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ABSTRACT

This article studies and describes a monitoring, fault detection, and diagnosis technique
based on the unfolded PCA (UPCA) approach and its application to a reverse osmosis desa-
lination plant. The UPCA approach is normally applied to batch processes, but in this case,
the UPCA approach is applied to a continuous process, which does not present a strict
steady state. The classical principal component analysis (PCA) approach is not very suitable
for this process due to the nonlinearities of this type of processes. The principal characteris-
tics of PCA and UPCA methods are described. The different considerations and adaptations
required to perform a UPCA monitoring tool applied to a continuous process, such as
unfolding, alignment, and imputation, are also described and explained.
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1. Introduction

One of the most important objectives of modern
industry is production with the best quality. This aim
can be compromised by the appearance of special
causes in the process. These special causes can some-
times be due to faults in the process. The appearance
of these faults can put the health of the plant opera-
tors, the final users, or the environment at risk. The
modern control theory has solved several problems
with optimal results from the point of view of quality.
However, automatic monitoring and fault detection
schemes have to be designed and implemented to
detect and diagnose the faults.

A fault can be defined as a deviation of the
nominal situation in the structure or parameters of the

system [1]. A review of the principal fault detection
and isolation (FDI) techniques is given in [2–4]. The
authors divide this area into three categories: quantita-
tive model-based methods, qualitative model-based
techniques, and process history-based methods. The
authors describe the main advantages and drawbacks
of using each of these techniques. In this work, the
technique applied to perform a monitoring tool is a
statistical quantitative process history-based technique;
specifically, the principal component analysis (PCA) is
the chosen approach.

The PCA is based on a linear transformation that
calculates new uncorrelated variables (components)
from the correlated original measured variables. A few
of these components are enough to represent the
sources of variability in the process. This characteristic
makes PCA a suitable tool for system monitoring [5].
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Also, the PCA can detect process variations by using
monitoring statistics, which have been used as fault
detection schemes [6].

The PCA approach has been widely used in moni-
toring and fault detention tasks in continuous
processes [5,6]. The PCA monitoring tools obtain good
results when used to monitor steady states, since the
relationship between the variables in the steady states
are linear. However, the classical PCA fault detection
schemes are not very suitable for processes that
present nonlinear behavior, because an increment in
the false alarms ratio can be observed, due to a
change in the correlation structure due to the nonlin-
ear relationship between the variables.

In order to deal with these nonlinear situations, sev-
eral variations of the classical PCA are described in the
literature, for example, the adaptive PCA approach [7],
the recursive PCA approach [8], the exponentially
weighted PCA approach [9], or the nonlinear PCA
approach based on auto-associative artificial neural net-
works [10].

None of these modifications are suitable when tran-
sient states in the process are long and persistent, i.e.
the desalination plant explained in this work. This pro-
cess, despite of being a continuous process, does not
present a constant steady state due to the cleaning
cycles.

There is a configuration of the classical PCA
approach to monitor normally nonlinear processes: the
batch processes. These methods are called multi-way
PCA, unfolded PCA (UPCA), or Batch PCA [11–14].
All of them are equivalent.

This article describes a FDI method based on the
UPCA scheme. The designed approach is applied, as
cited before, to a simulated reverse osmosis (RO)
desalination plant. This model is based on small and
medium real plants placed in remote areas. This
remote location requires the use of monitoring tools,
since the operator cannot be in the operation room all
day. The use of modern technologies can allow the
state of the plant to be monitored from a remote
centralized operation center.

Recently, several works related to the fault detection
in RO desalination plans have been published. In Ref.
[15], a model-based approach is presented. The authors
established a nonlinear mathematical model. The
model output is compared with the real output in order
to detect faults in the process. The execution of the
complex model in required at every sample time in the
online running. In Ref. [16], the use of models is also
proposed, but, in this case, the model is based on bond
graphs. This configuration can be too complex for real-
plant implementations. In Refs. [17] and [18], the fault
tolerant control task is undertaken. In these works, the

authors do not implement any fault detection method,
but this configuration requires a fault detection
method. Bourouni [19] proposed to analyze the plant
availability using graphical methods such as the reli-
ability block diagram method and the fault tree analy-
sis method.

PCA and UPCA approaches can be applied to sev-
eral processes without implementing complex mathe-
matical model, based only in data collected from the
plant. The study case of this work is a continuous pro-
cess, but due to the cleaning phases for the correct plant
running, its behavior is not precisely a steady state. So,
the designed monitoring tool is based on the UPCA
scheme.

