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ABSTRACT

In this work, the process of starch removal from starchy wastewater using a hydrophilic
polyethersulfone membrane was investigated. The pore size of the membrane was 0.65 lm
and the pattern of stream in plate and frame handmade membrane module was cross-flow.
To design the layout of the experiments, response surface methodology was applied. The
performance of the filtration process was evaluated by calculating the (chemical oxygen
demand) COD removal percentage (rejection factor) and permeate flux. In this study, five
operative parameters were investigated, including trans-membrane pressure, flow rate and
temperature of feed, pH, and the COD concentration of starch wastewater. Two models were
obtained from experimental data, capable of predicting COD removal percentage and perme-
ate flux in different conditions. To check the precision of the models, analysis of variance
combined with F-test was carried out. The predicted values obtained from the regression
models were close to the actual ones. According to the models, the optimum condition for
achieving a high percentage of COD removal and high value of permeate flux was obtained
by using mathematical optimization.
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1. Introduction

The wastewater originated from traditional starch
industries are characterized by high chemical oxygen
demand (COD) content, ranging from 2,000 to
24,000mg/L [1–4]. Many attempts have already been
reported to treat this kind of wastewater in using bio-
logical systems [5–9]. It is worth noting that mem-
brane technology is conveniently applied in water and
wastewater treatment [10–12]. Recently, considerable

reductions in the price of membranes and the
advances in membrane technology have made this
approach more practical for separating even smaller
starch molecules [13,14]. Applying this technology to
starchy wastewater not only significantly reduces its
COD content but also improves the cost-effectiveness
of the starch industry. Cancino et al. [13] used a
hydrophilic membrane to treat corn starch wastewater
in a pilot test. Their investigation was divided into
two types of membrane technologies. First, they
treated the wastewater for 4 h using a microfiltration
(MF) module with a pore size of 0.2 lm at a*Corresponding author.
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trans-membrane pressure (TMP) of 250 kPa. The per-
meate contained only 17% of original wastewater bio-
logical oxygen demand (BOD5), and the permeate flux
achieved during MF was around 10.8� 10�6m3/m2h.
Secondly, they used a laboratory reverse osmosis (RO)
module to remove higher amounts of BOD5. Resulted
permeate flux had only 0.2% of original wastewater
BOD5 [13]. Sarka et al. [14] by using MF and RO
membranes investigated the possibilities of recycling
the concentrated retentate back into the production
process. They used a ceramic membrane with a filtra-
tion area of 0.35m2 and pore size of 500 and 100 nm
as MF, respectively. Permeate flux above 100 L/m2h
was achieved for the 100 nm membrane, but fouling
was considerable. They reported that COD and BOD5

had removal percentages of about 60% [14]. It is
worth noting that ceramic membranes are relatively
expensive. In these studies, the optimum condition
was not obtained since the process was investigated
in a single condition and the effects of parameters on
process performance were not studied. The most
important parameter in membrane-based treatment is
pore size; starchy wastewater should be treated using
membranes with a pore size smaller than the diameter
of the starch molecule. The starch granules size may
vary from 1 to 50lm [15]. Accordingly, selecting a
commercial membrane with the pore size of 0.65lm
seems acceptable for complete filtration. The range of
gelatinization temperature of starch spans from 60 to
80�C [16,17]. Despite the fact that membrane technol-
ogy has many advantages, including being energy-
saving and environmentally friendly, there are several
drawbacks in using this technology. The main draw-
back is permeate reduction over time, which is mainly
due to membrane fouling and concentration polariza-
tion [18,19]. Membrane fouling also changes the mem-
brane selectivity and decreases the overall process
productivity [20]. To overcome this problem, optimal
process conditions that simultaneously maximize both
the rejection factor and permeate flux must be
identified.

