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ABSTRACT

The nonlinearity and complicated biological phenomena existing in wastewater treatment pro-
cesses (WWTP) make the operation and modeling of WWTP quite difficult. In this study, a
hybrid learning method combining genetic algorithm with adaptive neuro-fuzzy inference sys-
tem (GA-ANFIS) was serviced to estimate effluent nutrient concentrations in a full-scale bio-
logical wastewater treatment plant. The GA-ANFIS possessing a more flexible hybrid learning
ability was adopted to capture the nonlinear relationships between the influent and effluent
concentrations of pollutants. Having the capabilities of global and parallel optimization, GA
was used to optimize the structure parameters of the fuzzy membership functions of GA-
ANFIS. The real data collected from Korean Daewoo nutrient removal wastewater treatment
plant were used to demonstrate the prediction efficiency of the proposed soft sensor with the
aid of three performance indices of root mean square error, mean absolute percentage error,
and squared correlation coefficient. The results indicate that the hybrid GA-ANFIS soft sensors
outperform ANFIS-based soft sensors in terms of effluent prediction accuracy.

Keywords: Adaptive neuro-fuzzy inference system; Genetic algorithm; Modeling; Nutrient
removal mechanism; Wastewater treatment

1. Introduction

Aiming at providing reliable online product quality
or other hard-to-measure variables of unmeasured vari-
ables, soft sensors have gained increasing research
interest in many process industries [1,2]. Soft sensors
have been applied to many applications primarily
including on-line prediction, process monitoring, pro-
cess fault detection, and sensor validation containing

sensor fault detection, identification, and reconstruction
[1]. For the application of on-line prediction, several
well-established and powerful linear statistical models
such as partial least squares (PLS) [3] and principle
component analysis or regression [4] have been exten-
sively used for designing soft sensors. The original PLS
algorithm can only accurately model linear relations
between the process variables. Therefore, some
advanced modifications or extensions of the PLS algo-
rithm have been proposed. These modified versions
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include the multi-way PLS, the moving window PLS
(MWPLS) and recursive PLS (RPLS) [1]. Both original
PLS and RPLS regression models were used as indoor
air quality soft sensors for the prediction of particulate
matter concentrations in Seoul subway systems [5]. A
fast MWPLS algorithm was developed and applied in a
simulated continuous stirred tank reactor and an indus-
trial air separation process [6]. A RPLS soft sensor was
proposed to predict the biological oxygen demand
(BOD) of a real wastewater treatment process (WWTP)
[7]. Different from the traditional soft sensors that
model the process at a global level, a local modeling
method combining just-in-time learning technique with
PLS was used in two industrial case studies of the Ten-
nessee Eastman process (TEP) and a debutanizer col-
umn process [8]. In addition, a fuzzy PLS model was
used to predict and monitor the treatment performance
of a pilot-scale membrane bioreactor (MBR) [9].

However, when dealing with highly nonlinear pro-
cesses, such as WWTPs, the prediction accuracy of
these linear models may be decreased significantly. In
order to capture the nonlinear characteristics of the
process variables, some nonlinear soft sensors have
been recently proposed. Typically, according to the soft
sensors classification by Kadlec et al. [1], these nonlin-
ear soft sensing techniques mainly consist of three clas-
ses: artificial neural network (ANN) [10], support
vector machine (SVM) [11], and neuro-fuzzy system
(NFS) [12]. ANN-based soft sensors can be found in
many applications. For example, using ANN, Wu et al.
[13] adopted ANN to predict the performance charac-
teristics of a reversibly used cooling tower for a heat
pump heating system. The authors first used a measur-
ing index of mean squared error to determine the opti-
mal number of neurons at the hidden layer in the
ANN. Then, 11 back-propagation (BP) algorithms were
compared and one BP algorithm that could get the best
prediction results was used for the construction of
ANN structure. Ráduly et al. [14] developed a reliable
and rapid performance evaluation method for the pre-
diction of effluent concentrations of ammonium, BOD,
chemical oxygen demand (COD), total suspended sol-
ids (TSS), and total nitrogen (TN) in a simulated bench-
mark WWTP model. Similarly, Mjalli et al. [15]
developed an ANN program as a valuable perfor-
mance assessment tool to predict the effluent concen-
trations of BOD, COD, and TSS in a local wastewater
treatment plant. Molga et al. [16] elaborated a hybrid
first-principles neural network, which combines first-
principles knowledge represented by a set of process
differential equations with a neural network used as a
nonparametric approximator, to obtain accurate pre-
diction of the dynamic behavior of a biological textile
wastewater treatment plant.