This paper tests the adaptation of the UPCA
approach to a continuous process in order to reduce
the false alarms ratio and to improve the detectability.
This work includes the necessary considerations and
steps for designing and implementing a monitoring
tool based on UPCA applied to continuous processes
without a strictly steady behavior. The paper describes
the principal tasks to be performed by the UPCA, i.e.
the unfolding, the alignment, and the imputation.

The monitoring and fault detection of nonsteady
behaviors have been studied by several authors. In
Refs. [20] and [21] several approaches based on UPCA
are presented and discussed. However, they do not
deal with the imputation problem, i.e. the missing data
that appear when this methodology is applied in online
process monitoring, or they use the trimmed scores
(TRI) imputation method. In this work, other imputa-
tion method is used with better results and a similar
computational cost. Also, an online alignment data
problem, necessary in UPCA approaches, is imple-
mented and used following the guidelines presented in
[22]. In the identification of the variables related to the
fault task, a contribution plot organization for the vari-
able contributions to the scores are proposed by group-
ing the scores grouped by each process variable.

The study case of a desalination plant is presented
in section 2. The PCA as an FDI technique is presented
in section 3. Section 4 describes the UPCA approach
and the main variations that must be considered when
designing a FDI tool for a continuous process. The con-
clusions of this work are presented in section 6.

The mathematical notation used in this paper is the
following: bold capital letters for matrices, bold lower
case letters for vectors, and italics letters for scalars.

2. The RO desalination plant

The approach of FDI presented in this work has
been applied to a RO desalination plant. This plant is
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widely explained in [23]. The plant has been developed
as one of the results of the European project OPEN-
GAIN (http://www.open-gain.org/).

The proposed approach has been tested in a
simulation model of this plant. The plant has been
simulated using the simulation environment Ecosim-
Pro�. EcosimPro� is a dynamic simulation tool based
on an object-oriented modeling language. This type of
tools allows first principles models to be built. Every
real component in the system can be modeled as a
logical component. The physical parameters, such as
the quality of feed water, salinity, temperature, type
of filter, membrane characteristics, etc. can be
included in the model. The simulation model of the
RO desalination plant consists approximately of 9,000
equations and 9,000 variables and it has been
validated using real data.

The principal aim of the plant used in this work
is to desalinate brackish water. The brackish water
is pumped from the well to a supply tank. The
water of the supply tank is pumped through a high
pressure pump. The objective of this pump is to
increase the pressure to above the osmotic pressure.
The pressurized water goes through the RO mem-
brane rack. This difference in pressure between the
membrane’s sides creates a flow of clean water. The
clean water is stored in another tank after a purifi-
cation process. This last tank supplies water to the
consumers.

The simulated plant used in this work corresponds
to a real plant placed in a remote area in Tunisia,
which is why a simulated plant is used. The plant is a
prototype and is not running normally yet and, so
there are not enough data to perform this type of
data-driven FDI tasks. The aim of the simulated plant
is to test different techniques as control or monitoring
and fault detection methods, in order to facilitate its
autonomous functioning and to reduce the human
maintenance and operation due to its location. An
overview of this plant can be seen in Fig. 1.

Another reason to use a simulated plant is because
several types of faults can be included by manipulating

the equations or parameters of the different physical
components.

For example, different types of breakage can be
simulated in the membrane or different types of block-
age in the different filters without taking any risk. The
plant is based on a RO separation process. It is neces-
sary to use high pressure to force the water through a
semi-permeate membrane. The membrane retains the
salt. Two different filters are placed before the mem-
brane: first a sand filter and then a cartridge filter.
These filters are required to remove several types of
solid particles which can damage the membrane.

The decrease in the performance of membranes and
filters during the plant operation is common in this
type of plants. This is due to several types of deposits,
such as scale, organic components, silt, etc. Cleaning
cycles are run to clean these deposits in order to obtain
an optimal plant operation and avoid possible malfunc-
tions.

The accumulation of deposits in the different filters
and membranes and the required cleaning cycles are
the reasons why the plant does not strictly run in a
steady state. This is due to the noticeable differences
in several of the pressure and concentration measure-
ments when the plant has just been cleaned and when
the plant has been cleaned a long time ago. Fig. 2
shows this phenomenon in one of the pressures mea-
sured in the membrane input.

Several variables were considered in this work. All
variables correspond to variables measured in the real
plant in control loops or for supervision tasks. The

Fig. 1. Desalination plant scheme.
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Fig. 2. Pressure measured in the membrane input.
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measured variable set is formed by pressures, flows,
total solid, and salt concentrations. Table 1 shows the
name and the description of the variables.

Three types of fault were considered in the plant.
One of them consists of an offset in the pressure sen-
sor in the sand filter input (P1). The other two faults
are related with the membranes, concretely, faults
simulated by altering several equations in the
membrane model being a blockage and a breakage.