In many experiments, the outputs depend not only
on operating parameters but also on the interactions
between the input parameters which may affect the
output responses. So, these possible interactions must
be taken into consideration. The performance of mem-
brane separation is a complex and sensitive function
of numerous parameters, and using a systematic
approach is necessary to model the process and obtain
optimum conditions. The interactions could not be
considered by varying one parameter and keeping the
others constant. This problem has been resolved by a
design of experiment (DoE) technique. The use of DoE
has been expanded in recent years in several fields of

science and engineering [21–30]. This technique is
divided into several subsets. One of the useful meth-
ods used in this study is response surface methodol-
ogy (RSM). RSM is a mathematical method for
modeling the experimental data. The present study
describes experimental and statistical approaches to
model and optimize the separation of starch from syn-
thetic starchy wastewater. The process was analyzed
and modeled using RSM. The parameters examined
were TMP, flow rate, temperature, pH, and starch
concentration. The effects of these parameters on
membrane performance were assessed. The innovation
of this work was developing a methodology for per-
forming an efficient separation. A novel and compre-
hensive approach was developed by employing two
proposed responses as the measure of separation effi-
ciency and fouling reduction termed COD removal
percentage and permeate flux, respectively.

2. Materials and methods

2.1. Materials

The main materials in this experiment were
sodium hydroxide (NaOH) and chloridric acid (HCl)
that were used in backwash procedures, as well as
starch (food grade) for preparing synthetic wastewa-
ter. A plate and frame module was made of steel to
hold a sheet of commercialized hydrophilic polyether-
sulfone

1

(PES) membrane. PES membrane is, in
essence, a hydrophobic membrane with low resistant
fouling, which leads to severe permeate flux decline
during running the experiments [31]. But by treating
this type of membrane, its hydrophobic property
would change to the hydrophilic one that was suitable
for this research [32]. A centrifugal pump (Victory
KM100) with a maximum head of 50m and maximum
flow rate of 50 L/min and a flow meter with a maxi-
mum capacity of 20L/min were also used.

2.2. Response surface methodology (RSM)

RSM is a combination of mathematical and statisti-
cal techniques that are useful for analyzing and mod-
eling a set of data, in which some responses of
interest are influenced by several variables. The main
goal of this method is optimization of these responses
[33]. RSM provides an environment to study the
parameters and their interaction effects on output
responses and finally, extracts a mathematical model
that is useful in plotting the effect of parameters and

1�1995–2011 General Electric Company, http://www.geos-
molabstore.com.
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their interactions. There are several statistical design
techniques associated to RSM such as three levels of
factorial design, central composite design (CCD), and
hexagonal design. The three groups of design points
are involved in a CCD are:

• two-level factorial or fractional factorial design
(FFD) points

• axial points
• center points

Using CCD, the number of experiments is
achieved by the following equation:

N ¼ Nf þNa þNc ð1Þ

where N is the total number of experiments, Nf is the
number of factorial design, Na is the number of axial
points, and Nc is the number of center points. There is
no exact rule to determine the number of center
points. In this study, Nc was adjusted to six. It is note-
worthy that Nf and Na were achieved from Eqs. (2)
and (3), respectively.

Nf ¼ 2n ð2Þ

Na ¼ 2� n ð3Þ

where n is the number of parameters involved.
Eq. (1) shows that by increasing the input parame-

ters, the number of experiments will increase rapidly.
By using the FFD to screen the insignificant parame-
ters, the number of input parameters decreases and
the number of experiments planned via CCD would
decrease consequently. A two-level FFD was
employed to screen the insignificant parameters. If the
response behavior is moderately nonlinear, a qua-
dratic model may be appropriate. CCDs are designed
to estimate the coefficients of a quadratic model. All
point descriptions will be in terms of coded values of
the parameters. In other words, data processing is
accomplished in coded terms. There are several types
of software in this field. The investigator can also ana-
lyze the response surface data with paper and pencil,
but this is time-consuming. In this study, we used
Design Expert

2

software to develop the experimental
plan for analyzing the collected data and to perform
the analysis of variance (ANOVA).