Due to the theoretical advantages in the statistical
learning theory, SVM has been of increasing popularity
not only in the computational learning community but
also in many applications used as soft sensors. Yan
et al. [17] proposed to use a fast SVM named least
squares support vector machine (LSSVM) as a soft sen-
sor to predict the freezing point of the light diesel oil in
a fluid catalytic cracking unit. In their work, the Bayes-
ian evidence framework was used for the optimal selec-
tion of the model parameters of LSSVM. In addition,
SVM has recently applied to the process monitoring.
Ge and Song [18] proposed to use a least squares sup-
port vector regression model as local modeling method
for the monitoring of nonlinear multiple mode pro-
cesses. Their method could provide better performance
than conventional methods when tested with two case
studies of a numerical example and the benchmark
model of TEP. However, the main bottleneck of SVM
lies in its computational complexity when dealing with
very large data sets in the training process.

Another successful type of soft sensors is the NFS
that is actually a hybrid modeling method. NFS com-
bines the advantage of ANN with those of fuzzy
inference system (FIS). Especially, the adaptive neuro-
fuzzy inference system (ANFIS), which could achieve
highly accurate prediction performance, has been
recently a widely applied type of NFS. Pai et al. [19]
developed three types of ANFIS, which varies with
different combinations of influent variables based on
the correlation coefficients between these influent vari-
ables and the effluent variables, to predict the effluent
suspended solids and COD in a hospital wastewater
treatment plant in Taiwan. Civelekoglu et al. [20] car-
ried out a similar research using ANFIS to model the
COD removal in a biological wastewater treatment
plant. In the work of Huang et al. [21], an ANFIS-
based soft sensor was employed to model the nonlin-
ear relationships between the pollutants removal rate
and the chemical dosages in a paper mill. This soft
sensor was then used as an emulator representing the
reaction process to provide the future predictions for
a fuzzy neural network controller.

Although ANFIS has proven to be an effective tool
to approximate any nonlinear functions, it has the
main disadvantages of requiring long learning time
and having slow convergence speed. Therefore,
genetic algorithm (GA), which can be used for opti-
mizing fuzzy rules and adjusting membership func-
tions (MF) of fuzzy sets within the framework of
ANFIS, could be combined with ANFIS to achieve a
better prediction performance [22]. A structure or
parameter learning algorithm based on GA was pro-
posed to dynamically determine the fuzzy partitions
of input and output spaces as well as the number of
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fuzzy sets and the MF of each fuzzy set [23]. The
modeling, optimization, and control of WWTPs are
challenging due to the nonlinear characteristics, com-
plex interactions, and time variable hydraulic condi-
tions in biologically activated sludge processes. In
order to realize stable monitoring and control in the
WWTP, it is very important to develop precise and
timely soft sensors. Consequently, in this study, the
hybrid algorithm called GA-ANFIS was applied to
build a soft sensor for modeling the nutrient removal
in a full-scale WWTP.

2. Materials and methods

2.1. Wastewater treatment process

The targeted system is the Daewoo nutrient
removal (DNR) plant located in D city of Korea. As
shown in Fig. 1, the plant mainly consists of four bio-
logical reactors, two clarifiers before and after the four
reactors, a thickener tank and a dewatering system.
The reactions of denitrification, anaerobic, anoxic and
oxic processes take place in the four biological reac-
tors from left to right. The measured process variables
for soft sensor modeling have two categories: influent
and effluent variables. The influent variables include
flow rate, TSS, BOD, COD, TN and total phosphorous
(TP), and the effluent variables include effluent COD,
effluent TN, and effluent TP. The variations of these
process variables for one year are shown in Fig. 2.
The influent TN and TP exhibit regular fluctuations
during one year, whereas the influent TSS, BOD,
COD, and effluent COD show relatively lower concen-
trations in the summer and higher concentrations in
the winter (Fig. 2(a) and (c)). The influent flow rate

(Fig. 2(b)) has several abnormal values that may be
the results of flow rate sensor failures. The real data
used for modeling contained 357 samples measured
between 10 March 2007 and 29 February 2008. The
first 236 samples were used as training data and the
rest were used as test data. The statistical values
including mean and standard deviation values of the
modeling data are listed in Table 1.

