore
was not considered.

3. Transform of diffusion problem

The diffusion problem can be formulated as:

@c
@t
¼ D@2c

@x2

cð0; tÞ ¼ c0
cðl; tÞ ¼ 0
cðx; 0Þ ¼ 0; x 2 h0; li

ð7Þ

Thus, Laplace transform of the function obtained
by using relation (4) can be expressed by

L
@cðx; tÞ

@t

� �
¼ pMðx; pÞ: ð8Þ

and Laplace transform of the function @2cðx; tÞ=@x2
using Theorem 1 can be expressed by:

L
@2cðx; tÞ
@x2

� �
¼ d2Mðx; pÞ

dx2
ð9Þ

Substitution of Eqs. (8) and (9) into the diffusion
problem (7) leads to the ordinary differential equation
of the second order for the complex function of the
real variable:

d2Mðx; pÞ
dx2

� p

D
Mðx; pÞ ¼ 0 ð10Þ

The boundary conditions following from the diffu-
sion problem (7) can be defined as:

Mð0; pÞ ¼ R1
0

c0e�ptdt ¼ c0
p

lim
x!l

Mðx; pÞ ¼ 0 ð11Þ

The general solution of the differential Eq. (10) is
given in the form

Mðx; pÞ ¼ A1ðpÞe
ffiffi
p
D

p
x þ A2ðpÞe�

ffiffi
p
D

p
x: ð12Þ

where with respect to appropriate boundary condi-
tions, following set of two algebraic equations is
obtained

c0
p
¼ A1ðpÞ þ A2ðpÞ

0 ¼ A1ðpÞe
ffiffi
p
D

p
l þ A2ðpÞe�

ffiffi
p
D

p
l

ð13Þ

After finding of A1ðpÞ and A2ðpÞ we get particular
solution in the form

Mðx; pÞ ¼ c0
p

e
ffiffi
p
D

p
x

1� e2l
ffiffi
p
D

p þ e�
ffiffi
p
D

p
x

1� e�2l
ffiffi
p
D

p
" #

ð14Þ

whereas for the individual parts of the Eq. (14), we
can write

M1ðx; pÞ ¼ c0 e
ffiffi
p
D

p
x

p 1� e2l
ffiffi
p
D

p� � ð15Þ

M2ðx; pÞ ¼ c0 e
�

ffiffi
p
D

p
x

p 1� e�2l
ffiffi
p
D

p� � ð16Þ

If Eq. (15) is multiplied by expression

e�2l
ffiffi
p
D

p
=e�2l

ffiffi
p
D

p
and rearranged, we obtain for M1(x,t)

expression in form:

M1ðx; pÞ ¼ � c0 e
ðx�2lÞ

ffiffi
p
D

p

p 1� e�2l
ffiffi
p
D

p� � ð17Þ

With respect to the formula for the sum of geomet-
ric series

X1
n¼0

yn ¼ 1

1� y
; jyj\1 ð18Þ

Eqs. (15) and (16) can be expressed in following
form as

M1ðx; pÞ ¼ � c0
p

P1
n¼0

eðx�2lÞ
ffiffi
p
D

p
eð�2nlÞ

ffiffi
p
D

p

M1ðx; pÞ ¼ � c0
p

P1
n¼0

e�2lðnþ1Þ�x
ffiffi
p
D

p ð19Þ

M2ðx; pÞ ¼ c0
p

X1
n¼0

e�ð2n1þxÞ
ffiffi
p
D

p
ð20Þ

and the solution expressed by Eq. (14) can be rewrit-
ten in the form

Mðx; pÞ ¼ c0
p

X1
n¼0

�e�ð2lðnþ1Þ�xÞ
ffiffi
p
D

p
þ eð�2nlþxÞ

ffiffi
p
D

ph i
; ð21Þ
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Solution over the set of complex numbers is only a
first part of the problem. After that, such solution has
to be transformed to the set of real numbers. Proce-
dure that is necessary for such purpose will be
described in following part.

4. Concentration profile and diffusion flux

In order to find the whole Laplace transform pair,
following three assumptions must be fulfilled:

(i) Regularity of the function Mðx; pÞ in the half-
plane Re p[n.

(ii) Existence of a sequence of circles centered at
the point p ¼ 0 whose radius increases to infin-
ity. If we denote An as the maximum of the
module Mðx; pÞ on the part of the n-th circle
pertaining to the half-plane Rep P n0[n, then
lim
n!1An ¼ 0.

(iii) Convergence of the integral
R aþi1
a�i1 jMðx; pÞjdp.