A parameter named alpha will be introduced in
CCD that represents axial distance. The value of axial

distance determines the location of star points in a
CCD. Alpha, the distance from centre point to star
point, has the maximum value of 2n=4, where n is the
number of factors [34,35]. In this work, four parame-
ters have been investigated. Accordingly, the maxi-
mum value of alpha would be two. But, to avoid
allocating a negative value for low level point (star
point), the default value of Design Expert software for
axial distance (1.41) has been selected.

Alpha is usually somewhat larger than one. In this
study, alpha was 1.41. The related graphs were plot-
ted using MATLAB software. In an ANOVA table, a
good model must be significant and the lack-of-fit
must be insignificant.

2.3. Experimental analysis

RSM has four major steps: experimental design,
model fitting, model validation, and condition optimi-
zation. As mentioned earlier, experimental designs
such as CCD are useful for RSM because they do not
require an excessive number of experimental runs
[36]. Operating parameters were coded according to
the following equation [37]:

Ci ¼
xi �

xi;high þ xi;low
2

xi;high � xi;low
2

ð4Þ

where Ci is the coded value of the natural indepen-
dent variable xi, xi,high and xi,low are the values of vari-
ables at high and low levels, respectively.

In order to screen the insignificant parameters, a
25–2 FFD with three replicates at the center point was
performed [38].

According to ANOVA table for COD removal per-
centage and permeate flux, which were obtained by
FFD, it is obvious that TMP has no effect on COD
removal percentage but has a positive effect on per-
meate flux. So, this parameter could be set at a maxi-
mum value to increase the permeate flux and
consequently decrease the number of parameters that
result in removing 18 experiments. As mentioned ear-
lier, CCD is comprised of three groups of design
points. The factorial portion is a full factorial design
with all combinations of parameters at two levels, the
center points, which is the midpoint between the high
and low levels, were repeated six times, and the axial
or star points were adjusted according to an alpha
value of 1.41. So, the number of experiments obtained
from Eq. (1) was 30. Processing parameters involved
in CCD are depicted in Table 1. The design layout
and experimental results of RSM for COD removal

2�Vaughn, N.A., et al., Design-Expert(R), Version 8 for
Windows, Stat-Ease, Inc., Minneapolis, 2011, web site:
http://www.statease.com.
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percentage and permeate flux are summarized in
Table 2.

Root mean square error (RMSE) represents the
square root of the average squared difference between
the predicted values estimated from a model and the
actual values [39]. RMSE was determined by the
following equation:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPðYpred: � Yexp:Þ2

M

s
ð5Þ

where Yexp and Ypred were experimental and predicted
values, respectively, and M was the total number of
data.

Table 1
Processing parameters involved in CCD

Process variables Code �a �1 0 1 a Variation interval

Flow (L/minm2) A 2.96 4 6.5 9 10.04 2.5

Temperature ( �C) B 20.20 26 40 54 59.80 14

pH C 6.78 7.5 9.25 11 11.72 1.75

Concentration (g/L) D 0.17 1 3 5 5.83 2

Table 2
The design layout and experimental results of RSM

Standard run no. Run Block Flow-A Temp.-B pH-C Conc.-D Permeate flux (L/minm2) COD removal (%)