2.2. GA-ANFIS

ANFIS is a multilayer feed-forward network that
uses neural network learning algorithms and fuzzy
reasoning to map inputs into an output. It is a FIS
implemented in the framework of adaptive neural net-
works [12]. Fig. 3 shows the architecture of a typical
ANFIS with two inputs, two rules, and one output
using Takagi–Sugeno–Kang (TSK) model [24,25],
where each input is assumed to have two MFs.

The function of each ANFIS layer in Fig. 3 is sum-
marized and explained as follows. For layer 1, all
nodes are adaptive nodes that can generate member-
ship values for inputs. The outputs of this layer are
given by:

O1
Ai
¼ lAi

ðxÞ; i ¼ 1; 2

O1
Bj
¼ lBj

ðyÞ; j ¼ 1; 2
ð1Þ

where x and y are crisp inputs, and Ai and Bj are
fuzzy sets characterized by the MFs with low,
medium and high values.

For layer 2, the nodes are fixed, which are used
as a simple multiplier. The outputs of this layer are
represented by:

Fig. 1. The layout of DNR plant.
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O2
ij ¼ wij ¼ lAiðxÞlBjðyÞ; i; j ¼ 1; 2 ð2Þ

which represent the firing strength of each rule. The
firing strength means the degree to which the anteced-
ent part of the rule is satisfied.

For layer 3, the nodes are also fixed, indicating
that they play a normalization role in the network.
The outputs of this layer, which are called normalized
firing strengths, can be represented as follows:

O3
ij ¼ �wij ¼

wij

w11 þ w12 þ w21 þ w22

; i; j ¼ 1; 2 ð3Þ

For layer 4, the parameters in this layer are
referred to as consequent parameters. Each node is an
adaptive node, and its output is simply the product of
the normalized firing strength and a first-order poly-
nomial. The outputs of this layer are given by:

O4
ij ¼ �wijfij ¼ �wijðpijxþ qijyþ rijÞ; i; j ¼ 1; 2 ð4Þ

where pij, qij, and rij are consequent parameters of the
first-order polynomial.

For layer 5, the single node in this layer is a fixed
node labeled R, which computes the overall output as
the summation of all incoming signals.

O5
j ¼

X
i

�wifi; i ¼ 1; 2 ð5Þ

By combining the gradient descent optimization
method and the least squares method, the hybrid
learning algorithm could effectively improve the pre-
diction performance of ANFIS. Thus, this algorithm
was used to tune the adjustable parameters in this
study.

Like the structure of ANFIS, GA-ANFIS is also a
fuzzy inference system (FIS) implemented in the
framework of adaptive neural networks (Fig. 4). It has
five layers including an input fuzzy layer, a product
layer, a normalized layer, a defuzzy layer, and an out-
put layer. GA, inspired by the mechanics of natural
selection, is superior to the traditional calculus-based
optimization algorithms that usually find a local opti-
mum solution. As a population-based optimization
method, GA can simultaneously seek different regions
in a solution space, which increases the likelihood of

Fig. 2. Time series plots of (a) influent concentrations, (b)
influent flow rate, and (c) effluent concentrations.

Table 1
The mean and standard deviation values of influent and
effluent variables collected from the DNR plant

Variable Mean Standard
deviation

Unit

Influent variable

Flow rate 8845.6 892.1 m3/d

TSS 98.86 24.07 g SS/m3

BOD 103.93 30.42 g O2/m
3

COD 64.73 18.84 g COD/m3

TN 25.68 6.29 g N/m3

TP 2.68 0.75 g P/m3

Effluent variable

COD 6.73 1.71 g COD/m3

TN 8.18 2.18 g N/m3

TP 1.01 0.36 g P/m3
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Fig. 3. ANFIS structure for a two-input TSK model with four rules.

Fig. 4. The flow chart of GA-ANFIS.
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finding a diverse set of global minima. During the
learning stage, GA is used to optimize fuzzy rules
and adjust MFs of fuzzy sets. In order to improve the
system precision and reduce the calculation time, we
use BP algorithm to train GA-ANFIS updating param-
eters of MFs and the linked weights between layers 4
and 5 on the basis of the first training stage.

In order to assess the prediction capability of
ANFIS models, several performance indices including
root mean square error (RMSE), mean absolute
percentage error (MAPE), and squared correlation
coefficient (R2) are defined as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

ðai � piÞ2
vuut ð6Þ

MAPE ¼ 1

N

XN
i¼1

100� ai � pi
ai

����
���� ð7Þ

R2 ¼ covða; pÞ � covða; pÞ
covða; aÞ � covðp; pÞ ð8Þ

where ai is the experimental value, pi is the predicted
value, N is the number of data, and cov(a, p) is the
covariance between a and p sets.

