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ABSTRACT

Color removal efficiency (CR%) and energy consumption (EnC) of Electrocoagulation (EC)
were investigated using synthetic wastewater, containing disperses like orange 25 dye
(DO25). Five operational parameters including initial pH (pH0) (2, 5.5, and 9), initial dye
concentration (C0) (20, 60, and 100mgL�1), applied voltage (VEC) (10, 20, and 30V), initial
electrolyte concentration (CS) (0, 1.5, and 3 gL�1), and treatment time (tEC) (0, 0.5, 5, 10, 15,
25, 35, and 50min) were probed as more effective operational parameters of EC. Combined
design of experiments (DOE) was designed and experiments were conducted in accordance
with it. The experimental data were obtained in a laboratory through a handmade batch
reactor. The achieved CR% (0–99.9) and EnC (0–69.4wh) were gained under experimental
conditions. The optimum value of C0 was almost 20 ppm (minimum range). Two optimum
clusters could be discriminated for other four parameters. First group was corresponded to
conditions with pH0= 9 (maximum value of range), CS = 0.7–1.1 (g/lit), VEC = 10V (minimum
of range), and tEC = 1min. Second group was corresponded to the conditions with pH0= 6.8
(except two cases), CS = 1.1–2 (g/lit), VEC = 10–15.2V, and tEC = 49.4–50min. The data was
used for model building by employing two more popular models in this study: reduced
quadratic multiple regression model (SMLR) and artificial neural network (ANN). Further
statistical tests were applied to exhibit models’ goodness and to compare the models. Based
on statistical comparison, ANN models obviously outperformed SMLR models. Finally, multi
objective optimization of CR% and EnC was carried out using genetic algorithm (GA) over
the outperformed ANN models. The optimization procedure causes nondominated optimal
points, which gave an insight into optimal operating conditions of the EC.

Keywords: Design of experiments (DOE); Artificial neural networks (ANNs); Genetic
algorithm multi-objective optimization; Color removal; Electrocoagulation (EC)

1. Introduction

Dyes in wastewaters are a serious environmental
concern [1–3]. Synthetic azo dyes comprise more than
half of all dyes production [4]. Because of their toxic-
ity, their release into the environment has caused a

lot of problems [5]. Owing to the complex structures
of azo dyes, biological, physical, and chemical treat-
ments of dye effluents are inefficient [6]. In recent
years, electrochemical-based treatment methods such
as electro-oxidation and electrocoagulation (EC) have
drawn great attention [7–9]. EC has been gaining pop-
ularity due to simple and easy-to-install equipment,
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negligible start up time, compact treatment facility,
and minimal amount of hazardous sludge [10].

EC involves the in situ generation of coagulants
through electrolytic oxidation of an appropriate sacri-
ficial anode [7]. It has been successfully used for
decades to treat the wastewaters of various sources
[11]. Although there have been a remarkable amount
of studies on EC technique for wastewater treatment,
large-scale applications of this technology have been
relatively few. One possible reason is the energy
demand of the EC [12].

In the EC process, some factors, such as initial pH
(pH0), initial dye concentration (C0), applied voltage
(VEC), initial electrolyte concentration (CS), and treat-
ment time (tEC), influence the process efficiency and
energy consumption (EnC). The process efficiency
may be increased by the optimization of these factors
[13]. In conventional multifactor experiments, optimi-
zation is usually carried out by varying a single factor
while keeping all the other factors fixed at a specific
set of conditions [14]. This method is time consuming
and incapable of effective optimization [13]. Recently,
response surface methodology and full factorial
design (FFD) have been employed to optimize and to
understand the performance of complex systems,
especially for EC [15,16].

In ‘‘statistical” methods, the order in which the
predictor variables are entered into (or taken out of)
the model is determined according to the strength of
their correlation with the criterion variable. In fact,
there are several versions of this method including
forward selection, backward selection, and stepwise
selection; stepwise is the most sophisticated one
[17,18]. Recently, reduced quadratic multiple regres-
sion models have been employed in this kind of
experiments [13,15,19–21]. Based on our best informa-
tion, stepwise has not been applied as a reduction tool
in these kinds of studies in spite of its advantages.

Artificial neural network (ANN) is parallel compu-
tational procedure consisting of highly interconnected
processing elements groups named neurons [22].
Owing to their inherent nature to model and learn
‘‘complexities”, ANNs have found wide applications in
various areas of wastewater treatment [23–26]. ANN
has been recently used for color removal efficiency
(CR%) and EnC modeling in EC [20,27].

Genetic algorithms (GA) are adaptive heuristic
search algorithms based on the evolutionary ideas of
natural selection and genetic. They belong to the lar-
ger class of evolutionary algorithms, which generate
solutions to optimize problems by carrying out sto-
chastic transformations inspired by natural evolution,
such as inheritance, mutation, selection, and crossover
[28–31].

