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ABSTRACT

Eutrophication analyses of two subtropical storage reservoirs in Macau, the Special
Administrative Region of China, namely Main Storage Reservoir (MSR) and Sai Pa Van Res-
ervoir (SPVR), were performed in this study. Totally, 17 monthly water parameters includ-
ing, five hydrological parameters (precipitation, imported volume, exported volume, water
level, and hydraulic retention time), four physical parameters (temperature, pH, turbidity,
and conductivity), seven chemical parameters (dissolved oxygen, Ammonium, nitrite, nitrate,
total nitrogen (TN), orthophosphate (PO4

3-), and total phosphorus (TP)), and one biological
parameter (phytoplankton abundance) were sampled and monitored in 2010. The correlation
analysis and principle component regression (PCR), that is, principle component analysis
(PCA) followed by multiple linear regression (MLR), were used to simplify the complexity of
the relationships and to predict the phytoplankton abundance levels as well. The eutrophica-
tion analyses results showed that both reservoirs were in eutrophic status with the trophic
state indices of 58–72 for MSR and 51–71 for SPVR, respectively. Phytoplankton abundance
in both reservoirs were found to be linearly correlated with turbidity, temperature, and TP,
while anti-correlated with conductivity, TN, nitrate, TN/TP, and water level. The PCA
showed that three PCs with Eigen value over one, can explain 84.6% of total variation of the
water parameters in MSR, while only two PCs can explain 70.8% for SPVR. The MLR models
can be used for predicting phytoplankton abundance in the reservoirs with the predictive
power of 0.90 in MSR, while only of 0.67 in SPVR.

Keywords: Reservoirs; Phytoplankton abundance; Eutrophication analysis; Principle component
regression

1. Introduction

Freshwater algal blooms has emerged as a chal-
lenging issue in water management due to the
increases in the occurrence and severity, and the

production of toxin by fresh water algae (also called
phytoplankton) poses a significant threat to drinking
water safety. Blooms occur in eutrophication of water
bodies, which are the results of an excess of nutrients,
and under appropriate environmental conditions
phytoplankton population can rapidly increase or
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accumulate. Thus, an understanding of trophic level
of water bodies and factors which induce the blooms
of phytoplankton is important to safeguard water
resources.

Carlson’s trophic state index (TSI) [1] is the most
commonly used index to describe trophic level of
lakes or reservoirs, which depends on the parameters
of phosphorus, chlorophyll, and Secchi depth. Four
classes such as, oligotrophic, mesotrophic, eutrophic,
and hypereutrophic class with the corresponding TSI
of < 30–40, 40–50, 50–70, 70–100+, respectively are
defined, from low to high primary productivity.
Eutrophic and hypereutrophic lakes or reservoirs are
susceptible to algal bloom. Previous laboratory studies
[2–4] have indicated, that the growth of phytoplank-
ton is influenced by a number of environmental vari-
ables such as nutrients, light, temperature, pH,
conductivity, turbidity, stable conditions, flow rates
and water levels, and the complex interaction of these
variables leads to the development of algal blooms.
However, the combination of such variables that trig-
gers and sustains an algal bloom is not well under-
stood and it is impossible to attribute algal blooms to
any specific environmental variable. Besides, the spe-
cies and the concentration of phytoplankton have been
showed to have varied response and dynamics to dif-
ferent environmental variables [5–7]. Hence, an impor-
tant challenge for environmental engineers and
scientists are to search for an effective method to
understand the interaction and behaviors of the
variables involved in the multidimensional complex
processes, for monitoring water resource, as well as
forecasting the phytoplankton abundance.