3. Results and discussion

Since there are three output variables (effluent
COD, effluent TN, and effluent TP) needed to predict
in the DNR plant, three GA-ANFIS models were built
for each output variable. To take the hydraulic charac-
teristics in the WWTP into account, the effluent data
of one day ago were included as additional input
variables. Finally, nine input variables of six influent
variables together with three historical effluent
variables and three output variables were used for
GA-ANFIS modeling and prediction. The modeling
steps for these GA-ANFIS models are similar. In order
to reduce unnecessarily wordy analysis, we just take
the effluent COD as an example to show the main
results.

For the effluent COD model, Matlab’s fuzzy sub-
tractive clustering function was employed and six
clusters were determined. The ANFIS model of the
effluent COD (Fig. 5) has five layers with nine nodes
in the input layer and one node in the output layer.
The second layer containing 54 (nine� six) nodes is
used to calculate the MFs; the third layer with six
nodes is the rule layer; and the fourth layer with six
nodes is the normalization calculating layer. After
training, the ANFIS model, the inference was per-
formed according to six fuzzy linguistic rules for
modeling effluent COD. After determining the initial
value of the premise parameter and the architecture of

Fig. 5. The model structure of ANFIS for modeling the effluent COD.

H. Liu et al. / Desalination and Water Treatment 51 (2013) 6184–6193 6189



the predictive model, the network was trained by
hybrid algorithm. Then, the premise and consequent
parameters of the network were pruned. MFs of the
variables were drawn after the premise parameter
was obtained.

GA was used as an optimizer for determining the
optimal values of MFs parameters in the input and
output layers. Fig. 6 exhibits GA-ANFIS training pro-
cess. After 20 generations, both the sum squared error
and fitness values converged at their steady points

(Fig. 6(a)), which means the GA found optimal solu-
tions for the parameters of ANFIS MFs, and of output
consequence part. Using these optimized parameters,
RMSE and step size values of ANFIS kept constant
after approximately 200 epochs (Fig. 6(b)).

In the study, Gaussian type MF, which is one of
the most widely used fuzzy MFs for the modeling of
high-dimensional systems, was utilized to train the
network. The Gaussian MF is determined completely
by two parameters (c and r) as follows:

Fig. 6. Training process of the GA-ANFIS in terms of (a) GA step and (b) ANFIS step.

Fig. 7. The final input MFs after GA-ANFIS training.
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lGaussianðx; c; rÞ ¼ e�
1
2ðx�c

r Þ2 ð9Þ

where c and r represent the center and width of the
Gaussian MF, respectively. The shapes of the first six
input MFs after training process are shown in Fig. 7,
where each graph contains six lines representing six
clusters determined by Matlab’s fuzzy subtractive
clustering function. The number of clusters is a key
parameter that can influence the computing speed
and modeling accuracy of ANFIS model.

GA-ANFIS is a data-driven modeling method. A
training model is trained first and then can be used to
simulate the dynamics of DNR process. In more
detail, the training parameters are optimized via a
sum-squared error between the model predictions and
the real outputs. With respect to the current applica-
tion, the predictive model can be written as follows:

yðtþ 1Þ ¼ fðuðtþ 1Þ; yðtÞÞ ð10Þ

where y(t+ 1) and u(t+ 1) represent the effluent and
influent variables at time t+ 1, respectively, y(t) means
one yesterday effluent variable.

After training the network of GA-ANFIS, the sys-
tem parameters such as the parameters of MFs, the
number of clusters determined by subtractive fuzzy
clustering partition, firing strengths and consequent
parameters of the first-order polynomial can be used
for prediction. The three-dimensional graphic surfaces
of the defuzzified results of effluent COD to various
influent water qualities are illustrated in Fig. 8. A non-
linear relationship of effluent COD to influent flow
rate and influent TSS can be observed clearly from
Fig. 8(a). On the other hand, there is almost a linear
relationship between effluent COD and influent TN

Fig. 8. Three-dimensional representations of the effluent COD response surface graph in terms of: (a) influent flow rate
and influent TSS and (b) influent TN and influent TP.