3. Principal component analysis

The PCA is a multivariate statistical technique.
This technique is a versatile tool with several interest-
ing properties. For example, (i) it is able to deal with
data matrices with more variables than observations,
(ii) it can handle missing data, and (iii) PCA can
analyze highly correlated data and low rank data.
PCA can reduce the dimensionality of the space of the
measured variables from the process, normally highly
correlated, transforming it into a new space of uncor-
related variables (components) which can be analyzed
in order to understand and monitor the process or to
detect faults and malfunctions in its behavior. All
these properties are the reason why PCA and partial
least squares regression are the most used multivari-
ate statistical process control techniques.

Mathematically, PCA calculates the correlation
structure of the process variables collected along the
time. The process data are arranged in a matrix

X 2 <K�J, where J is the number of process variables

(variables) and K is the number of time samples
(individuals). The data used to perform the PCA
model for fault detection or monitoring scheme must
be collected under normal plant operation.

PCA computes an approximation of the data
matrix X as a product of two matrices T and pT. The

columns pT of the matrix PT are known as the loading
vectors; the columns (t) of the matrix T are known as
score vectors [24].

The matrix X is arranged with the data measured in
the process. All these variables have different numeri-
cal ranges. The principal components analysis is based
on the covariance matrix and is, therefore, variance
dependent, and the variance is related with the numeri-
cal range. So, the columns (variables) of X has to be pre-
viously normalized to zero mean and unit variance.

The singular value decomposition can be calcu-
lated over the covariance matrix S:

S ¼ 1

K � 1
XTX ð1Þ

obtaining [25]:

S ¼ VKVT ð2Þ

where K is a diagonal matrix that contains the eigen
values of S in its diagonal sorted in decreasing order
(k1; k2; . . . ; krankðXÞ).

The transformation, cited above, from the original
space of the measured variables, normally highly cor-
related, to the uncorrelated reduced space of latent
variables, is computed using the loadings matrix

P1:A 2 <J�A:

T ¼ XP1:A ð3Þ

where the matrix P1:A is formed by the A eigenvectors
or columns of the matrix V. These eigenvectors corre-
spond to the greatest A eigenvalues ka; a ¼ 1; 2; . . . ; A
in decreasing order in the diagonal of the matrix K.

A reconstruction of the original variables can be
calculated from the scores operating in Eq. 3:

X̂ ¼ TPT
1:A ð4Þ

The residual matrix E can be calculated as the
difference between the original variables X and the

variables estimated by the PCA model X̂:

E ¼ X� X̂ ð5Þ

Table 1
Description of variables

Name Description Units

1 P3 Pressure in the cartridge
filter input

bar

2 XS1 Total solid concentration
in the plant input

kg/m3

3 XS2 Total solid concentration
in the cartridge filter input
(sand filter output)

kg/m3

4 P1 Pressure in the plant input bar

5 P2 Pressure in the cartridge
filter input (sand filter output)

bar

6 X1 Salt concentration in the
plant input

kg/m3

7 P4 Pressure in the membrane input bar

8 Q1 Flow in the plant input m3/d

9 X2 Salt concentration in the
membrane output

kg/m3

10 Q3 Flow in the membrane output kg/m3

11 Q2 Flow in the plant output m3/d
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The complete PCA model can be expressed
by means of two addends: the PCA model and the
residuals:

X ¼
XA
a¼1

tap
T
a ¼ TPT

1:A þ E ð6Þ

The PCA model can be established using the non-
linear iterative partial least squares algorithm. This
algorithm can deal with missing data [24].

There are several rules to choose the most suitable
number of principal components A. The most used
method to select the suitable number of principal
components is the cross validation task [26,27].
Although, the best method to use is currently a matter
of scientific debate [28,29].

3.1. Monitoring, FDI

Two control charts [6] are mainly used to monitor
the state of the process. When the process data have
been analyzed, the outliers are eliminated and the suit-
able number of principal components are computed,
and new measured variables can be analyzed using the
control charts based on the established PCA model.
These control charts are drawn using two statistics:
Hotelling’s T2 statistic and the square prediction error
(Q) statistic, also called SPE. A fault detection and
monitoring scheme can be performed using them in a
real-time application connected to the plant.

Hotelling’s T2 statistic is based on the Mahalanobis
distance and is computed as follows:

T2 ¼ xTP1:AK
�1
1:AP

T
1:Ax ð7Þ

where K1:A is an A � A diagonal matrix of the higher
A eigen values of the covariance matrix S in decreas-
ing order along the diagonal.