Multiple regression analysis is the most widely
used methodology for expressing the dependence of a
response variable using a couple of independent vari-
ables. Though there is some evident success in many
applications, such as water resource and air quality
studies, the regression approach does face serious dif-
ficulties when the independent variables are corre-
lated with each other [8]. High correlation or
multicollinearity between the independent variables in
a regression equation can make it difficult to correctly
identify the most important contributors to a physical
process. One of the solutions that receive growing
interest is PCR, that is, principle component analysis
(PCA) followed by multiple linear regression (MLR).
The PCR analysis is to use an orthogonal transforma-
tion, to convert a set of observations of possibly corre-
lated variables into a set of values of uncorrelated
variables called PCs, thus reducing the complexity of
multidimensional system by maximization of compo-
nent loadings variance and elimination of invalid
components. PCA have been used alone or in

combination with other methods, such as MLR, to
model aquatic environmental and ecological processes
including algal blooms problem, particularly in pre-
dicting the chlorophyll-a and algae population in res-
ervoirs [9–11]. From these studies, only the PCs with
Eigen values greater than one were selected for MLR,
which can explain the high percentage of total varia-
tion of the environmental variables in PCA. It is fol-
lowed by the MLR to check if the chlorophyll a,
cyanobacteria abundance, or microcystin concentra-
tions could be explained by environmental variables,
and to use for further prediction.

In this study, we present the temporal variations
of 17 water parameters with the corresponding phyto-
plankton population in the subtropical reservoirs in
Macau, and examine the significant water parameters
that affect the population dynamics. The studied MSR
and SPVR were the main storage units utilized for
drinking water and experienced the algal bloom prob-
lem in the recent years. To understand the water
parameters that cause the blooming, the TSI of the res-
ervoir was estimated for determining the trophic level
classification, and combination of correlation analysis
and PCA were performed, to simply the complexity
the water parameters, after which the PCS (principle
component scores) were used as independent variable
in the MLR for predicting the phytoplankton
abundances of both the reservoirs in Macau.

2. Materials and methods

2.1. Study areas

Macau is situated 60 km southwest of Hong Kong,
and experiences a subtropical seasonal climate that is
greatly influenced by the monsoons. The difference of
temperature and rainfall between summer and winter
are significant though not great. MSR, located in the
east part of Macau peninsula, is the biggest reservoir
in Macau with the capacity of about 1.9million m3

and the water surface area of 0.35 km2, while SPVR,
located in the center of Coloane peninsula, is the other
drinking water reservoir with the capacity of about
0.45million m3 and the water surface area of 0.12 km2.
They both are pumped storage reservoirs that receive
raw water from the West River of the Pearl River net-
work, and can provide water supply to the whole
areas of Macau for about one week. MSR and SPVR
are particularly important, as the temporary water
source during the salty tide period when high salinity
concentration is caused by the intrusion of sea water
to the water intake location. In recent years, there
were reports (Macao Water Co. Ltd., unpublished
data) that the reservoirs have been experiencing some
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problems of algal blooms and the situation appeared
to be worsening.

2.2. Field sampling

Location in the inlet of the reservoirs were selected
(Fig. 1) for sampling. Samples were collected in dupli-
cate monthly from January to December 2010 at 0.5m
from the water surface. All samples were kept in ice
boxes and transported to the laboratory for further
analysis. A total of 17 water quality parameters, includ-
ing hydrological, physical, chemical, and biological
parameters, were monitored monthly. Precipitation
was obtained from Macau Meteorological Center
(http://www.smg.gov.mo/www/te_smgmail. php).
The imported and exported volumes were recorded by
the inlet and outlet flow meters, and the water levels
were read by the ruler in the reservoirs, based on which
the hydraulic retention time (HRT) can be calculated.
Temperature was measured in situ with a mercury ther-
mometer. The pH value was determined at the labora-
tory with a pH meter (DKKTOA, HM-30R), turbidity
was measured using a turbidity meter (HACH, 2100N
IS), and conductivity was measured with an EC meter
(DKKTOA, CM-30R). Dissolved oxygen (DO), Ammo-
nium, nitrite, nitrate, total nitrogen (TN), PO4

3-, and
total phosphorus (TP) were measured according to the
standard methods [12]. The phytoplankton samples

were fixed using 5% formaldehyde and transported to
laboratory for microscopic counting. Trophic status
was assessed using Carlson’s Trophic Status Index
(TSI) that is based on TP concentration and chlorophyll
a concentration [1] according to the following equa-
tions. The overall TSI of the reservoir was estimated by
taking the average value of TSI (Chl) and TSI (TP).