1 26 1 4.00 26.00 7.50 1.00 1.75 86.5

2 5 1 9.00 26.00 7.50 1.00 1.63 84.8

3 29 1 4.00 54.00 7.50 1.00 1.77 95.2

4 22 1 9.00 54.00 7.50 1.00 0.87 92.3

5 15 1 4.00 26.00 11.00 1.00 0.97 84.3

6 12 1 9.00 26.00 11.00 1.00 1.52 81.3

7 23 1 4.00 54.00 11.00 1.00 1.71 91.5

8 3 1 9.00 54.00 11.00 1.00 1.12 89.2

9 2 1 4.00 26.00 7.50 5.00 1.05 92.4

10 11 1 9.00 26.00 7.50 5.00 0.89 89

11 4 1 4.00 54.00 7.50 5.00 1.06 97.5

12 6 1 9.00 54.00 7.50 5.00 0.36 97

13 1 1 4.00 26.00 11.00 5.00 0.62 89.3

14 8 1 9.00 26.00 11.00 5.00 1.35 86.6

15 28 1 4.00 54.00 11.00 5.00 0.97 90.2

16 9 1 9.00 54.00 11.00 5.00 2.3 91

17 21 1 2.96 40.00 9.25 3.00 0.52 92

18 19 1 10.04 40.00 9.25 3.00 2.42 88

19 7 1 6.50 20.20 9.25 3.00 0.88 84.3

20 17 1 6.50 59.80 9.25 3.00 2.2 96.4

21 16 1 6.50 40.00 6.78 3.00 1.22 91.5

22 27 1 6.50 40.00 11.72 3.00 1.73 88.4

23 24 1 6.50 40.00 9.25 0.17 1.3 88

24 20 1 6.50 40.00 9.25 5.83 1.83 93.5

25 10 1 6.50 40.00 9.25 3.00 1.75 90.1

26 30 1 6.50 40.00 9.25 3.00 1.9 92.3

27 25 1 6.50 40.00 9.25 3.00 1.83 89

28 18 1 6.50 40.00 9.25 3.00 1.75 88.7

29 13 1 6.50 40.00 9.25 3.00 1.63 91

30 14 1 6.50 40.00 9.25 3.00 1.77 92.5
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3. Results and discussion

3.1. ANOVA analysis and effect of factors on filtration
performance

To ensure the accuracy of the current models,
some tests are performed to study the significance of
the regression model, individual model coefficients,
and lack-of-fit. The ANOVA table for assessing the
permeate flux is shown in Tables 3 and 4.

Values of (Prob > F) less than 0.05 indicate the
model terms are significant and values greater than
0.10 indicate they are not significant. The values in the
range of 0.05 to 0.10 are transitional. So, according to
the ANOVA table for permeate flux, B, C, D, and A2

are significant model terms. The main effect of flow
rate (A) is not a significant term, but to present a hier-
archic model; this is included in the model. As Ghesh-
laghi et al. [37] mentioned, model hierarchy maintains
the relationships between main and interaction effects,
so models derived in terms of real values from non-
hierarchically coded models are incorrect [37]. As is
shown in Table 3, there are insignificant terms in
ANOVA table. To obtain more accurate model, such
terms should be removed since they have no effects
on permeate flux. It is important to note that remov-
ing these insignificant terms leads to an improved
model. So, a backward elimination procedure was
selected to automatically reduce the insignificant

terms. ANOVA table related to improved model is
shown in Table 4. The p-value of model is still been
less than 0.05 indicates that the improved model is
still significant or the removed terms have no effects
on the significance of model, actually. According to an
ANOVA table for response surface reduced quadratic
model, as depicted in Table 4, the ranking is as follow:
C>B>D>A2>B2>A. Adequate Precision of 19.79 indi-
cates an adequate signal. The Model F-value of 26.68
implies that the model is significant. There is only a
0.01% chance that a Model F-Value this large could
occur as a result of noise. The “lack of fit F-value” of
0.97 implies that the lack of fit is not significant rela-
tive to pure error. Pure error is a measure of error
related to repeatability. In other words, this is the sum
of squares of the repeat observations divided by the
degree of freedom. There is a 57.14% chance that a
“Lack of Fit F-value” this large could occur due to
noise. Non-significant lack of fit is good. The integrity
of a model can be checked by the determination of R2

coefficient and adjusted R2 [40]. In this study, for
permeate flux, R2 is 0.88, implying that 88.82% of
response variability is achived by a regression model.
R2 increases as the number of terms increases in the
model, while no improvement in model is observed
[41]. So to tackle this problem adjusted R2 was
introduced, which would increase only due to the
model improvement. In this case adjusted R2 is 0.85