The process state can be considered to be in nor-
mal operation conditions (NOC) state while the fol-
lowing inequation is satisfied:

T2 6 T2
a ¼ ðK2 � 1ÞA

KðK � AÞ FaðA;A� KÞ ð8Þ

where FaðA;A� KÞ is the critical value ð100ð1� aÞÞ%
percentile) of the Fisher–Snedecor distribution or F-
distribution with A and K � A degrees of freedom and
is the level of significance, usually taking values
between 5 and 1%. This distribution is only valid for
the T2 statistic in case the tested sample is not used
for calibration. If the sample is part of the calibration
data set, the T2 statistic is distributed as the beta-dis-
tribution [30].

Hotelling’s statistic is based on the PCA model
formed by the A principal components. The Q statistic
is computed taking into account the rest of the
components, and can therefore be used to detect
deviations in the residuals:

Q ¼ rTr ð9Þ

with:

r ¼ ðI� P1:APT
T
1:AÞx ð10Þ

The faulty states are detected in this statistic when
the following in equation is not satisfied:

Q 6 Qa ¼ h1
h0ca

ffiffiffiffiffiffiffi
2h2

p
h1

þ 1þ h2h0ðh0 � 1Þ
h21

" # 1
h0

ð11Þ

with:

hi ¼
XJ

j¼Aþ1

kij ð12Þ

h0 ¼ 1� 2h1h3
3h22

ð13Þ

where ca is the 100ð1� aÞ% standardized normal per-
centile and aj are the eigenvalues of the PCA residual

covariance matrix ETE=ðK � 1Þ.
The Q statistic should be checked first, if no point

raises the control limit the process can be considered
in-control. If the value of one of the statistics is greater
than the upper limit, a diagnosis task must be per-
formed to identify the variables related with the fault.

The PCA has been successfully applied to monitor-
ing and fault detection tasks, but it does not provide
quite enough information for fault isolation tasks. The
contributions analysis [5,6] has been used as a first
approximation to fault isolation. Contributions analy-
sis calculates the influence of each one of the system’s
variables on the Q and T2 statistics trigger.

4. Unfolded PCA

The plant studied in this work presents a
behavior that can be approximated, from the signal
point of view, to a batch process to batch pro-
cesses. The database for performing the PCA model
is made up of data from past NOC phases between
cleaning cycles. For every i ¼ 1; 2; . . . ; I normal
past batches j ¼ 1; 2; . . . ; J variables are collected at
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k ¼ 1; 2; . . . ; K time samples. All these data are
ordered into a three-way matrix XðI � J � KÞ (fol-
lowing the notation of [31]) as shown in the left
part of the Fig. 3.

Several changes and variations are required to
perform a FDI scheme in this type of processes based
on UPCA due to fact that the database structure has
changed. The principal modifications are resumed in
the next subsections.

4.1. Unfolding the three-way data matrix

The unfolding procedure can be carried out in six
particular ways [32]. Nomikos and MacGregor [11]
and Kourti [20] recommend the batch-wise ðI � KJÞ
option as the most appropriate and as a very good
option for the online monitoring tasks. This is the
option used in this work. It maintains the direction of
the batches and all process variables at the first sam-
ple time are arranged into the unfolded matrix for all
of the I NOC batches, this operation is repeated for
every next sample time, as shown in Fig. 3.

The three-way data matrix has to be unfolded into
a two-dimensional matrix to perform the PCA
approach. This unfolding procedure can be performed
in several ways: when the unfolding is carried out,
one of the directions will remain unaltered, while the
other direction will be the combination of the other
two directions slice by slice.

When the matrix is unfolded the matrix normaliza-
tion must be performed in the same way as the
classical PCA, it means, to normalize every column to
zero mean and unit variance.

4.2. Data alignment

When the data are collected from different batches,
or cycles between cleaning phases, the number of
samples of the data-sets can have different lengths.
The reason for this is that the event that activates the
cleaning phases is not a time event, it depends on

other parameters, such as concentrations or pressures.
When this phenomenon occurs, it is not possible to
arrange the data matrix as shown in Fig. 4, due to the
fact that the number of samples of the different data-
sets is not the same.

The data can be truncated to the shortest length as
a first solution, but this can produce loss of informa-
tion, and the data matrix cannot reproduce the system
state exactly. Two main techniques can be used to
align the trajectories of the variables in order to
arrange the three-way data matrix without loss of
information. One of them is known as the indicator
variable approach [11]. This scheme can be applied
when a no noise, monotonically increasing or decreas-
ing variable with the same starting and ending value
can be found in the process; this variable, the indica-
tor variable, leads the collection of the data instead of
the time.