TSI (Chl) ¼ 10ð6� 2:04� 0:68 lnChl

ln 2
; TSI (TP)

¼ 10ð6�
ln 48

TP
ln 2

Þ

2.3. Statistical analysis and PCR

Statistical analyses were carried out using PASW
19 software package (SPSS Inc.). Logarithmic transfor-
mation was applied to phytoplankton abundance data.
The TN/TP ratio was calculated and taken as one
individual variable. Besides, due to the limited avail-
able data (12 observations for each variable) for PCA,
only those variables that can highly potentially
explain from the mechanisms the change of phyto-
plankton population were used for statistical analyses
Based on the preliminary data analysis, totally 11
water parameters including the phytoplankton abun-
dance were selected. Correlation analysis was
conducted to identify water parameters which were
significantly correlated with phytoplankton
abundance. Except for phytoplankton population, the
10 parameters with complete data set were accessed
with Kaiser–Meyer–Olkin (KMO) measure of sample
adequacy and Bartlett’s test of Sphericity (w2 with
degrees of freedom=1/2 [p(p � 1)]) was used to
verify the applicability of PCA [13,14]. Only parame-
ters with communalities great than 0.5 were used for
analysis.

By using the PCA method, the input variables
were changed into PCs that are independent and lin-
ear compound of input variables, instead of direct
using of input variables, thus the information of input
variables will present with minimum losses in PCs. In
this study, PCA was performed on these water
parameters to rank their relative significance and to
describe their interrelation patterns, as well as onto
the phytoplankton population levels. The PCS of the
selected water parameters were used as independent
variables in the MLR to check if the occurrences of
phytoplankton population could be explained by
water parameters, as well as to predict the
phytoplankton abundance.

In MLR model, only the PCS of the PCs with Eigen
value greater than one were used as independentFig. 1. Sampling location for the MSR (a) and SPVR (b).
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variables for predicting the phytoplankton abundance.
Application of PCS in MLR models for prediction was
described by Çamdevýren et al. [9] and Draper and
Smith [15].

Regression model in matrix form can be shown as:

Y ¼ XCþ e ð1Þ

where Y is the response matrix, C is the regression
coefficient matrix, and e is the fitting error matrix. By
solving Eq. (1) for C we get,

C ¼ ðX0XÞ�1ðX0YÞ ð2Þ

where X0 is the transpose of X. To solve this problem,
the multicollinearity between independent variables
with PCA was removed. MLR analysis of phytoplank-
ton abundance on the PC scores was performed using
stepwise variable selection procedures to identify the
best predictors of phytoplankton abundance. Nonsig-
nificant score values were excluded from the model
by stepwise method. The t-test method was used in
testing the regression coefficients. Determination coef-
ficient (R2) was used as the standard criterion of pre-
dictive success which was widely used in ecological
modeling.

3. Results and discussion

3.1. Trophic status and environmental parameters
measurement

The values of chlorophyll a were in the range of
62.54–71.78mg/L, with the average of 67.68mg/L and
standard deviation of 3.45mg/L. TSI was used as an
indicator for evaluating the eutrophication status of
the reservoirs. TSI (Chl), TSI (TP), and TSI (overall)
were calculated as 63–72 and 58–68, and 58–72,
respectively, for MSR, and 62–71, 51–64 and 51–71,
respectively, for SPVR, indicating that both the reser-
voirs were categorized as the reservoirs in eutrophic
and hypereutrophic status, which are consistent with
our observation that the reservoirs are susceptible to
the algal blooms. The indicator can be used not only
as a predictive tool in reservoir management pro-
grams, but also as a valid scientific tool for investiga-
tions where an objective standard of trophic state is
necessary. The details of various water parameters
affecting the algae population dynamics were
described as below.