To make a long story short, the main objectives of
the study were to optimize the EC process to maxi-
mize CR% and minimize EnC, regarding the effective
operational factors C0, pH0, VEC, CS, and tEC using
GA. SMLR and ANN methodologies were used to
construct models. Further, both CR% and EnC were
subjected to multiple objective optimizations using
GA approach.

2. Materials and methods

2.1. Materials

The DO25 dye was purchased from Alvansabet
Co., Iran. The chemical structure and some character-
istics of this dye are shown in Table 1. Synthetic
wastewater was prepared by dissolving the dye in
distilled water. The pH0 of the solutions was adjusted
using NaOH (1M) and H2SO4 (1M) (Merck, Ger-
many). The CS was adjusted to desired value using
NaCl (Merck, Germany) [19].

The EC system consisted of a glass (12� 12� 21
(cm)) cubic reactor, 400-rpm mixer, DC power supply
(the high stability, reliability, and low-noise DC
adjustable power supply RXN-303D-II, Zhaoxin Elec-
tronic Tech. Co.), and two aluminum electrodes. Fig. 1
shows the lab-scale batch experimental setup of EC
unit. The cathode and anode were made of aluminum
sheets (4� 5� 0.1 cm) and the immersed surface area
of each electrode was 40 cm2. They were placed verti-
cally and dipped in 1.5-L aqueous dye solutions. The
distance between electrodes was fixed at 1 cm.

2.2. Experimental design

Combined design of CCD for C0, pH0, VEC, and CS

and FFD for tEC were used to design the experiments
using Minitab 14. Combined design of experiments
was selected due to the complex kinetics of the EC
reaction that makes essential to collect more complete
tEC data [23,32,33]. Furthermore, in this kind of study,
only providing each run is time consuming and
reducing its number is crucial.

Sixteen cube points, eight axial points, and one
center point were chosen as experimental points for
four C0, pH0, VEC, and CS operational parameters at
three levels of each parameter using MINITAB 14.
The runs were conducted in a randomized manner to
guard against systematic bias. In general, in these 25
experiments, eight levels of tEC (0, 0.5, 5, 10, 15, 25, 35,
and 50min) were determined as tEC. All the selected
experimental conditions can be seen in Table 2.
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2.3. EC process and data collection

In each run, 1.5-L solution containing DO25 was
decanted into the EC reactor. Voltage was adjusted to
the desired value, and then electrolysis was started. In
each eight determined tEC, 10-ml sample was extracted
at the same position of EC vessels using 10-ml pip-
ettes. Each sample was centrifuged (10min at
3,000 rpm). The CR% was calculated for the decanted
solution. A digital amperemeter and voltmeter incor-
porated in the power supply were applied for electrol-
ysis current (IEC) and VEC monitoring during EC.

The color of solution was evaluated using PG T80+

spectrophotometer in the UV–Vis range (200–800 nm)
at the kmax. The kmax for DO25 is 424 nm in the aque-
ous solution at natural pH. Because of matrix effects
on the kmax, it was extracted experimentally from the
zero time sample spectra in each run. Tolerance of less
than± 10 nm was seen for the samples with different
initial conditions. After EC progress, the CR% was cal-
culated for samples using Eq. (1):

CR % ¼ ð1� A=A0Þ � 100 ð1Þ

where A0 and A are absorptions of solution before
and after EC, respectively.

The calibration curve was plotted for DO25 to
assess the dynamic range of concentration (Fig. 2).

The standard plot illustrates that at least in the
range of 0–200ppm concentration, the Bear–Lambert
law is valid; it is two times wider than the study
range of concentration. In this range of concentration,
it can be said:

A ¼ abC ! ððA1 � A2Þ=A1Þ � 100

¼ ððC1 � C2Þ=C1Þ � 100 ! Color removal %

¼ Dye removal %

The EnC was calculated at each condition as follows
[19]:

EnC ðwhÞ ¼ VEC � IEC � tEC ð2Þ

where VEC is the applied voltage (V), IEC is the aver-
age current of electrolysis (Ampere), and tEC is the
treatment time (hour).

2.4. Methodology of modeling

We used 200 data of CR% and EnC together with
corresponding experimental conditions as a data-set.
The five operational parameters were applied to gen-
erate all quadratic and linear inputs of models, while
the CR% and EnC were considered as dependent vari-
able. Data-set was randomly divided into three parts;
60% as a training set, 20% as a validation set, and 20%
as testing set [18,34]. Two different SMLR and ANN
models were constructed based on the same data-sets
for both CR% and EnC separately.

Stepwise multiple regressions were applied to
develop SMLR model using the aforementioned sub-
sets, except the test and validation sets that were
merged to use as an external test set together. The
quadratic interactions of independent variables have
been considered to improve the linear model
efficiency. The more effective inputs and interactions
were selected using stepwise algorithm [18,34].

Fig. 1. The lab-scale batch experimental setup of EC unit.