In this work, it is not so easy to find this indicator
variable to perform the data alignment. When it is not
possible to find an indicator variable, the dynamic
time warping (DTW) approach [22] can be performed.
For two multivariate trajectories of two different
phases between cleaning cycles, A 2 <K1�J and

B 2 <K2�J, where the number of samples K1 and K2

are not equal, DTW method aligns these trajectories to
the length of one of them or to a reference trajectory,
by creating or eliminating the same points. This
process of compression or expansion of the time scales
must be performed by minimizing the dissimilarity
between the two trajectories.

The iterative method for synchronizing batch
trajectories was, cited previously, performed and
applied. The DTW approach tries to find a path F
with a specific number of points on a grid with
dimensions K1�K2. The traced path on the grid must
minimize the total distance between the trajectories.
The DTW method provides a weight matrix which
reveals the importance of the variables in the synchro-
nization method. If the indicator variable approach is
applied, the synchronization is led by a unique

Fig. 3. Matrix unfolding.
Fig. 4. Aligning batches with different length.
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variable, while this procedure is distributed among
several variables if the DTW approach is applied.

When a ruining cycle between two cleaning cycles
is monitored online, the DTW approach finds the
point in the reference trajectory with the least error
with respect to the current time instant and performs
the synchronization to this point. The future data of
the running cycle are unknown, so it must be pre-
dicted, as the next section discusses. The online DTW
was implemented following the guidelines of [22].

4.3. Imputation

During the online monitoring task, at each time
sample t, the future value of the process variables is
necessary to compute the scores and, therefore, the
monitoring statistics. Fig. 5 shows this particular prob-
lem. The dimensions of the matrix P1:A agree with the
data matrix X, which takes into account the process
variables for all the time samples across past cycles
under normal running. At the time instant t, shown in
Fig. 5, only the sample times corresponding to the
samples from 1 to t are available, and the future sam-
ples from tþ 1 to KJ are unknown. There are several
methods to impute this future missing data. The impu-
tation methods impute the future data and allow the
scores to be estimated. The principal data imputation
methods are presented in a clear and well-explained
way in Ref. [33,34]. Two methods are considered in this
work, the TRI and trimmed score regression method
(TSR), because TRI is one of the most widely used
methods and TSR presents good results without online
considerations and an acceptable computational cost.

A specific nomenclature has to be cited after
presenting the methods. As mentioned before, the data
matrix X is arranged with column vectors xj (variables)

or row vectors zTi (observations). The loading matrix P

are formed by the pj as columns. The score matrix T

can be considered as a set of row vectors sTi (scores in

the ith observation) or column vectors ti (latent
variables or scores). A new observation at a particular
time instant can be partitioned as follows:

z ¼ z�

z#

� �
ð14Þ

where z� is the current and past process variable

(known) values and z# is the future data values
(unknown).

The loadings matrix P can be partitioned, in the
same way, by dividing the known and the unknown
data and also dividing the A principal components
and leaving K �H components, where H ¼ rankðXÞ:

P ¼ P�

P#

� �
¼ P1:A PAþ1:H½ � ¼ P�

1:A P�
Aþ1:H

P#
1:A P#

Aþ1:H

� �
ð15Þ

The first cited is the TRI. This substitutes the miss-
ing values by its mean, and since the monitoring sta-
tistics are computed using centred data, the mean
value is zero. This means that this method substitutes
the unknown future data by zeros z# ¼ 0. And the
scores can be estimated as [33]:

ŝ1:A ¼ PT
1:Az ¼ P�T

1:A P#T
1:A

� � ¼ z�

z#

� �

¼ P�T
1:Az

� þ P#T
1:Az

# ¼ P�T
1:Az

� ð16Þ

The covariance matrix for the score vector estima-
tion is calculated as:

Var s1:A � ŝ1:Að Þ ¼ P�T
1:AP

�KP�TP�
1:A þ K1:A

� P�T
1:AP

�
1:AK1:A � K1:AP

�T
1:AP

�
1:A ð17Þ

The other method considered is the TSR. In this
case, the method reconstructs the scores T1:A from the
trimmed scores (T�

1:A) using the following regression
structure T1:A ¼ T�

1:A BþU. The scores are estimated
as follows [33]

ŝ1:A ¼ K1:AP
�T
1:AP

�
1:A P�T

1:AP
�KP�TP�

1:A

� ��1
P�T
1:Az

� ð18Þ

For the TSR imputation method, the covariance
matrix for the score vector estimation error is calcu-
lated as:

Varðs1:A � ŝ1:AÞ
¼ IA � K1:AP

�T
1:AP

�
1:A P�T

1:AP
�KP�TP�

1:A

� ��1
P�T
1:AP

�
1:A

h i
K1:A

ð19Þ
Fig. 5. Imputation.
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4.4. Control limits

The T2 statistic and the upper limit, necessary for
building the monitoring control charts, can be com-
puted using Eqs. (7) and (8). In this particular case,
the number of individuals in the unfolded matrix X is
the number of past cycles considered I, instead of the
number of process samples K.