3.1.1. Hydrological parameters

The hydrological parameters over the whole year
of 2011 were described in Fig. 2. The Macau rainfall in

2010 was 2,064mm (Fig. 2(b, d)) with two peaks in
June and September which accounted for more than
50% of the total amount, while nearly no rainfall in
the dry season from October to March. If the evapora-
tion amount of about 1,000mm (data from Macao
Water Co. Ltd.) was excluded, the net precipitation
for the whole year was approximately 1,000mm, that
is, 350,000m3 for MSR and 120,000 m3 for SPVR. In
addition, it was observed in the Fig. 2(a, c) that the
imported and exported volumes in 2010 were about
4.9million m3 and 8.1million m3, respectively for
MSR, while 2.7 and 4.5million m3, respectively for
SPVR. It has to be noted that there are nearly no
imported water and large amount of exported water
in July for MSR and in June for SPVR, which are
because the Water Company attempted to maximize
the utilization of raw water in the reservoirs, and thus
replace it with the newly imported water, hopefully
reducing the possibility of algal bloom problem
occurred in the coming summer. Due to the low
amount of exported water in June and July, the HRT
in MSR was extremely high (>200days), which can be
classified as long HRT reservoir. SPVR belongs to
short HRT reservoir with the average HRT of about
26 days. The water levels of MSR and SPVR were
maintained at 3.3–5.2m and 2–3.1m respectively, with
the low levels in summer and high levels in winter
and spring.

Peak rainfall can create hydraulic turbulence that
significantly affects the compositions and the domi-
nant species of phytoplankton [16]. However, the
amount of peak rainfall in Macau only accounted for
less than 10% of effective volume of the reservoir,
meaning that the effect of rainfall can be negligible. In
addition, the water quality data from the upstream
(Pearl River Water Resource Commission, unpub-
lished data), showed that the nutrient and phyto-
plankton abundance are low, suggesting that the
imported and exported water may not have strong
correlation with phytoplankton abundance in the res-
ervoirs. Thus, only HRT and water level of the hydro-
logical parameters were included in the PCA study.

3.1.2. Physical parameters

The change of temperature, pH, turbidity, and con-
ductivity for both reservoirs were showed in Fig. 3.
Combined with phytoplankton population data
(Fig. 5), our results agreed with previous study [6]
that temperature strongly affects growth rates and
metabolisms of phytoplankton. Conductivity was
highest in January (�630us/cm) for MSR, while in
February (�553us/cm) for SPVR, and both decreased
linearly until July, and the value was maintained at
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about 200us/cm till the end of the year. In contrast to
conductivity, turbidity was low in spring, and
fluctuated for the remaining time of the year. These
parameters would be included in statistical analysis,
except for the pH that showed the low variance and
was omitted for further study.

3.1.3. Chemical parameters

Fig. 4 showed the change of DO, N, and P
concentrations for both reservoirs. It was interesting to
note that for both reservoirs the TN and nitrate
concentrations (Figs. 4(a) and 4(c)) were high in the
spring, and dramatically decreased in April. The
decrease continued to July and then maintained at
low level in fall and winter. The difference there was
one peak of TN appeared in October in SPVR (Fig. 4

(c)) while did not happen in MSR (Fig. 4(a)). The TP,
PO4

3-, and DO concentrations kept much stable, with
only a little high for TP in June for both reservoirs,
though MSR generally had higher TP, and PO4

3- than
SPVR. Algal blooms are the results of the excessive of
nutrient, mainly nitrogen and phosphorus concentra-
tions [17]. TN [18] or TP [19] can be the control factor
on the growth of phytoplankton and lead to change of
composition.

In the study, the TP concentration fluctuated and
seems to be not correlated to phytoplankton popula-
tion (Table 1). Compared to the concentrations of
nitrate and TN, the concentration of ammonium and
nitrite (the immediate oxidation stage of ammonium
to nitrate) were much lower, and the DO data showed
low variability for the whole year. Thus the parame-
ters of ammonium and DO were omitted in the PCA.

Fig. 2. Variation of hydrological parameters of MSR (a–b) and SPVR (c–d).