Table 3
ANOVA table for permeate flux model

Source Sum of square Df Mean square F value p-value

Model 7.91 14 0.57 8.54 <0.0001 Significant

A-A 3.99E�003 1 3.99E�003 0.06 0.8093

B-B 2.46 1 2.46 37.22 <0.0001

C-C 2.53 1 2.53 38.29 <0.0001

D-D 1.80 1 1.80 27.26 0.0001

AB 1.00E�004 1 1.00E�004 1.51E�003 0.97

AC 0.017 1 0.017 0.26 0.62

AD 4.90E�003 1 4.90E�003 0.07 0.79

BC 0.02 1 0.02 0.30 0.59

BD 0.01 1 0.01 0.18 0.67

CD 0.00 1 0.00 0.00 1.00

A2 0.61 1 0.61 9.28 0.01

B2 0.16 1 0.16 2.44 0.14

C2 1.22E�003 1 1.22E�003 0.02 0.89

D2 3.22E�003 1 3.22E�003 0.05 0.83

Residual 0.99 15 0.07 <0.0001

Lack of fit 0.76 10 0.08 1.62 0.31 Not significant

Pure error 0.23 5 0.05

Cor total 8.90 29

Model 7.91 14
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reasonably in accords with R2 implies that this value
of R2 is not unreal.The predicted R2 of 0.76 is in rea-
sonable agreement with an adjusted R2. The final
equation for permeate flux in terms of coded factors
obtained from regression of values is as below:

Permeate flux ¼ 1:71þ 0:014� A� 0:35� B

� 0:36� C� 0:30�D

� 0:25� A2 � 0:13� B2 ð6Þ

Expression of response in actual values is
preferred. So, by converting coded values to actual
values using Eq. (4), the following equation in terms
of actual value achieved:

Permeate flux ¼ 2:22þ 0:54� Flow rate

þ 0:028� Temperature

� 0:20� pH� 0:15� concentration

� 0:04� Flow rate2

� 6:632� 10�4 � Temperature2 ð7Þ

Subjected to: 3 <Flow rate <10L/min, 20 <Temper-
ature <60�C, 7.5<pH <11.7 and 0.17<Concentration
<5.83 g/L. This model can be used to predict the per-
meate flux within the limiting bounds of experimental
parameters. To check the adequacy of final model, the
normal probability plot vs. the studentized residuals
is checked and illustrated in Fig. 1. The normal proba-
bility plot indicates whether the residuals follow a
normal distribution or not. In this case, the points that
follow a straight line confirm that errors were
normally distributed with a mean of zero. Definite
patterns like an “S-shaped” curve indicate that a
transformation of response may provide a better
analysis.

The residual vs. run number and predicted values
were checked to test the assumption of constant vari-
ance (not shown). In Figs. 2–4 three-dimensional plots
and related contours have been made using Matlab
software to reveal the effect of concentration; pH, flow
rate and temperature on permeate flux. It is clear that
these graphs are drawn according to Eq. (6). In Fig. 2,
the permeate flux plot versus flow rate and tempera-
ture is illustrated. As it can be observed from this fig-
ure, it is clear that terms A2 and B2 twist the graph
but the effect of A2 is more severe. The results show
that the permeate flux increases as flow rate increases,
up to about 6.75 L/minm2 of flow rate. The reason for
this issue may be related to an increase of turbulency.
Turbulence at membrane surface - emerges after
increasing the flow rate velocity - likely diminishes
the concentration polarization. Guerra et al. [42]
mentioned same reason for the increase of permeate
flux with increasing cross flow velocity during