The Q statistic for this approach, as Nomikos and
MacGregor [11] propose, can be substituted by the
squared prediction error Q in every sample time k
(Qk):

Qk ¼
XJ

eðcÞ2 ð20Þ

instead of the squared residuals over all time periods
Q, as this measurement does not represent the instan-
taneous perpendicular distance to the reduced space,
where e is calculated for the current measures vector
at instant k zTnew;tð1� JÞ (scaled) as:

e ¼ zTnew;t � ẑTððk� 1ÞJ þ 1 : kJÞ ð21Þ

with

ẑ ¼ ŝ1:AP
T
1:A

The control limit for this statistic can be computed
by approximating the value in every sample to a chi-
squared distribution, calculated for a specific level of
significance as:

Qak ¼ gkv
2
hk;a

ð22Þ

where v2hk;a is the limit value of the chi squared vari-
able with hk degrees of freedom and level of signifi-
cance. In this equation, gk and hk can be approximated
in several ways, as Nomikos and MacGregor [11] dis-
cuss and Lennox et al. [35] compare. In this work,
these parameters are approximated using the mean
(mk) and the variance (vk) of the k� th sample of the
reference nominal data-sets used to compute the
UPCA model. The approximation can be computed
using the following expressions:

gk ¼ vk
2mk

ð23Þ

hk ¼ 2m2
k

vk
ð24Þ

The parameters (mk) and (vk) for the control limit
at each time instant k can be calculated using the
immediately previous and later time observations
k� 1; k� 2; k; kþ 1; kþ 2, that is, by using a moving
window for the estimations of the control limit for the
instant in the center of this window.

4.5. Contribution plots

The contribution plot of the normalized error in
this case is the same bar plot as in the case of the clas-
sical PCA approach. If the Q statistic rises above the
established upper limit, the normalized errors at that
time instant k are shown in a bar plot.

However, the contributions plot of the normalized
scores in this case is not a very helpful tool for fault
diagnosis tasks. When the imputation procedure is
run, the value of the scores corresponds to the scores
of the whole phase between cleaning cycles. These
greatest scores observed in this plot could be used to
compute the variable contribution to these scores. In
this case, a vector of variable contributions with kJ � 1
dimensions is obtained. A useful plot can be the vari-
able contributions to the scores with the greatest val-
ues from the beginning of the running cycle to the
current time instant (kJ � 1) grouped by each process
variable in a different plot. In each of these plots, the
variable contributions are arranged in time order, and
the operator can see the evolution of the variable con-
tribution and detects which of them are involved with
the greatest scores that have caused an abnormal
value in the T2 statistic. An example of this plot can
be seen in Fig. 15.

5. Results and discussion

This system does not run in a constant steady due
to the different particularities cited. So, the classical
PCA scheme for monitoring and fault detection,
described in section 3 and applied to this type of sys-
tems, is not the most suitable solution. If the plant is
monitored using the T2 statistic (Fig. 6(a)) and the Q
statistic (Fig. 6(b)) with a classical PCA approach, a
high number of false alarms appear, as both graphics
show. The PCA model built to perform this monitor-
ing task was arranged with nominal data from eleven
variables measured during several running cycles and
different cleaning cycles. The monitoring scheme was
applied to new data collected from the simulated
plant.

If the UPCA approach is applied to this case
study, first, a rich database has to be arranged. This
database is formed by the variables measured in dif-
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ferent past implementations between the cleaning
cycles under NOCs.

The values of the variables along time could be
ordered into the same matrix in order to apply the
UPCA approach as a first approximation for each past
running cycle considered, following the structure
shown in Fig. 3. However, the cleaning phase fre-
quency is not the same, due to the different nature of
the filters and the membrane. This phenomenon rep-
resents a new problem because, in the same way as
applying classical PCA, these changes in the behavior
produced by the different cleaning cycles can be
detected by the monitoring statistics as faults. So,
there is no single criterion for ordering the data into
the three-way matrix because of the different cleaning
cycle frequencies.

The solution proposed to deal with this drawback
consists of arranging three different UPCA models.
One specific model for variables related with the
membrane and another two models for the two filters,
respectively.