Fig. 3. Variation of physical parameters of MSR (a) and SPVR (b).
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3.1.4. Biological parameter and TN/TP ratio

The phytoplankton abundances in both reservoirs
were maintained at low levels, less than 40million
cells/L for the first half an year, and dramatically
increased to 120million cells/L in July for MSR
(Fig. 5(a)) or in August for SPVR (Fig. 5(b)). The high
levels of algae population were kept to the end of
year. The seasonal variation suggested that tempera-
ture was an important factor that causing the bloom.
It was also found that the phytoplankton abundances
increased with the decreasing TN/TP ratio. The TN/
TP ratio has been reported to affect the dominant
species of algae. High TN/TP (20–50) favors growth
of green algae while low TN/TP (5–10) prefers blue
algae [20].

3.2. Statistical analysis

3.2.1. Correlation analysis

The correlations between every two of water
parameters were showed in Table 1 for MSR and
SPVR. Phytoplankton abundances were correlated
with temperature in MSR and turbidity in SPVR,
while anti-correlated with TN, Nitrate, TN/TP ratio,
and conductivity for both reservoirs. These implied
that the nutrients were consumed in the rapid growth
of phytoplankton abundances during the bloom. In
addition, the phytoplankton abundance in SPVR were
found to be anti-correlated with nitrite, HRT and
water level, and a weakly correlated with TP or PO4

3-,
suggesting that phosphorus was not the control factor

Fig. 4. Variation of chemical parameters of MSR (a and b) and SPVR (c and d).

Fig. 5. Variation of biological parameter and TN/TP ratios of MSR (a) and SPVR (b).
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on the algal bloom. It can be observed that there was
a significant amount of multicollinearity among the
water variables, judging by the correlation coefficients
between them. The presence of high multicollinearity
leads to inappropriateness when applying the MLR
later, which should be solved by PCA. This can be
achieved only to select a small number of variables or
components that would explain a high enough
percentage (approximately 80% in this study) of the
total variation in the water variables.

3.2.2. Principle component regression

3.2.2.1. Principle component analysis. The PCA was
performed by using the selected 10 variables’ com-
plete datasets. The value of KMO was 0.610 (MSR)
and 0.639 (SPVR), respectively, both above the criteria
value of 0.6 [13]. The value of w2, calculated as 131.24
(MSR) and 129.048 (SPVR), respectively, with P-value
less than 0.0005 by Barlett’s Test of Sphericity test,
indicating that the analysis was applicable [13].

Table 2 showed, that the first three components
can explain 84.65% variation of the data variation in
MSR. The screen test suggested only three compo-
nents with the Eigen values greater than one to be
retained, in which all the 10 environmental variables
were included. PC1 was mainly composed of physical
parameters and nitrogen source. PC2 was influenced
by hydrological parameters. PC3 was defined as the
phosphorus source (Table 3).

However, in SPVR only the first two components
can explain 83.17% (Table 2) variation of the data vari-
ation. The screen test suggested two components with
the Eigen values greater than one to be retained, in
which all the 10 environmental variables were
included. PC1 was mainly composed of physical/
hydrological parameters and nitrite. PC2 was influ-
enced by nutrient source and turbidity (Table 3).

3.2.2.2. Multiple linear regression. The main objective
of this section was to select a subset of the water vari-
ables that provides the best prediction equation for
the modeling of phytoplankton abundance by using
the multiple regression method. The qualified,
selected, independent variables should be those with
high loadings, associated with each of the PCs
included in the regression equation that had high
coefficients of regression. The MLR results of log10
(phytoplankton) using the standardized values of PCS
related to the results of PCA are summarized in
Table 4. The high values of communalities indicated
that the variances were efficiently reflected in the
regression analysis (Table 3).T
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In MSR, all 10 variables were included in the
three selected PCs, showing that 90.9% of variation
in phytoplankton abundance can be explained by
PCS1 that defined a variation of 50.2% in water
parameters. If the two omitted scores were included
in the model, the determination can increase to
92.3% (not shown here), though the difference was
not statistically significant. Other parameters, water
level, HRT, TP, and PO4

3-, which have significant
impacts in PC2 and PC3, were excluded from the
regression model. However, linear effects of these
parameters on phytoplankton abundance were par-
tially incorporated in PC1 of the predictive model
written as Log10 (phytoplankton) = 7.693–0.097(PCS1)
(Table 4).