Table 1
The chemical properties of DO25

Chemical name C.I. Disperse Orange 25

Molecular formula C17H17N5O2

Molecular structure

Molecular weight 323.35

CAS number 31482-56-1
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Table 2
CR% and EnC of all 25 runs and 7 different sampling times of each run

Run No. pH0 C0 VEC CS tEC EnC (kwh) CR% Run No. pH0 C0 VEC CS tEC EnC (kwh) CR%

1 2 20 30 0 0.5 0.065 65.0 14 2 20 10 3 0.5 0.100 0.5

1 2 20 30 0 5 0.650 90.5 14 2 20 10 3 5 1.000 4.0

1 2 20 30 0 10 1.300 92.3 14 2 20 10 3 10 2.000 5.1

1 2 20 30 0 15 1.950 96.4 14 2 20 10 3 15 3.000 7.1

1 2 20 30 0 25 3.250 97.7 14 2 20 10 3 25 5.000 13.1

1 2 20 30 0 35 4.550 98.6 14 2 20 10 3 35 7.000 97.5

1 2 20 30 0 50 6.500 98.6 14 2 20 10 3 50 10.000 99.5

2 2 60 20 1.5 0.5 0.205 4.3 15 5.5 60 20 0 0.5 0.002 0.2

2 2 60 20 1.5 5 2.050 30.2 15 5.5 60 20 0 5 0.017 1.6

2 2 60 20 1.5 10 4.100 30.7 15 5.5 60 20 0 10 0.033 5.5

2 2 60 20 1.5 15 6.150 43.4 15 5.5 60 20 0 15 0.050 5.7

2 2 60 20 1.5 25 10.250 57.0 15 5.5 60 20 0 25 0.083 5.9

2 2 60 20 1.5 35 14.350 87.3 15 5.5 60 20 0 35 0.117 10.0

2 2 60 20 1.5 50 20.500 89.1 15 5.5 60 20 0 50 0.167 10.5

3 5.5 100 20 1.5 0.5 0.210 7.8 16 9 100 10 0 0.5 0.001 0.6

3 5.5 100 20 1.5 5 2.100 98.4 16 9 100 10 0 5 0.008 2.6

3 5.5 100 20 1.5 10 4.200 98.5 16 9 100 10 0 10 0.017 3.0

3 5.5 100 20 1.5 15 6.300 98.7 16 9 100 10 0 15 0.025 3.4

3 5.5 100 20 1.5 25 10.500 98.8 16 9 100 10 0 25 0.042 6.3

3 5.5 100 20 1.5 35 14.700 98.9 16 9 100 10 0 35 0.058 6.7

3 5.5 100 20 1.5 50 21.000 99.3 16 9 100 10 0 50 0.083 11.9

4 9 100 10 3 0.5 0.083 6.7 17 9 20 30 0 0.5 0.008 0.5

4 9 100 10 3 5 0.825 99.3 17 9 20 30 0 5 0.075 0.9

4 9 100 10 3 10 1.650 99.5 17 9 20 30 0 10 0.150 1.4

4 9 100 10 3 15 2.475 99.6 17 9 20 30 0 15 0.225 2.8

4 9 100 10 3 25 4.125 99.7 17 9 20 30 0 25 0.375 16.4

4 9 100 10 3 35 5.775 99.8 17 9 20 30 0 35 0.525 16.8

4 9 100 10 3 50 8.250 99.9 17 9 20 30 0 50 0.750 98.6

5 9 100 30 3 0.5 0.760 18.2 18 5.5 60 20 3 0.5 0.435 8.4

5 9 100 30 3 5 7.600 96.3 18 5.5 60 20 3 5 4.350 98.4

5 9 100 30 3 10 15.200 97.0 18 5.5 60 20 3 10 8.700 98.6

5 9 100 30 3 15 22.800 98.0 18 5.5 60 20 3 15 13.050 98.8

5 9 100 30 3 25 38.000 99.0 18 5.5 60 20 3 25 21.750 99.0

5 9 100 30 3 35 53.200 99.1 18 5.5 60 20 3 35 30.450 99.1

5 9 100 30 3 50 76.000 99.5 18 5.5 60 20 3 50 43.500 99.5

6 5.5 60 30 1.5 0.5 0.530 13.2 19 9 20 10 3 0.5 0.102 1.0

6 5.5 60 30 1.5 5 5.300 98.4 19 9 20 10 3 5 1.017 96.4

6 5.5 60 30 1.5 10 10.600 98.8 19 9 20 10 3 10 2.033 96.9

6 5.5 60 30 1.5 15 15.900 98.9 19 9 20 10 3 15 3.050 97.4

6 5.5 60 30 1.5 25 26.500 99.3 19 9 20 10 3 25 5.083 97.9

6 5.5 60 30 1.5 35 37.100 99.6 19 9 20 10 3 35 7.117 98.4

6 5.5 60 30 1.5 50 53.000 99.8 19 9 20 10 3 50 10.167 99.0

7 2 100 30 3 0.5 0.743 62.2 20 2 20 10 0 0.5 0.013 10.9

7 2 100 30 3 5 7.425 99.4 20 2 20 10 0 5 0.125 60.0

7 2 100 30 3 10 14.850 99.6 20 2 20 10 0 10 0.250 90.9

7 2 100 30 3 15 22.275 99.7 20 2 20 10 0 15 0.375 91.5

7 2 100 30 3 25 37.125 99.8 20 2 20 10 0 25 0.625 92.1

7 2 100 30 3 35 51.975 99.9 20 2 20 10 0 35 0.875 92.7

(Continued)
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After the construction of the best SMLR models for
both CR% and EnC, the effective parameters were
selected regarding their presence or absence in SMLR
models. Next, the ANN models were constructed
based on these effective parameters. The quadratic

interaction addition is not necessary because of non-
linear comprehensive nature of ANN model [16,19].

We used back propagation algorithm in this study
as it is very fast and can be employed quite easily
[35]. The training set should be used to adjust the

Table 2 (Continued)