Table 2 shows the main characteristics of the three
UPCA models considered in this work. The second

column of this table shows the variables related with
this specific section. The variables that are not affected
by any of the cleaning cycles can be considered in sev-
eral models, if they are related with two or more sub-
systems. Therefore, the variables affected by a
particular cleaning cycle running could only be
included in that specific model. The third column
shows the number of principal components consid-
ered using a cross-validation procedure. The last col-
umn shows the interval of the length of the different
cycles between cleaning cycles for every subsystem.
This variable organization can considerably reduce the
number of false alarms and it allows the three critical
parts of the plant to be monitored separately. Also,
this configuration can be seen as a step towards dis-
tributed fault detection.

The cleaning cycles are not performed with a
determined time frequency. The running of these
cycles depends on several variables like pressures or
concentrations. When one or more variables rise
above a determined threshold, an event is trigged
and the cleaning phase begins. This configuration
explains why the running cycles considered to
arrange the three-way matrix do have not the same
number of samples, and an alignment method has
to be performed to align all these cycles and to
build the UPCA model. As cited in the previous
section, the DTW approach was applied to obtain
this objective.

Fig. 7 shows the nonsteady behavior of some of the
variables during different running cycles. The nonequal
duration of the different running cycles can also be seen
in these graphics. The variables, after being synchro-
nized to perform the three-way matrix needed for
applying UPCA, are shown in Fig. 8. This graphic
shows that the signals are slightly deformed during the
alienation procedure. The variables were synchronized
to the mean length, and the added points were princi-
pally added at the beginning of the signals.

Fig. 9 shows the evolution of the weights of the
different variables along the iterations of the DTW
algorithm until convergence. The variable with the
greatest importance to lead the synchronization is
clearly the concentration X2. Using an indicator
variable approach, this variable would lead all the
alienation, but in this case, the pressure P4 is not so
important, but it still has considerable weight. The
flows Q3 and Q2 are also considerable weight, but
little importance. The rest of the variables are not
taken into account to lead the alienation by the
algorithm.

A suitable parameter to compare the imputation
error, as Arteaga and Ferrer [34] suggest, can be the
prediction error sum of variances (PRESV). It is com-
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Fig. 6. Monitoring using the classical PCA approach (a) T2

monitoring statistic and (b) Q monitoring statistic.

Table 2
UPCA models

UPCA
model

Variables name Number of
components

Cycles
length

Membranes P2, X1, P4, Q1, X2,
Q2 and Q3

10 840–860

Sand filter XS1, XS2, P1,P2, X1

and Q1

8 590–610

Cartridge
filter

P3, P2, X1 and Q1 13 675–858
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puted as the trace of the covariance matrix for the
score vector estimation error (Eqs. (17) and (18)). Dur-
ing the plant monitoring, the future samples (K � k) at
sample time k (k\K) are not known. Fig. 10 shows the
PRESV values at different sample times for both
imputation methods TRI and TSR for the monitoring
of the membrane section. Nine different time points
along a cycle between two cleaning phases are consid-
ered (k1 ¼ 599; k2 ¼ 1; 198; . . . ; k9 ¼ 5; 391 ), using the
data-set of past NOC cycles. The estimation error
decays along the cycle due to the decrease in the
unknown data as Fig. 10 shows.

Fig. 10 shows that the TSR method presents bet-
ter results than the TRI method, despite the fact that
the TRI method is usually more widely used than
the TSR method. The TSR method presents less
PRESV without a significant computational cost
increment. Similar results were obtained for the
sand filter and the carriage filter. So, in this article,
the TSR method is the method selected to impute
the future unknown data.

The reduction in the false alarms ratio using the
explained approach is summarized in Table 3. This
table shows the false alarms ratio obtained using the

UPCA approach to the three considered sections and
applying the classical PCA to all variables and to the
three sections. The UPCA method obtains a decrease
in the number of false alarms in the T2 monitoring
statistic. A reduction in the Q statistic is also
observed. The decrease is principally obtained in the
membrane section.

A monitoring using T2 of the membrane section
applying UPCA is shown in Fig. 11(a). False alarms
principally appear in the first samples, and in the rest
of the monitoring performance, the statistic remains
under the control limits. This can be due to the

P�T
1:AP

�KP�TP�
1:A matrix in Eq. (18), which may be ill

conditioned at the beginning of the cycle because the
known data are scant.

Fig. 11(b) shows the control plot using the Q moni-
toring statistic. The upper limits, with a ¼ 99%, is
equalled to one and the other control limit and the
monitoring statistic are divided by the a ¼ 99% upper
limit to normalize this control plot, because the
control limits in this statistic are not constant and the
plot cannot be user-friendly.