Table 4
ANOVA table for reduced permeate flux model

Source Sum of square Df Mean square F value p-value

Model 7.85 6 1.31 28.68 <0.0001 Significant

A-A 3.99E�003 1 3.99E�003 0.09 0.77

B-B 2.46 1 2.46 53.94 <0.0001

C-C 2.53 1 2.53 55.50 <0.0001

D-D 1.80 1 1.80 39.51 <0.0001

A2 0.65 1 0.65 14.25 0.001

B2 0.17 1 0.17 3.70 0.07

Residual 1.05 23 0.05

Lack of fit 0.82 18 0.04 0.97 0.57 Not significant

Pure error 0.23 5 0.05

Cor total 8.90 29

Fig. 1. Normal probability plot of studentized residuals for
the permeate flux.
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investigating the effect of Re number on permeate flux
for a ceramic membrane ultrafiltration of surface
water [42]. It is obvious that beyond 6.75 L/minm2

of flow rate, the increase in amount of flow has a
reverse effect and there is a marked decrease in
permeate flux. This may be due to the fact, that since
the value of flow rate is less than 6.75 L/minm2

increasing the flow rate (cross flow velocity) which
enhances particulate removal from membrane surface
leads to the increase in permeate flux. But for the
values more than 6.75 L/minm2, the permeate flux is
influenced more by irreversible fouling than by

concentration polarization. So, increasing the flow rate
has no considerable effect on treating fouling and
recovering permeate flux. On the other hand, tempera-
ture of membrane would increase due to applying
high flow rate velocity, which may change the
hydrophilic and resistance fouling property of mem-
brane that leads to permeate flux decline. Similar
observations can be outlined from Fig. 3.

It is to be noted that concentration and pH have
negative effects on permeate flux (Figs. 3 and 4). By
increasing the concentration of feed, the concentra-
tion polarization phenomenon takes place and leads

Fig. 2. 3-D (a) and contour plot (b) of predicted permeate flux as a function of flow and temperature at pH=9 and
concentration = 3 g/L.

Fig. 3. 3-D (a) and contour plot (b) of predicted permeate flux as a function of flow and pH at temperature = 40�C and
concentration = 3 g/L.
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to a linear decrease of permeate flux. Increasing the
pH of solution results in strengthening the cohesion
forces between starch molecules, so that the size of
starch molecules grows and the concentration polari-
zation phenomena on the surface of membrane
results in lower permeate flux. The response values
determined by empirical models were compared to
experimental data for permeate flux are shown in
Fig. 5. As can be seen, the results obtained from RS
model are in good accord with experimental data.
Therefore, models can be considered adequate for
predictions and optimization.

The value of RMSE for permeate flux was 0.19.
The same method was used to analyze the perme-

ate flux applied for analysis of COD removal. The
ANOVA table for COD removal is illustrated in
Table 5. In analysis of the values related to COD
removal, the R2 is 0.91 reasonably close to one, which
is acceptable and the adjusted R2 is 0.89. The pre-
dicted R2 is 0.85, which is in reasonable agreement
with the adjusted R2. The adjusted R2-value is particu-
larly useful when comparing the models with differ-
ent number of terms. This comparison is, however,
done in the background when the model reduction is

Fig. 5. Experimental data compared to predicted values given by the response surface model for permeate flux.

Fig. 4. 3-D (a) and contour plot (b) of predicted permeate flux as a function of temperature and concentration at pH =9
and flow =6.5 L/min.

A. Hedayati Moghaddam et al. / Desalination and Water Treatment 51 (2013) 7036–7047 7043



taking place [43]. According to the F-value repre-
sented in Table 5, the parameters are ranked in order
to their importance as follows: B>C>D>A>BD>BC.
The final experimental model in terms of coded
factors for COD removal percentage is presented as
follows:

COD removal% ¼ 90:13� 1:07� Aþ 3:34� B

� 1:78� Cþ 1:78�D

� 0:56� B� C� 0:81� B�D ð8Þ

In terms of actual factors, the final empirical model
for COD Removal is as follows:

COD removal% ¼ 78:26� 0:43� Flow

þ 0:54� Temperature

� 0:11� pHþ 2:04� concentration

� 0:023� Temperature� pH

� 0:029� Temperature

� Concentration ð9Þ

The response values determined by RS models
were compared to experimental data and the results
are shown in Fig. 6 for COD removal percentage.