Similar to the analysis in MSR, all of the 10 vari-
ables in SPVR were included in the two selected
PCs, showing that 66.8% of variation in phytoplank-
ton abundance can be explained by PCS1 that
defined a variation of 70.8% in water parameters. If
the omitted score was included in the model, the
determination can increase to 71.8% (not shown
here), though the difference was not statistically
significant. Other parameters, turbidity, TP, TN/TP,
nitrate, and TN were excluded from the regression
model, which have significant impacts in PC2, while
their linear effects on phytoplankton abundance had
been partially incorporated in PC1 of the predictive
model written as log10 (phytoplankton) = 7.781–0.074
(PCS1) (Table 4).

Table 2
Descriptive statistics of PCs in MSR and SPVR

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10

MSR Eigen value 5.017 2.284 1.164 .893 .297 .181 .121 .029 .015 .000

Cumulative % 50.167 73.010 84.645 93.576 96.549 98.355 99.566 99.851 99.999 100.00

SPVR Eigen value 7.084 1.233 0.868 0.404 0.196 0.093 0.061 0.048 0.009 0.004

Cumulative % 70.837 83.171 91.846 95.886 97.843 98.775 99.387 99.867 99.958 100.00

Table 3
Results of PCA (k> 1) in MSR and SPVR

Variables Component Communalities

PC1 PC2 PC3

MSR Nitrate 0.976 0.065 0.032 0.958

TN 0.974 0.033 0.041 0.951

TN/TP 0.950 0.016 �0.207 0.946

Conductivity 0.916 0.168 �0.109 0.878

Temperature �0.729 �0.645 �0.039 0.950

Turbidity �0.607 0.329 0.577 0.810

Water Level 0.237 0.873 �0.120 0.832

HRT �0.174 0.778 0.366 0.770

TP �0.296 0.046 0.850 0.812

PO4
3- �0.245 �0.022 �0.706 0.559

SPVR Temperature �0.895 �0.009 .801

Water level 0.837 0.272 .774

HRT 0.774 0.402 .760

Nitrite 0.750 0.609 .933

Conductivity 0.744 0.635 .957

Turbidity �0.043 �0.884 .783

TP �0.232 �0.842 .763

TN/TP 0.492 0.806 .892

Nitrate 0.646 0.697 .903

TN 0.552 0.668 .751
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The higher regression coefficient for predicting
phytoplankton abundance in MSR than in SPVR indi-
cated that the PCR is more successful in MSR to be
applied in water quality monitoring. The MLR-based
predicted values and the corresponding monthly mea-
sured data of log10 (phytoplankton abundance) for
both reservoirs were showed for comparison in Table 5.

4. Conclusion

It is well known that algal blooms in freshwater
system are the most common water pollution
problem, due to the discharge of excessive nutrient
into water bodies. In this study, eutrophication
analyses of two major raw water reservoirs in Macau
were performed and their algae populations were
predicted using statistical methods, correlation
analyses, and principle component regression. Seven-
teen monthly water quality parameters were sampled
and monitored in Macau MSR and SPVR that are

experiencing algal bloom problems in recent years.
Eutrophication analysis was performed to estimate the
TSIs, and PCR was applied to predict the phytoplank-
ton abundances based on the 10 selected parameters
from correlation analysis. The results showed that the
TSIs of MSR were estimated as 58–72 for MSR and
51–71 for SPVR, indicating that both the reservoirs
were in eutrophic–hypereutrophic status that is sus-
ceptible to algal blooms. In MSR, the phytoplankton
abundance was affected by temperature with linear
regression coefficient of 0.75, and anti-correlations
were found between phytoplankton abundance and
TN (R2 = 0.94), nitrate (R2 = 0.94), TN/TP ratio
(R2 = 0.88), or conductivity (R2 = 0.97), implying that
the nutrients were consumed in the rapid growth of
phytoplankton abundance during the bloom. On the
other hand, the phytoplankton abundance in SPVR
was affected by turbidity with linear regression coeffi-
cient of 0.64, and anti-correlations were found
between phytoplankton abundance and TN (R2 = 0.67),