Run No. pH0 C0 VEC CS tEC EnC (kwh) CR% Run No. pH0 C0 VEC CS tEC EnC (kwh) CR%

7 2 100 30 3 50 74.250 99.9 20 2 20 10 0 50 1.250 93.3

8 5.5 20 20 1.5 0.5 0.212 96.1 21 5.5 60 10 1.5 0.5 0.048 5.2

8 5.5 20 20 1.5 5 2.117 96.6 21 5.5 60 10 1.5 5 0.483 98.8

8 5.5 20 20 1.5 10 4.233 97.1 21 5.5 60 10 1.5 10 0.967 99.0

8 5.5 20 20 1.5 15 6.350 97.6 21 5.5 60 10 1.5 15 1.450 99.2

8 5.5 20 20 1.5 25 10.583 98.1 21 5.5 60 10 1.5 25 2.417 99.3

8 5.5 20 20 1.5 35 14.817 98.6 21 5.5 60 10 1.5 35 3.383 99.5

8 5.5 20 20 1.5 50 21.167 99.0 21 5.5 60 10 1.5 50 4.833 99.7

9 9 60 20 1.5 0.5 0.192 98.5 22 9 100 30 0 0.5 0.033 9.1

9 9 60 20 1.5 5 1.917 98.6 22 9 100 30 0 5 0.325 9.5

9 9 60 20 1.5 10 3.833 98.8 22 9 100 30 0 10 0.650 11.1

9 9 60 20 1.5 15 5.750 99.3 22 9 100 30 0 15 0.975 12.8

9 9 60 20 1.5 25 9.583 99.5 22 9 100 30 0 25 1.625 13.8

9 9 60 20 1.5 35 13.417 99.7 22 9 100 30 0 35 2.275 22.3

9 9 60 20 1.5 50 19.167 99.8 22 9 100 30 0 50 3.250 24.6

10 9 20 10 0 0.5 0.001 5.2 23 2 100 30 0 0.5 0.023 5.3

10 9 20 10 0 5 0.008 5.7 23 2 100 30 0 5 0.225 34.7

10 9 20 10 0 10 0.017 6.1 23 2 100 30 0 10 0.450 93.7

10 9 20 10 0 15 0.025 6.6 23 2 100 30 0 15 0.675 95.2

10 9 20 10 0 25 0.042 7.1 23 2 100 30 0 25 1.125 96.8

10 9 20 10 0 35 0.058 7.5 23 2 100 30 0 35 1.575 97.6

10 9 20 10 0 50 0.083 8.0 23 2 100 30 0 50 2.250 97.8

11 2 20 30 3 0.5 0.675 9.4 24 2 100 10 0 0.5 0.033 0.2

11 2 20 30 3 5 6.750 12.8 24 2 100 10 0 5 0.333 7.7

11 2 20 30 3 10 13.500 24.6 24 2 100 10 0 10 0.667 51.3

11 2 20 30 3 15 20.250 39.9 24 2 100 10 0 15 1.000 51.6

11 2 20 30 3 25 33.750 95.6 24 2 100 10 0 25 1.667 73.2

11 2 20 30 3 35 47.250 97.5 24 2 100 10 0 35 2.333 81.8

11 2 20 30 3 50 67.500 98.5 24 2 100 10 0 50 3.333 90.2

12 5.5 60 20 1.5 0.5 0.168 6.9 25 2 100 10 3 0.5 0.033 0.4

12 5.5 60 20 1.5 5 1.683 98.4 25 2 100 10 3 5 0.333 43.8

12 5.5 60 20 1.5 10 3.367 98.5 25 2 100 10 3 10 0.667 97.1

12 5.5 60 20 1.5 15 5.050 98.7 25 2 100 10 3 15 1.000 98.5

12 5.5 60 20 1.5 25 8.417 98.9 25 2 100 10 3 25 1.667 99.1

12 5.5 60 20 1.5 35 11.783 99.1 25 2 100 10 3 35 2.333 99.3

12 5.5 60 20 1.5 50 16.833 99.3 25 2 100 10 3 50 3.333 99.4

13 9 20 30 3 0.5 0.550 95.9

13 9 20 30 3 5 5.500 96.4

13 9 20 30 3 10 11.000 96.8

13 9 20 30 3 15 16.500 97.3

13 9 20 30 3 25 27.500 97.7

13 9 20 30 3 35 38.500 98.2

13 9 20 30 3 50 55.000 99.1
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parameters of the models; testing set was used to cal-
culate its estimation power, and validation set to pre-
vent over-train [34]. One of the most important factors
in a neural network model configuration is to deter-
mine the number of layers to be used and the number
of neurons in the layers. The number of input and
output neurons is equal to the number of input and
output parameters, respectively. The number of hid-
den layers and nodes is usually determined via a trial
and error procedure [34].

Finally, the consistency of the models was revealed
by tests quantified with predictive Q2 and R2 [18,34].
Another validation analysis of the comparison of
ANN with other conventional methods is RMSE
(Root-Mean-Square Error) as an indicator of reliability
or accuracy of the models [18].

2.5. Multi-objective optimization

Simultaneous optimization of CR% and EnC falls
in the field of multi-objective optimization [16,19].
There is no matchless solution to this type of optimi-
