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ABSTRACT

Exceptional hydrological events represent one of the most important natural risks which are
responsible for the loss of human lives and material goods. During recent decades, many
automated or computerized approaches have been implemented to model this process.
However, the complexity of hydrological regimes requires the use of specific tools for
dynamical and non-linear systems. In order to model the rainfall–runoff transformation, we
propose the employment of an adaptive neural network-based fuzzy inference system to
predict the flow at the outlet of Algerian coastal basins. The neural network-based fuzzy
inference system can be considered as an unlooped neural network for which each layer is
a component of a neuro-fuzzy system. The obtained results show that the performances of
neuro-fuzzy models exceed those of neural network models and classical multiple linear
regression models.

Keywords: Prediction; Flow; ANFIS; Coastal Basins; Algeria

1. Introduction

Modeling the hydrological behavior of watersheds
is essential when one is interested in issues related to
flood disasters; these exceptional hydrological events
are one of the most important natural hazards which
are sometimes responsible for the loss of lives and
material goods. The transformation of rainfall into

runoff results from a number of complex mechanisms
that occur simultaneously at different scales [1]. Thus
the rainfall-runoff model is its necessity to the extent
that the model developed from a series of observed
rainfall can generate flow rates that are as close as
possible to rates observed that is to say from observa-
tions of rainfall, may be able to predict the response
of the basin flow. In recent decades, a large number of
automated or computerized approaches have been
implemented to model this process. However, the
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complexity of hydrological regimes requires to use
specific tools of non-linear dynamical systems [2].

As such, our aim is to model the transformation of
rainfall into runoff using an Adaptive Network-based
Fuzzy Inference System for flow forecasting [3]. The
value of building prediction systems integrating neu-
ral networks and fuzzy inference systems lies in their
complementary characteristics. The fuzzy inference
systems exploit linguistic rules reflecting knowledge
about the system dynamics. The performance of these
models in non-linear modeling has been proven in
several areas of engineering and science. The most
recent studies using neuro-fuzzy systems to model the
rainfall–runoff relationship for example are those of
the authors in references [4–7].

2. Adaptive neuro-fuzzy inference system

Adaptive neuro-fuzzy inference system (ANFIS) is
a fuzzy inference system implemented in the
framework of adaptive networks; the first appearance
of this system was by Jang [3,8]. It uses the hybrid
learning procedure. This architecture refines the fuzzy
rules obtained by human experts to describe the
input–output behavior of a complex system.

ANFISs are hybrid systems using the Takagi–
Sugeno–Kang fuzzy inference [9,10]. To simplify the
model, we consider a system with two inputs x1 and
x2, one output y, and a Sugeno type fuzzy model,
composed of the following two rules:

Rule 1 : If ðx1 isA1Þ and ðx2 isB1Þ
then ðF1 ¼ a10 þ a11x1 þ a12x2Þ

(1)

Rule2 : If ðx1 isA2Þ and ðx2 isB2Þ
then ðF2 ¼ a10 þ a11x1 þ a12x2Þ

(2)

Jang [3] proposed to represent the rule-based adaptive
network shown in Fig. 1.

The adaptive network ANFIS is a multilayer
network whose connections are not weighted or they
all have a weight equal to one [8]. Nodes are of two
types according to their functionality: adaptive nodes
(square) and fixed nodes (circular). Output Ok

i of node
i of layer k (called node (i, k) depends on signals from
the layer k-1 and the parameters of the node (i, k).

Layer 1: It allows the inclusion of data.

Layer 2: This layer allows the fuzzification of the
variables x1 and x2. It characterizes the degree of
membership Ok

i of x with respect to fuzzy sets.

Layer 3: Layer 3 generates the degree of activation of
a rule.

Layer 4: The output of node i characterizes the
normalized degree of activation of rule i.

Layer 5: The output of each node in Layer 4 is
determined by the output of rule i.

Layer 6: This layer is represented by a single node
level is what sums the signals from Layer 5.

The ANFIS network uses, on the one hand, a fuzzy
algorithm coalescence of all the data to partition the
input space. It uses, on the other hand, a learning
algorithm by back propagation in order to simplify
the finding and to eliminate the irrelevant input
variables [11].

Fig. 1. General architecture of an ANFIS network.
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3. Performance indicators

The performance of the ANFIS model is validated
by statistical parameters of the phases of training, vali-
dation, and test. The statistical parameters used in this
work are: the average squared error (ASE), the Nash–
Sutcliffe coefficient of efficiency (CE) [12], and the cor-
relation coefficient (r). These parameters are given by
the following relations:

ASE ¼
XN

i¼1

ðQti � Q̂tiÞ2=N (3)

CE ¼ 1�
PN

i¼1ðQti � Q̂tiÞ2PN
i¼1ðQti �QtÞ2 (4)

r ¼
PN

i¼1ðQti � �QtÞðQ̂ti � ~QtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1ðQti �QtÞ2 PN

i¼1ðQ̂ti � ~QtÞ2
q (5)

where Qti is the measured flow rate value, Q̂ti is the
flow rate calculated by the model, �Qt is the average
flow measured, ~Qt is the average flow simulated, and
N is the number of data.