The value of RMSE for COD removal percentage
was 1.10.

The COD removal percentage as a function of tem-
perature and pH, is illustrated in Fig. 7. Other factors
(flow rate and concentration) were held at a central
level 6.5 L/min and 3 g/L, respectively. Despite the
existence of an interaction term between temperature
and pH, there is no curvature in this case, because the
curvature takes place at the points that are out of
range. As it can be observed from the figure, the rise

of pH led to decrease in COD removal percentage,
which is explained by the diminishing cohesion forces
between starch and membrane. It also results in the
decreased tendency to absorb the starch molecules on
membrane surface absorbing sites. An increase in tem-
perature had positive significant influence on COD
removal percentage, because by raising the tempera-
ture, the tendency of starch to move into a gelatiniza-
tion phase would increase. Consequently, the size
growth of starch particles leads to a high percentage
of COD removal. Similarly, a contour and 3-D graph
of COD removal percentage as a function of tempera-
ture and concentration are illustrated in Fig. 8. As
shown, the increase in concentration results in an
increase in COD Removal percentage. This may be
because of the formation of a thicker gel layer on a

Table 5
ANOVA table for reduced COD removal model

Source Sum of square Df Mean square F value p-value

Model 388.66 6 64.78 40.94 <0.0001 Significant

A-A 22.81 1 22.81 14.41 0.0009

B-B 223.19 1 223.19 141.05 <0.0001

C-C 63.67 1 63.67 40.23 <0.0001

D-D 63.65 1 63.65 40.22 <0.0001

BC 4.95 1 4.95 3.13 0.09

BD 10.40 1 10.40 6.57 0.017

Residual 36.40 23 1.58

Lack of fit 23.32 18 1.30 0.50 0.88 Not significant

Pure error 13.08 5 2.62

Cor total 425.06 29

Fig. 6. Experimental data compared to predicted values
given by the response surface model for COD removal %.
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membrane surface that advances the performance of
the filtration process.

3.2. Optimization

One of the goals of this study was to provide a
RSM for optimizing the treatment of starchy industry
wastewater by using a membrane process. The useful
approach to optimize the multiple responses is to use
the simultaneous optimization techniques by applying
the created mathematical models. The desirability

function approach is one of the most widely used
methods in optimizing the multiple response pro-
cesses. In this method, first, each response yi converts
to an individual desirability function di, which varies
over the following range:

0 � di � 1

where if the response yi is at its goal or target, then
di= 1, and if the response is outside an acceptable

Fig. 7. 3-D (a) and contour plot (b) of predicted COD removal percentage as a function of temperature and pH at
concentration = 3 g/L and flow =6.5 L/min.

Fig. 8. 3-D (a) and contour plot (b) of predicted COD removal percentage as a function of temperature and concentration
at pH=9 and flow=6.5 L/min.
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region, di= 0. Then the design variables are chosen to
maximize the overall desirability as follow:

K ¼ ðd1 � d2 . . . dmÞ1=m

where m is the number of responses [33].
The Design Expert software finds optimum condi-

tion, using the desirability function approach. The
optimum condition for this process is presented in
Table 6.

4. Conclusion

In this research, an investigation was made to
describe experimental and statistical approaches to
model, and optimize the separation of starch from syn-
thetic starchy wastewater using a plate and frame
membrane module. The effects of operative parameters
such as flow rate (A), temperature (B), pH (C) and
concentration (D) on membrane performance were
investigated within the design space introduced in the
RSM. By comparing the obtained results using RSM to
experimental data, it was observed that there is a good
agreement between RSM model outputs and experi-
mental data. Finally, by using these models, mathemat-
ical optimization was carried out and the optimum
condition was obtained. As a result, it is unnecessary to
carry out the extensive pilot plant testing for data
collection, which can be interpolated with potentially
great savings, in terms of both time and cost.
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