Table 4
Results of MLR analysis for three PCs (k> 1, stepwise method) in MSR and two PCs (k> 1, stepwise method) in SPVR

Included independent
variables

Regression
coefficient (B)

Std. Error
of B

Std. regression
coefficient (Beta)

t Sig. R2

MSR Constanta 7.693 0.043 178.442 0.000⁄⁄ 0.909

PCS1 �0.097 0.010 �0.953 �9.967 0.000⁄⁄

SPVR Constanta 7.781 0.056 137.783 0.000⁄⁄ 0.668

PCS1 �0.074 0.016 �0.817 �4.481 0.001⁄⁄

Stepwise (Criteria: Probability-of-F-to-enter <= .050, Probability-of-F-to-remove >= .100).
aPredictors: (Constant), PC1 and dependent Variable: log10 phytoplankton.
⁄⁄Correlation is significant at the 0.01 level (2-tailed).

Table 5
Comparison of predicted values and measured data of Log10 (phytoplankton) in MSR and SPVR

Month MSR SPVR

Observation 3PCs, stepwise Observation 2PCs, stepwise

1 6.94 7.163488917 7.54 7.318817182

2 7.20 7.135373703 7.49 7.469520176

3 7.15 7.062720866 7.38 7.561773375

4 7.26 7.095977133 7.49 7.586620357

5 7.48 7.652459398 7.51 7.653316584

6 7.59 7.841722547 7.60 7.696268651

7 8.08 8.129864588 7.66 8.046944822

8 8.18 8.136882746 8.18 8.022269962

9 8.15 8.086553984 8.11 8.097495639

10 8.18 8.070912715 8.15 8.056516864

11 8.08 7.92024181 8.15 7.944106396

12 8.04 8.019801278 8.11 7.918349991
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nitrate (R2 = 0.79), nitrite (R2 = 0.88), TN/TP ratio
(R2 = 0.73), conductivity (R2 = 0.85), HRT (R2 = 0.72), and
water level (R2 = 0.81), meaning that the high concentra-
tions of nutrients were consumed in the rapid growth
of phytoplankton abundance during the blooms.
Besides, considering the weak correlation of phyto-
plankton population to TP, R2 < 0.21 for MSR and
R2 < 0.51 for SPVR, it is highly probably that TN,
instead of TP, was the control factor for the bloom.
Compared to SPVR with lower prediction of 0.67 for
phytoplankton abundance, MSR has higher regression
coefficients of 0.91. The PCA can be used to simplify the
complexity of algal bloom problem by identifying the
dominant water parameters (nitrogen source, TN/TP
ratio, and physical and hydrological parameters) that
cause blooming, and the MLR using PCS as input was
successful in eliminating multicolinearity problem, to
remove indirect effect and number of water parameters,
for predicting the phytoplankton population.

This study is a preliminary research into the fac-
tors contributing to algal blooms in Macau Reservoirs.
However due to the complex nonlinear relationship
between water variables and phytoplankton abun-
dance, the PCR method may not be good enough for
predicting the phytoplankton population, particularly
for SPVR, considering the prediction power is low.
Further studies based on nonlinear models, such as
artificial neural network, support vector machine and
relevance vector machine, need to be undertaken to
better understand the mechanism of the algal bloom,
as well as principle factors affecting the algae popula-
tion. ANN is a well suited method with self-adaptabil-
ity, self-organization and error tolerance [21], and
SVM has advantages of only requirement of a small
amount of samples, high degree of prediction accu-
racy and long prediction period by using kernel func-
tion to solve the nonlinear problems. It reduces the
generalization ability, and the complexity of algo-
rithm. Thus it will be helpful for us to forecast the
algae population given the water variables in the
reservoirs, and later to develop the water quality
monitoring and reservoir management programs.
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