4. Hydrological forecasting

The database contains values of rainfall and runoff in
two small Algerian coastal watersheds (Fig. 2). The first
basin is the Bordj Ghobrini, located in the north-center

of the country. It is coded 02-03 by the National Agency
of Water Resources. The basin is drained by the Wadi
Hachem. The data correspond to the period of seven
years of daily observations of rainfall and runoff from 1
January 1983 to 31 December 1989.

The second basin considered in this study is that
of Turgot, there is also an exoreic basin located in the
northwestern Algeria in the region of Ain Temouchent
coded 04-02 (Fig. 2), it is drained by the Wadi El
Mellah. In this basin, we have the hydrometric station
Turgot North located downstream and coded 04-02–20
by the National Agency of Water Resources, and rain-
fall station of Wadi Berkech coded 04-02–03. For both
stations, we have two sets of data obtained from seven
years of daily observations sampled without any gaps,
spanning from 1 January 1990 to 31 December 1996.

The input parameters of ANFIS model are the val-
ues of flow and rainfall observed at previous times,
only Pt+1 corresponds to the rain predicted. Conse-
quently, the output of the network represents the
expected value of flow for the day t + 1.

The database was divided into three sets: training,
verification, and testing.

The three data-sets were subdivided as follows:

� a set for the training phase of the model
corresponding to 70% of the data;

� the other set for the verification phase of the model
corresponding to the remaining 30%; and

� all of the data (100%) were used for the test phase
of the model.

Fig. 2. Geographical location of study seats.
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Depending on the input vectors used, seven
models were tested (Table 1). This technique allows
taking into account the dynamics of the hydrological
signal and learning this evolution. Initially, the model
I was taken as a reference mode l (Pt, Pt+1, and Qt),
the number of membership functions (NMF) for
ANFIS particular was set to two for each entry [13],
thereafter, the NMF was varied up to six.

Gaussian membership functions are used for each
fuzzy rule in the ANFIS system, this choice of func-
tions is based on research work done by Gautan and
Holz [14] and Lohani et al. [15].

Knowing that the membership functions have a
significant influence on the performance of ANFIS

models, the choice of model 1 was done to avoid the
complexity of inference rules.

The results obtained for a NMF from two to six
are summarized in Tables 2 and 3, respectively, for
the basins of Turgot and Bordj Gobrini, where NMF
represents the number of membership functions.

We find that the best performance for the basin
Turgot is obtained for a NMF equal to two; this is
same for all phases in the model I. Similarly, for the
basin of Bordj Gobrini, we find that the best perfor-
mance is obtained for a NMF equal to four for the
testing phase. Now, we seek the best performance for
the models shown in Table 1, depending on this
membership functions.

In this capacity, Fig. 3 shows that the ASE is mini-
mum for the model III for a NMF equal to two for the
basin of Turgot. However, for the basin Bordj, Fig. 4
shows that the ASE is minimum for the model VI and
this for a NMF equal to 4.

Performance parameters for the training phase,
verification, and the testing phase for the two basins
are given in Table 4. The comparison between the
characteristics of the observed and simulated data by
the ANFIS model for phases: training, validation, and
test are summarized in Table 5.

The results show satisfactory results and good
agreement between observed and calculated rates

Table 1
ANFIS model structure with input vectors

Models ANFIS model inputs

I Qtþ1 ¼ ANFISðPt;Ptþ1;QtÞ
II Qtþ1 ¼ ANFISðPt;Ptþ1;Qt�1;QtÞ
III Qtþ1 ¼ ANFISðPt;Ptþ1;Qt�2;Qt�1;QtÞ
IV Qtþ1 ¼ ANFISðPt;Ptþ1;Qt�3;Qt�2;Qt�1;QtÞ
V Qtþ1 ¼ ANFISðPt;Ptþ1;Qt�4;Qt�3;Qt�2;Qt�1;QtÞ
VI Qtþ1 ¼ ANFISðPt;Ptþ1;Qt�5;Qt�4;Qt�3;Qt�2;Qt�1;QtÞ
VII Qtþ1 ¼ ANFISðPt;Ptþ1;Qt�6;Qt�5;Qt�4;Qt�3;Qt�2;Qt�1;QtÞ

Table 2
Parameters performance indicators of model I for Turgot basin according to the NMF

Basin NMF

Training phase Verification phase Testing phase

ASE CE r ASE CE r ASE CE r

Turgot 2 0.2932 0.9038 0.9508 3.8995 0.5031 0.7605 1.8123 0.6439 0.8126
3 0.6641 0.8845 0.8845 4.6135 0.4029 0.6925 2.3558 0.5371 0.7433
4 0.5820 0.8092 0.8995 5.4552 0.2939 0.5899 2.6694 0.4755 0.6951
5 0.5150 0.8311 0.9117 9.4476 −0.2228 0.7087 4.3413 0.1470 0.7372
6 0.5759 0.8111 0.9006 7.0676 0.0853 0.2940 3.3566 0.3405 0.5837