zation problem, but a set of mathematically equally
solutions known as Pareto optimal solutions [16,19].
GA toolbox in MATLAB was used for generating the
Pareto optimal solutions for CR% and EnC using
“gamultiobj” function [19]. A MATLAB function, using
ANN and SMLR models as the inputs, were written
for creating a fitness function for the multi-objective
optimization problem. The CR% component to be
maximized was negated in the vector valued fitness
function, since “gamultiobj” minimizes all the objec-
tives. Experimental ranges were placed as bounds on
the five inputs. The following algorithm options were
set [16,19]: Selection Function: “Tournament of size
two”, Crossover Fraction: “0.75with scattered cross-
over function”, Mutation Function: “Adaptive feasible
mutation function”, Direction for migration: “Forward
with migration fraction set to 0.2”, Distance measure
function: “distance crowding”, Generations:“50”, Pop-
ulation Size: “100”, Stall-time Limit: “100”, Population
size: “80”, and finally, The weighted average change
in the fitness function value over “50”generations was
used as the criteria for stopping the algorithm [19].

3. Results and discussion

3.1. EC process

The whole 200 CR% and EnC obtained in the all
experiments conditions are given in Table 2. The effect
of each operational parameter can be seen in this
table. As a first result, a glance over this table
approves the statement that different levels of experi-
mental parameters result in different CR% and EnC.

3.2. SMLR models

The two SMLR models were separately developed
using SMLR methodology for CR% and EnC after
neglecting nonsignificant terms [16,19]. Both models
are given in Eqs. (3) and (4) for the CR% and EnC,
respectively.

CR % ¼ 19:8554þ 4:1203ðtECÞ � 0:0296ðpH0ÞðC0Þ
þ 3:6542ðpH0ÞðCSÞ � 0:1034ðpH0ÞðtECÞ
þ 0:1338ðC0ÞðCSÞ þ 0:2138ðCSÞðtECÞ
� 0:3291ðpH0Þ2 þ 0:0176ðVECÞ2

� 6:7969ðCSÞ2 � 0:0535ðtECÞ2 ð3Þ

EnC ¼ 5:7837� 6:3669ðCSÞ � 0:7365ðtECÞ
þ 0:3223ðVECÞðCSÞ þ 0:0287ðVECÞðtECÞ
þ 0:2689ðCSÞðtECÞ � 0:0106ðVECÞ2

þ 0:0045ðtECÞ2 ð4Þ

Furthermore, statistical characteristics for both
SMLR models have been presented in Table 3.

Based on unbiased standardized coefficients
presented in Table 3, among linear parameters, tEC
and among quadratic parameters, (CS)

2 and (PH0)(CS)
are the most important parameters in CR% prediction.
The most important parameters in EnC prediction are
CS and tEC. Moreover, it can be seen that the whole 5
parameters are effective on CR% when only three tEC,
VEC, and CS are effective on EnC that is in good
agreement with previous reported studies [16,19].
Table 3 and Fig. 3 indicates that the MLR model does
not have good predictability for CR% due to complex
mechanism of EC. It demonstrates new interest in
using more powerful modeling approach, especially
ANN model [19].

It is notable that in this study, in addition to the
five mentioned parameters, four more parameters con-
sisting of electric current, final pH, and initial and
final conductivity were measured and were examined
in the models as input variables.

Fig. 2. The calibration curve for DO25.
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In modeling studies, it is important to construct a
model with least input parameters because this will
lead to a simple and interpretable model. Therefore,
in order to reduce the input parameters’ number,
SMLR was applied as common method.