If the transforming function Mðx; pÞ satisfies these
assumptions, the original function exists and has a
form

cðx; tÞ ¼ 1

2p i

Z n0þi1

n0�i1
Mðx; pÞ eptdp ð22Þ

and is continuous of exponential order with index of
increase n0. Further, Eq. (22) equals to zero for t 6 0
and satisfies the condition of equality cðx; tÞ ¼
L�1fMðx; pÞg. For simplicity, a relation (21) will be

written in the form Mðx; pÞ ¼ P1
n¼0 Mnðx; pÞ.

If function Mnðx; pÞ satisfies all three foregoing

assumptions (i)–(iii) and the series
P1

n¼0 Mnðx; pÞ con-

verges uniformly for p 2 ½0;P� for each finite p[0, then
the function G(x,p), defined as

Gðx; pÞ ¼ P1
n¼0 jMnðx; pÞj, satisfies these three assump-

tions as well. If a parameter n0 is the common index
of increase for all functions Mðx; pÞ and the function
Gðx; pÞ, then for Rep[n0 we obtain the following rela-
tion

L�1
X1
n¼0

Mnðx; pÞ
( )

¼
X1
n¼0

L�1fMnðx; pÞg: ð23Þ

Furthermore, Laplace transform of the distribution
function is known [7] and defined as

L
1ffiffiffiffiffi
pt

p e�
z2

4t

� �
¼ 1ffiffiffi

p
p e�z

ffiffi
p

p
; z[0 ð24Þ

and the error function is defined by an integral

erf ðzÞ ¼ 2ffiffiffi
p

p
Z z

0

e�u2du; ð25Þ

which can be rewritten to the form

erf
z

2
ffiffi
t

p
� �

¼
Z z

0

1ffiffiffiffiffi
pt

p e�
r2

4tdr; ð26Þ

where the substitution u ¼ r
2
ffiffi
t

p was done.
Integrating of Eq. (24) over z using Eq. (26) leads

to expression

L

Z z

0

1ffiffiffiffiffi
pt

p e�
r2

4tdr

� �
¼

Z z

0

1ffiffiffi
p

p e�r
ffiffi
p

p
dr ð27Þ

and consequently to the following transform pair
expressed as

L erf
z

2
ffiffi
t

p
� �� �

¼ 1

p
� 1

p
e�z

ffiffi
p

p
; z[0: ð28Þ

By a simple modification of (28) can be obtained
for transform pair expression

L erfc
z

2
ffiffi
t

p
� �� �

¼ 1

p
e�z

ffiffi
p

p
; z[0: ð29Þ

With respect to Eq. (21) and to condition in Eq.
(29), two following expressions can be obtained

xþ 2nlffiffiffiffi
D

p [0 and
2lðnþ 1Þ � xffiffiffiffi

D
p [0 ð30Þ

which satisfy the physical point of view. Applying
relations (23) and (29) onto Eq. (21), the expression for
concentration profile of two variables (x,t) can be
obtained

cðx; tÞ ¼ c0

�
X1
n¼0

�erfc
2lðnþ 1Þ � x

2
ffiffiffiffiffiffi
Dt

p
� �

þ erfc
xþ 2nl

2
ffiffiffiffiffiffi
Dt

p
� �	 


:

ð31Þ

Combination of Eq. (31) with the Ficks first law,
we can write for the diffusion flux

jðx; tÞ ¼ c0

ffiffiffiffiffiffi
D

p t

r

�
X1
n¼0

e
�
ð2lðnþ 1Þ � xÞ2

4Dt þ e
�
ðxþ 2nlÞ2

4Dt

2
64

3
75: ð32Þ
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In the case of transport of medium (gas and vapor)
through the isotropic flat membrane with the thick-
ness l, the diffusion flux expressed by (32) can be
rewritten to

jðl; tÞ ¼ 2c0

ffiffiffiffiffiffi
D

p t

r X1
n¼0

e
�
ð2nþ 1Þ2l2

4Dt : ð33Þ

This relation is important not only for determina-
tion of the diffusion coefficient but also for determina-
tion of the permeability coefficient as transport
parameter defined at the steady state when the gradi-
ent of concentration is constant.

5. Application of model on the experimental data

The verification of derived final diffusion relation
was made by fitting of theoretical diffusion curves for
carbon dioxide and cyclohexane in flat LDPE on the
experimental data obtained by differential permeation
method [8] at initial and boundary conditions, which
corresponded with relation (7).