Table 4 shows the main results achieved in the
fault detection task. For each considered fault, four
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Fig. 7. Measured variables related with the membrane.
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Table 3
False alarms percentage

Percentage

Method T2 (%) Q (%)

Classical PCA

All variables 6.7 6.7

Sand filter 10.5 11.6

Cartridge filter 8.8 12.9

Membrane 9.4 10.5

UPCA (TSR)

Sand filter 1.6 10.2

Cartridge filter 2.6 11.3

Membrane 1.0 4.0
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Fig. 11. Monitoring using UPCA in the membrane section (a) T2 monitoring statistic and (b) Q monitoring statistic.

Table 4
Detection results

Fault Size (%) Statistic Delay

Membrane breakage 10 Q Instantaneous

20 Q Instantaneous

40 Q Instantaneous

60 Q Instantaneous

Membrane blockage 10 Q Instantaneous

20 Q Instantaneous

40 Q Instantaneous

60 Q Instantaneous

Sensor offset 10 Q Instantaneous

20 Q Instantaneous

40 Q Instantaneous

60 Q Instantaneous
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size faults were considered. The third column
(statistics) shows what statistic first detected the
fault. The Q statistic detected the faults first in all
cases. The fourth column shows the time delay in
fault detection. In this work, all fault considered
are abrupt faults, which is why there is no delay
in the fault detection. Fig. 12(a–d) show the
monitoring of a breakage in the membrane with
different fault sizes.

When a fault is detected, contributions can be plot-
ted to identify which variables are involved with the
fault. This is not a complete diagnosis procedure, but
it can be very useful to perform the diagnosis and
isolation tasks by the plant operators. Fig. 13 shows
the contribution plot of the normalized errors of the
variables plotted after the detection of a breakage
(20%) in the membrane. The figure shows that the
principal variables related with this fault are the flows
measured after and before the membrane. One of the
pressures and one of the concentrations present anom-
alous values too.
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The faults are detected by the Q statistic in all the
cases and it is not necessary to inspect the T2, and
therefore the contribution analysis related with this
statistic is not necessary. Despite this, Figs. 14 and 15
show an example of the contribution plot of normal-
ized scores and the variable contributions to the three
greatest scores plot; in the last case, the contributions
are grouped by variables in order to show the evolu-
tion of the variables along the cycle and identify what
variables present an abnormal value.

6. Conclusions

PCA has been widely used as monitoring and fault
detection technique. It is not complex to implement
fault detection techniques based on PCA and it pre-
sents good results in many processes.

The PCA-based method shows the best results
when the process to monitor is a continuous process
that presents a constant steady state. Process with
multiple operating points or processes whose state
can be changed during the operation do not present
good results due to these changes can be detected as
faults by the PCA-based approaches.

In this case, the considered RO plant does not pres-
ent a continuous operating point due to the plant does

1 2 3 4 5 6 7 8 9 10
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4
Contribution plot of the scores. Sample: 9.332

score number

C
on

tri
bu

tio
ns

Fig. 14. Contribution bar plot of normalized scores
corresponding to a breakage in the membrane.

−5 0 5 10
−4

−2

0

2

4

P 2

Evolution of contributions
−5 0 5 10

−4

−2

0

2

4

X 1

Contribution plot of the variables to the greatest socores. Sample: 9.332

Evolution of contributions
−5 0 5 10

−4

−2

0

2

4

P 4

Evolution of contributions

−5 0 5 10−4

−2

0

2

4

Q
1

Evolution of contributions
−5 0 5 10−4

−2

0

2

4

X 2

Evolution of contributions
−5 0 5 10

−4

−2

0

2

4

Q
3

Evolution of contributions

−5 0 5 10
−4

−2

0

2

4

Q
2

Evolution of contributions

Fig. 15. Variable contributions bar plot to the three greatest scores corresponding to a breakage in the membrane.

D. Garcia-Alvarez and M.J. Fuente / Desalination and Water Treatment 52 (2014) 1272–1286 1285



not present the same behavior from the point of view
of the data-driven model that PCA builds. This behav-
ior is not constant due to the required cleaning phases.
So, the use of UPCA, a method defined for batch pro-
cesses is proposed in this work to monitor this type of
plants. As this process is a continuous one, some mod-
ifications in the UPCA method have been taken into
account, particularly the alignment task, different
imputation method, and different contribution plots.

The main result is a reduction in the false alarms
ratio. The faults considered are detected and the pos-
sibility of performing the contribution analysis is also
presented. So the main conclusion is that UPCA based
techniques can be a good solution for monitoring and
detecting faults in this type of plants.
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