As mentioned in the introduction section, SMLR is
commonly used regression method, which is proposed
to evaluate only a small number of subsets by either
adding or deleting variables at a time, according to spe-
cific conditions. The number of remaining variables in
the model is assigned based on the levels of signifi-
cance assumed for inclusion and exclusion of variables
from the model. In this study, the SMLR method
neglects the additional parameters statistically.

Neglecting electrical current and conductivity by
SMLR procedure is in good agreement with the fact
that in EC studies, sometimes the voltage is consid-
ered as an operational parameter and sometimes elec-
trical current or the related parameters like current
density. This rises from Ohm’s law; we know that if
two parameters of ohm’s equation were given, then
the third one can be calculated from the equation. It
means that by using two of these three parameters,
the third one is excessive in modeling and causes the
statistic problems like co-linearity and over-train.
Then, when the combination of voltage, salt concen-
tration, and pH were used as input variables, the elec-
trical current is excessive. In addition, based on the
conductivity definition, it can be said that when salt
concentration and pH were used as input variables,
the conductivity is excessive in the same manner.

Table 3
Statistical characteristics of SMLR models of CR% and EnC

Model CR% EnC (wh)

Standardized coefficient t-value p-value Standardized coefficient t-value p-value

Constant 7.70 2.57 0.001 1.49 3.89 <0.001

CS – – – 0.86 �7.35 <0.001

tEC 0.64 6.36 <0.001 0.11 �6.50 <0.001

(pH0)(C0) 0.01 �2.11 0.04 – – –

(pH0)(CS) 0.54 6.75 <0.001 – – –

(pH0)(tEC) 0.05 �2.03 0.04 – – –

(C0)(CS) 0.04 3.02 <0.001 – – –

(CS)(tEC) 0.11 1.84 0.07 – – –

(VEC)(CS) – – – 0.037 8.57 <0.001

(VEC)(tEC) – – – 0.003 9.42 <0.001

(CS)(tEC) – – – 0.021 12.55 <0.001

(pH0)
2 0.15 �2.19 0.03 – – –

(VEC)
2 0.01 2.41 0.02 0.002 �4.59 <0.001

(CS)
2 1.29 �5.24 <0.001 – – –

(tEC)
2 0.01 �5.054 <0.001 0.001 2.38 0.02

Data set Train (120 data) Test (80 data) Same train set Same test set

F value 21.134 – 120.412 –

R2 0.660 0.647 0.882 0.871

Q2 0.659 0.644 0.881 0.852

RMSE 25.7 26.9 4.73 5.24

Fig. 3. Sample plot of the MLR-predicted values of CR%
(colored surface) vs. experimental data of CR% (black
dots), where C0 = 60, pH0= 5.5, and CS = 1.5.
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3.3. ANN models

The best ANN models were separately constructed
for CR% and EnC. In the case of CR%, the whole five
parameters were considered as inputs of model, one
hidden layer with 5 neurons and 0.18 learning rate
were applied. The EnC model was constructed based
on the three effective parameters and nine neurons for
the only one hidden layer. The “tansig” transfer func-
tion was selected for input and hidden layer and
“purelin” for output in both models [18,34]. Once the
networks were trained, the weights and bias of each
neuron and layer were saved in the ANN model.
Then, they were used to estimate the test set. The
(5:5:1) ANN for CR% and (3:9:1) ANN for EnC were
trained using 120 data of the train set by the back
propagation algorithm. The parameters of ANN mod-
els for CR% and EnC are shown in Table 4 and
Table 5, respectively.

In order to show the predictability of ANN model
of CR%, the scatter diagram of experimental CR%
against ANN predicted CR% are presented in Fig. 4.

Nevertheless, Fig. 5 shows the samples of ANN
model predictions and their corresponding experimen-
tal results. In following, the more statistical
parameters of both ANN models are presented in
Table 6. The comparison of Fig. 3 with Fig. 5 and
Table 3 with Table 6 clearly shows that ANN models
outperformed SMLR models. Therefore, ANN models
would be used in optimization procedure by GA.

3.4. GA multi-objective optimization

Table 7 presents the Pareto optimal solutions. Each
point on the Pareto set is associated with a set of deci-
sion variables. Moreover, the input decision variables
corresponding to each of the Pareto optimal solutions
were tabulated in Table 7.

Interpretation of Table 7 was used to illustrate and
discriminate effect of each parameters investigated. As
seen from Table 7, the optimum value of C0 in all Par-
eto optimal solutions is almost 20 ppm (minimum of
range). It means that more C0 always causes less CR%
and more EnC and it resulted in the selection of mini-
mum of C0 by GA in all conditions as an optimum.

However, the interpretation for the other four
parameters is not as easy as C0. Two optimum clusters
can be discriminated in Table 7. One group with less
CR% than 95% having corresponding optimum EnC
values less than 0.1wh and second group with CR%
more than 95% having a corresponding optimum EnC
12.2–134.7.