5.1. Materials

Low-density polyethylene membrane BRALEN
FB2–30 (LDPE) was supplied by Slovnaft Company
(Slovakia). The thickness of antistatic membrane sam-
ple was (50 ± 1)� 10�6m. The degree of crystallinity
was reported to be 45%, and the density determined by
mercurial pycnometry was q= 919 ± 2 kgm�3 at 25˚C
[8,12].

Cyclohexane (p.a. grade from Sigma-Aldrich) was
used without further purification, and carbon dioxide
(purity at least 99.99%) was purchased from Linde
and used as received.

5.2. Permeation experiment

Permeation experiments of carbon dioxide and
cyclohexane were carried out at 25˚C and at selected
pressures using home-built differential flow permeam-
eter with hydrogen as a carrier gas according to the
procedure described in detail in the literature [8].
Obtained experimental data were analyzed by the nor-
malized diffusion curves. The diffusion flux at the
steady state as the limit limt!1 jðl; tÞ is given by using
transformation formula (1) on diffusion relation (33)

js ¼ Dc0
l
: ð34Þ

The relation for normalized diffusion flux is given
by combination of formulas (33) and (34)

jNðl; tÞ ¼ 2lffiffiffiffiffiffiffiffiffi
pDt

p
X1
n¼0

e�
ð2nþ1Þ2 l2

4Dt : ð35Þ

Relation (35) was used for the calculation of diffu-
sion coefficient of carbon dioxide in LDPE membrane.
The dependence of theoretical and experimental
normalized fluxes of carbon dioxide through LDPE
membrane on time is presented by Fig. 1. The concen-
tration profile of carbon dioxide inside the membrane,
it means the dependence of concentration of carbon
dioxide on position and time, is shown on Fig. 2.
Concentration profile in LDPE membrane was pre-
dicted on base of relationship (31) and confirmed
initial and boundary conditions (7).

It can be seem from both the figures very good
agreement between experimental points and theoret-
ical curve obtained on the base of relation (33).
This relation was derived by method of Laplace
transform for a constant diffusion coefficient.
Obtained value of CO2 diffusion coefficient using
Gauss–Newton optimization method [9] at 25˚C is
D(CO2) = 2.27� 10�11m2 s�1, which corresponds
rather well with the range (1.5, 4.5)� 10�11 m2.s�1

obtained by integral method reported in the litera-
ture [10,11].

In Fig. 3, we show the dependence of theoretical
and experimental normalized fluxes of cyclohexane
through LDPE membrane on time also obtained by
relation (33) at the temperature of 25˚C and at cyclo-
hexane relative vapor activity ar = 0.6, where ar = p/psat
and psat is pressure of saturated vapors 13.07 kPa. The
discrepancy between the theoretical curve and
experimental points is quite can be seen. This

Fig. 1. Correct optimalization of diffusion curve for
permeation of carbon dioxide in LDPE: Dependence of
diffusion flux J (molm�2 s�1) on time t (s).
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difference is caused by fact that the diffusion coeffi-
cient of cyclohexane is not constant in this case and
depends on concentration due to swelling of LDPE
membrane in contact with cyclohexane vapors [8,12].

6. Conclusions

A novel approach for the application of Laplace
transform was used for the solution of Fick’s second
law at given initial and boundary conditions. Derived
relation for concentration profile in membrane is a
proof of works published without any deduction ear-
lier by Crank and Holstein those published the con-
centration profiles obtained by the generally known
Fourier method of separation of variables. Contrary to
concentration profiles obtained by Laplace transform
are more useful because of faster convergence.
Derived equation for normalized diffusion flux of
penetrant through non-porous membrane allows to
evaluate (constant) diffusion coefficient of appropriate

medium. For polymer + penetrant systems with low
mutual interactions, derived equation can be applied
without any limitations. However, application of
equation for systems where mutual interactions can-
not be neglected (like hydrocarbon vapors in polyeth-
ylene) and the diffusion coefficient cannot be
supposed as a constant is limited.
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List of physical symbols

Concentration — C, molm�3

Diffusion flux — j, molm�2 s�1

Diffusion coefficient — D, m2 s�1

Coordinate — x, z, m

Thickness of membrane — l, m

Time — t, s

Density — q, kgm�3

Activity — a

List of mathematical symbols

General functions — u, y
Variables — u, r

Laplace transform — L

Inverse Laplace transform — L�1

Imaginary unit — i

Complex parameters — p

Constant parameters — l, K
Parametric functions — A1(p), A2(p)

Complex functions — M, G

Maximum of module — An

Index of increase — n
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