Table 3
Parameters performance indicators of model I for Bordj Ghobrini basin according to the NMF

Basin NMF

Training phase Verification phase Testing phase

ASE CE r ASE CE r ASE CE r

Bordj Gobrini 2 6.7987 0.7947 0.9313 9.0098 0.4588 0.6816 7.7458 0.7034 0.8642
3 6.6023 0.8007 0.9347 8.2547 0.5041 0.7133 7.3101 0.7201 0.8694
4 5.6349 0.8299 0.9515 8.2980 0.5015 0.7159 6.7756 0.7405 0.8900
5 5.2048 0.8429 0.9589 9.5253 0.4278 0.6715 7.0555 0.7298 0.8684
6 5.1857 0.8434 0.9593 9.7077 0.4168 0.6513 7.1227 0.7272 0.8809
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Table 4
Parameters performance indicators of training, verification, and testing phases, to two membership functions for Turgot
basin and to four membership functions for Bordj Ghobrini basin

Basins Models

Training phase Verification phase Testing phase

ASE CE r ASE CE r ASE CE r

Turgot III 0.1484 0.9514 0.9755 1.2841 0.8341 0.9156 0.6343 0.8755 0.9364
B. Ghobrini VI 4.8687 0.8530 0.9647 8.3082 0.5030 0.7118 6.3381 0.7577 0.8956

Table 5
Comparison of flow characteristics observed and simulated by the ANFIS model for training, verification, and testing
phases

Basins Phases Flows (m3/s) Mean STD Min Max C.V

Turgot Training Q. observed 1.086 1.747 0.2600 48.92 0.622
Q. simulated 1.718 1.722 0.2470 48.92 0.620

Validation Q. observed 0.698 2.781 0.0100 75.71 0.251
Q. simulated 0.650 2.433 0.0006 54.83 0.267

Testing Q. observed 0.920 2.256 0.0100 75.71 0.408
Q. simulated 0.905 2.066 0.0006 54.83 0.438

Bordj Ghobrini Training Q. observed 1.53 5.757 0 91.9 0.266
Q. simulated 1.144 3.554 1E-04 66.34 0.272

Validation Q. observed 1.091 4.084 0 42.3 0.267
Q. simulated 0.857 2.85 0.001 44.45 0.302

Testing Q. observed 1.342 5.112 0 91.9 0.263
Q. simulated 1.022 3.554 1E-04 66.34 0.288

Table 6
Results obtained by the models: MLR, of ANNs, and of ANFIS for the test phase

Basins

Testing phase

Models ASE m3/s CE r

Turgot MLR 3.0000 0.4100 0.6400
ANN 0.8205 0.7679 0.9162
ANFIS 0.6343 0.8755 0.9364

Bordj Ghobrini MLR 6.9800 0.7300 0.8600
ANN 6.8867 0.7364 0.8583
ANFIS 6.3381 0.7577 0.8956

Fig. 3. Evaluation of the ASE for each model for a NMF equal to two (Turgot Basin).
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explained by relatively high correlation coefficients for
the test phase (Figs. 5 and 6). The best performances
of the basin Turgot are mainly due to its small size, its
compactness, and good representation of the rainfall
station. For cons, the less satisfactory performances of
the basin Bordj Ghobrini are probably related to the
strong non-linearity of the rainfall–runoff relationship,
the quality of data, and the location of measurement
stations.

To evaluate the performance of the two models,
we proceeded to calculate the Relative Error (RE)
between the observed flows (Qobs) and simulated
flows (Qsim).

Figs. 5(c) and 6(c) show that the RE is acceptable
to the basin of Turgot, but it remains fairly high
especially for extreme values for the basin of Bordj
Ghobrini.

Fig. 4. Evaluation of the ASE for each model for a NMF equal to four (Bordj Ghobrini Basin).

Fig. 5. Comparison between the observed flows and simulated flows (a, b) by ANFIS model and the RE between the
observed flows and simulated flows and (c) for the test phase (Turgot Basin).
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To evaluate the performance of the neuro-fuzzy
model, a comparison was made with the classical
model of Multiple Linear Regression (MLR) model
and Artificial Neural Network (ANN) model. The
application of these models was made on the same set
of input data. Table 6 shows the results obtained by
these three models.

These results show the performance of the neuro-
fuzzy model that exceeds that of other models. This
performance reflects the strength of ANFIS model and
the accuracy of its outputs that allows it to give
correct decisions and avoid situations of indecision.

5. Conclusion

The results obtained in this study showed the
effectiveness of artificial intelligence algorithms for
modeling the rainfall–runoff relationship for flow fore-
casting. neuro-fuzzy system has a good predictive
power. The performance of ANFIS in hydrological
forecasting exceeds those of other models. The use of
this hybrid method is an alternative fully justified for
good water management and especially to minimize
the risk of flooding within the watershed. These
encouraging results open a number of perspectives; it
would be interesting to try hybrid models by coupling
wavelet transform with neuro-fuzzy systems, and

simultaneously optimizing by genetic algorithm:
membership functions, scaling factors, and conclusions
of fuzzy rules.
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