These two groups of optimum conditions are
corresponded to two different recognizable operational
parameters. First group was corresponded to
conditions with pH0= 9 (maximum value of range),
CS = 0.7–1.1 (g L�1), VEC = 10V (minimum of range) and
tEC = 1min. Second group was corresponded to the
conditions with pH0= 6.8 (except two cases), CS = 1.1–2
(g L�1), VEC = 10–15.2V, and tEC = 49.4–50min.

It clarifies that higher pH0 in presence of lower CS,
VEC, and tEC causes saving energy. In addition, pH0�
6.8, higher VEC, CS, and tEC can result in maximizing
CR%. The optimum pH0= 6–7 for EC has been
reported frequently [19,21].

It is a famous statement that the solid precipitate
of aluminum hydroxide is formed at pH 4–6. Solubil-
ity of aluminum hydroxide increases when the
solution becomes either more acidic or alkali.

AlðOHÞ3 þOH� ! AlðOHÞ�4 ð5Þ

AlðOHÞ3 þHþðaqÞ ! AlðOHÞþ2 ðaqÞ þH2O ð6Þ

Table 4
Network weights and biases of the ANN model for CR%

Neuron Input layer to hidden layer weights

pH0 C0 VEC CS tEC Bias

n1 �0.9237 �0.47599 �0.07184 0.47857 6.4448 6.152

n2 �3.0781 �0.03258 0.00841 �4.057 �0.02157 �0.25904

n3 1.5493 0.3717 �0.55966 �0.62826 �1.2593 �0.37744

n4 4.3701 �0.08383 0.10222 �1.0587 0.32538 1.7183

n5 0.79223 0.27297 0.11829 �1.6336 0.6002 2.2133

Hidden layer to output layer weights

n1 n2 n3 n4 n5 Bias

Output 3.4537 �4.9083 �1.135 �1.148 6.6809 �6.0168

n: neuron or processing elements.
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It is in good agreement with optimum value of pH0

in the second group (6.8). But, at about pH0 9 of the
first group that is not in range, on one hand, it can be
said that the prominence of this group rises from other
parameters except the pH0 and on the other hand, this
group has optimum value of EC not CR%.

The other point that can be extracted from Table 7
is the fact that EC is efficient for dye removal until
certain level of removal (not more). In the other hand,
in this work as an example, to achieve CR% upper
than 95%, the EnC rapidly increases. It is a good dem-
onstration of new interest in combining EC with other
methods like adsorption to reach complete removal
and efficient EnC at the same time [36].

In this study, the final conductivity and pH were
measured and compared with correspond initial

values. The comparison of these values was demon-
strated in Fig. 6. This figure demonstrates positive
variation in pH in more runs. Positive variation rises
from OH- production during EC process. On the other
hand, negative variation happens for runs with
pH=10. However, the continuous production of OH-

occurred during EC process, the final pH did not
reach 10 even for the runs with initial pH=10. It is in
good agreement with the fact in this kind of EC stud-
ies, more OH- produce Al(OH)4

- from Al(OH)3 accord-
ing to the chemical Eq. (6). Then, it can be said that
Al(OH)3 acts as basic buffer preventing the pH to be
more than 9.

Table 5
Network weights and biases of the ANN model for EnC

Neuron Input layer to hidden layer weights

VEC CS tEC Bias

n1 �0.96976 1.0665 2.762 2.8851

n2 �0.32997 2.0103 2.3174 2.3192

n3 0.4556 �2.4448 �1.845 �3.1891

n4 0.11071 2.7265 0.22363 1.2826

n5 �1.773 2.8924 0.59999 0.70601

n6 �0.6252 0.054423 �2.0213 �1.8544

n7 �0.51866 �0.7349 �0.8294 2.1073

n8 1.5587 �3.5239 �2.0161 0.464

n9 3.602 �1.3748 �0.26013 2.2255

Hidden layer to output layer weights

n1 n2 n3 n4 n5 n6 n7 n8 n9 Bias

Output 0.7027 0.47076 0.63391 1.0345 �0.55247 �0.74761 �1.455 �0.27083 0.34713 �1.5599

n: neuron or processing elements.

Fig. 5. Sample plot of the ANN-predicted values of CR%
(colored surface) vs. experimental data of CR% (black dot),
where C0 = 60, pH0 = 5.5, and CS = 1.5.

Fig. 4. Regression plot (actual vs. predicted) using four
input variables, five processing elements in hidden layer,
and two output variables using ANN model.
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In addition, figure ? shows the small positive and
negative variation for conductivity. The positive

variation rises from ions species production like OH-
,

Al3+ and its hydroxyl species like Al(OH)2
+, and Al

(OH)2+ during EC process. On the other hand, nega-
tive variation that happened for pH=2 samples
(unless one sample) rises from the H+ removal from
solution as an ion with highest conductivity.