Fig. 9. Prediction accuracy of the GA-ANFIS using (a) training data and (b) test data.
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derived from the GA-ANFIS model. Interestingly,
influent TP has little effect on the prediction of
effluent COD (Fig. 8(b)). In other words, in order to
reduce the computation time and simplify the struc-
ture of GA-ANFIS model the influent TP variable
could be removed from the modeling variables with-
out losing model precision.

The comparisons between real data and pre-
dicted values by GA-ANFIS are shown in Fig. 9.
The prediction results of the effluent COD concen-
trations were both satisfactory for the training
(Fig. 9(a)) and test data (Fig. 9(b)), indicating that a
stable and accurate soft sensor for estimating the
effluent COD concentrations could be obtained from
GA-ANFIS model. The superior prediction perfor-
mance of GA-ANFIS is due to its capability to cap-
ture any nonlinear relationship to any degree of
accuracy between response variable and predictor
variables by adjusting its weights through the itera-
tive learning process. In addition, GA-ANFIS has
the advantage of tolerating certain measurement
noise and sensor faults [22]. This robust feature
makes it still suitable for the case that the process
variables have outliers or abnormal values like the
influent flow rate in this work (Fig. 2(b)).

In order to numerically evaluate the prediction
ability of the GA-ANFIS, three performance indices
consisting of RMSE, MAPE, and R2 are listed
in Table 2. From Table 2, it can be seen that the
GA-ANFIS had smaller RMSE and MAPE as well as
bigger R2 for the testing data sets than the ANFIS
model. The results verify that the prediction accuracy
of GA-ANFIS was superior to that of the normally
used ANFIS. It should be noted that our results based
on GA-ANFIS were better than the previous study

where ANN was used to build prediction models for
the same WWTP data [26]. However, the prediction
accuracy for the effluent TP is lower than those for
the effluent COD and TN (Table 2). The reason for the
low accuracy of the GA-ANFIS for modeling the efflu-
ent TP may be that the effluent TP shows relatively
regular variations not depending on different seasons
(i.e., summer and winter, Fig. 2(c)). Therefore, its GA-
ANFIS prediction model calculated based on the other
influent and effluent variables that have seasonal vari-
ations may have large prediction errors. In order to
improve the prediction accuracy for the effluent TP,
additional measurement variables such as effluent
TSS, effluent BOD and chemical dosage for TP control
should be taken into account.

4. Conclusions

A hybrid learning algorithm of GA-ANFIS was
used to model the nonlinear relationships between the
influent pollutant variables and the effluent variables
in a biological wastewater treatment plant. The com-
bined method of GA and ANFIS is especially useful
for highly nonlinear processes like WWTP. The results
of hybrid GA-ANFIS in the full-scale plant showed
satisfactory prediction performance. Compared with
ANFIS, the proposed GA-ANFIS had superior perfor-
mance and good generalization capability. Specifically,
the RMSE, MAPE and R2 values using GA-ANFIS
were greatly improved for predicting effluent COD,
effluent TN and effluent TP. The overall results indi-
cate that the soft sensors based on GA-ANFS can be
effectively applied to model nutrient removal mecha-
nism in the wastewater treatment system.

Table 2
Comparison of performances of ANFIS and GA-ANFIS in modeling effluent COD, TN and TP concentrations

Model Training data Test data

RMSE MAPE (%) R2 RMSE MAPE (%) R2

COD eff

ANFIS 0.290 3.705 0.950 0.782 7.100 0.748

GA-ANFIS 0.391 4.912 0.907 0.660 6.289 0.800

TN eff

ANFIS 0.686 6.548 0.860 2.035 19.263 0.523

GA-ANFIS 0.828 7.683 0.796 1.734 14.623 0.577

TP eff

ANFIS 0.182 14.711 0.597 0.360 60.890 0.251

GA-ANFIS 0.183 14.784 0.595 0.351 58.382 0.284
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Nomenclature

ANFIS –– adaptive neuro-fuzzy inference system

ANN –– artificial neural network

BOD –– biological oxygen demand

COD –– chemical oxygen demand

DNR –– Daewoo nutrient removal

FIS –– fuzzy inference system

GA –– genetic algorithm

MAPE –– mean absolute percentage error

MWPLS –– moving window PLS

NFS –– neuro-fuzzy system

PLS –– partial least squares

RMSE –– root mean square error

RPLS –– recursive PLS

R2 –– squared correlation coefficient

SVM –– support vector machine

TN –– total nitrogen

TP –– total phosphorous

TSK –– Takagi–Sugeno–Kang

TSS –– total suspended solid

WWTP –– wastewater treatment plants
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