4. Conclusion

The SMLR and ANN approaches were successfully
used to construct a QSAR model. Further, statistical
tests exhibit models’ goodness. Based on statistical com-
parison, ANN model obviously outperformed SMLR
model. Finally, multi-objective optimization of CR%
and EnC was successfully carried out using genetic
algorithm (GA) over the outperformed ANN models.
The optimization procedure causes nondominated opti-
mal points, which gave an insight into optimal operat-
ing conditions of the EC. The optimum value of C0 in all
Pareto optimal solutions was almost 20 ppm (minimum
of range). It means that more C0 always causes less CR
% and more EnC and it resulted in the selection of mini-
mum of C0 by GA in all conditions as an optimum. Two
optimum clusters can be discriminated regarding two

Table 6
Statistical characteristics of both ANN models for CR% and EnC

Model CR% EnC (wh)

Data set Train set Validation set Test set Train Validation Test

R2 0.971 0.914 0.909 0.986 0.963 0.972

Q2 0.971 0.912 0.908 0.943 0.960 0.970

RMSE 7.5 13.3 13.6 4.37 5.53 9.68

Table 7
Variables values corresponding to each of the Pareto optimal solutions

Solutions pH0 C0 VEC CS tEC CR% EnC Solutions pH0 C0 VEC CS tEC CR% EnC

1 9.0 20.0 10.0 0.7 1.1 55.4 <0.1 15 9.0 20.0 10.0 0.7 1.0 64.4 <0.1

2 9.0 20.0 10.0 0.7 1.0 53.6 <0.1 16 6.9 20.2 15.2 2.0 50.0 99.9 134.7

3 6.8 20.0 14.4 2.0 49.7 99.9 93.0 17 6.8 20.0 14.6 2.0 50.0 99.9 100.0

4 7.2 20.0 10.0 1.8 49.3 99.9 33.1 18 6.9 20.0 15.1 2.0 49.9 99.9 125.0

5 9.0 20.0 10.0 0.8 1.0 85.6 <0.1 19 9.0 20.0 10.0 0.7 1.0 69.6 <0.1

6 6.8 20.0 12.2 2.0 49.9 99.9 49.2 20 6.9 20.2 14.8 2.0 50.0 99.9 108.5

7 9.0 20.1 10.0 0.7 1.1 71.6 <0.1 21 8.9 20.0 12.2 1.1 49.4 99.9 12.2

8 9.0 20.0 10.0 0.8 1.0 83.8 <0.1 22 9.0 20.1 12.5 1.2 1.0 94.8 <0.1

9 6.8 20.0 15.2 2.0 50.0 99.9 131.2 23 6.8 20.1 14.1 2.0 50.0 99.9 81.1

10 6.8 20.0 12.2 1.8 49.9 99.9 45.2 24 6.8 20.0 10.0 2.0 50.0 99.9 38.05

11 9.0 20.0 10.1 0.8 1.1 78.1 <0.1 25 9.0 20.0 10.0 0.7 1.0 53.6 <0.1

12 9.0 20.0 10.0 0.9 1.0 90.8 <0.1 26 9.0 20.0 12.5 1.2 49.4 99.9 21.9

13 6.8 20.0 14.9 2.0 50.0 99.9 118.2 27 8.8 20.1 12.4 1.1 49.4 99.9 14.5

14 6.8 20.0 12.8 2.0 50.0 99.9 55.9 28 6.8 20.0 13.8 2.0 50.0 99.9 74.1

Fig. 6. Conductivity and pH variation during EC process.
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objective parameters. One group with less CR% than
95% having corresponding optimum EnC values less
than 0.1wh and second group with CR% more than
95% having a corresponding optimum EnC 12.2–134.7.
First group was corresponded to conditions with
pH0= 9 (maximum value of range), CS = 0.7–1.1 (g L�1),
VEC= 10V (minimum of range), and tEC= 1min. Second
group was corresponded to the conditions with
pH0= 6.8 (except two cases), CS = 1.1–2 (g L�1),
VEC= 10–15.2V, and tEC= 49.4–50min. In addition, the
achieved CR% (0–99.9) and EnC (0–69.4wh) approves
two statements; first, the good efficiency of EC in color
removal and second, the operational parameter’s
importance and influence.

Symbols

CR% — color removal efficiency, percent

pH0 — initial pH of dye solution

C0 — initial dye concentration, mg L�1

VEC — applied voltage, V

CS — initial electrolyte (NaCl) concentration, g L�1

tEC — treatment time, min

EnC — energy consumption, watt-hour

A0 — initial absorption of dye solution

A — absorption of solution after EC

CCD — central composite design

FFD — full factorial design

DOE — design of experiment

ANN — artificial neural network

SMLR — stepwise multiple linear regression

GA — genetic algorithm

RSM — response surface methodology

DO25 — Disperse Orange 25

RMSE — root mean square error
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