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ABSTRACT

The significance of accepting runoff processes as nonlinear has been gaining considerable in
recent times. However, it is hard to explore the types of nonlinearity acting underlying the
runoff processes and the intensity of the nonlinearity at different timescales. Daily runoff
time series observed at the Pingshan hydrometric station are used for this study. An attempt
is made to identify the existence of chaos and the intensity of nonlinear behavior at three
characteristic time scales (one day, 1/3month, and one month). Six nonlinear dynamic
methods are used: (1) phase space reconstruction and the delay time is estimated using
average mutual information; (2) the sufficient embedding dimension is estimated using the
false nearest neighbor algorithm; (3) correlation dimension method; (4) Lyapunov exponent
method; (5) 0–1 test algorithm for chaos; and (6) the multi-step Volterra adaptive method. A
comparison of results reveals the presence of low-dimensional chaos in the runoff dynamics
at the various time scales and the time scales composes only a limit fraction of the intensity
of nonlinear behavior. The reasonably good predictions indicate the efficiency of the
nonlinear prediction method for predicting the runoff series.
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1. Introduction

Estimating runoff plays an important role in mod-
eling towards decision-making related to the process
of development of water resources, management of
river basins, estimation of risk, and preventing floods
and droughts [1]. However, runoff processes are taken
as continuous processes; hydrologic data-sets are

discrete time series. Suffered by data sample length,
subjectivity of parameter selection, and noise of runoff
series, thus a host of associated uncertainties in
modeling and forecasting is its sensitivity to the
infinitesimal changes in its initial conditions [2]. The
existence of low-dimensional chaos is likely to stem
from the initiation of a combination of catchment
processes, such as uneven distribution of rainfall in
seasonal variation, tributary inputs in different river
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area, and saturation of groundwater flows [3]. Most of
the research in literature confirms the presence of
chaos in the runoff time series [4]. Nonetheless, the
existence of low-dimensional chaos has been a topic
in wide dispute. Because on one hand, there is no
common knowledge about what type of nonlinearity
exists in the runoff process, and on the other hand, it
is not clear how the character and intensity of nonlin-
earity of runoff processes changes as the timescale
changes [5].

It is hard to explore different types of nonlinearity
one by one which may possibly act underlying runoff
processes. We here want to investigate the existence
of general nonlinearity in the runoff process from an
unvaried time series data based quantitative point of
view. There are a wide variety of methods available
presently to test linearity or nonlinearity, which may
be divided into two categories: the model-driven
approaches which are based on the phase space recon-
struction, such as the correlation dimension method,
the largest Lyapunov exponent, and Kolmogorov
entropy method. The other method is the data-driven
approaches, such as artificial neural network [6] and
0–1 test algorithm [7–9]. Hydrological processes in
river catchments are subject to well-known seasonal
variations, river basin area, the existence of climatic
patterns in rainfall processes, and the collective
impact of such a wide range of deterministic and
stochastic factors, the nonlinearity of the runoff time
series become more and more uncertainty [10].

With these observations, this paper investigates
the existence of chaotic behavior in the runoff time
series from Jinsha River basin, China. Runoff data
observed over a period of 53 years (1940–1992) are
studied at different timescales. Six nonlinear dynamic
methods, with varying levels of complexity, are
employed: (1) phase space reconstruction; (2) correla-
tion dimension method; (3) false nearest neighbor
(FNN) algorithm; (4) Lyapunov exponent method; (5)
0–1 test algorithm for chaos; and (6) the multi-step
Volterra adaptive method. These methods provide
either direct or indirect identification of chaotic behav-
iors. A key feature of this study is the investigation of
possible interference of chaotic behaviors at different
timescales.

2. Chaos identification methods

For chaos characteristics is the inherent reflection
of system variables in the time interval [11], so the
characteristics of time series is the inner reflect
through the external sequence. In the present study,
an attempt is made to identify chaos using various

techniques by generating ensembles in order to
quantify the uncertainty involved. The analysis was
based on widely used nonlinear dynamic methods: (1)
average mutual information to determine the delay
time and reconstruct phase space; (2) false nearest
neighbor algorithm and correlation dimension method
to estimate the dimensionality; (3) Lyaponov exponent
methods and the multi-step Volterra adaptive method
to investigate convergence/ divergence and predict-
ability; and (4) 0–1 test algorithm for quantitative
analysis.

2.1. Phase space reconstruction

Among a variety of methods available for
reconstructing the phase space, the most popular one
is the method of delays. The method was proposed by
Packard et al. and was introduced and mathematically
demonstrated by Takens [12]. The method is based on
the concept that, using its past history and an
appropriate delay time, a scalar time series can be
reconstructed in a multi-dimensional phase space to
represent the underlying dynamics. According to this
approach, if appropriate embedding dimension m and
delay time s are chosen, the dynamics can be fully
embedded in m-dimensional phase space represented
by the vector:

Yi ¼ ðxi; xiþs; . . . ; xiþðm�1ÞsÞT ð1Þ

where s is referred to as the delay time and for a
digitized time series is a multiple of the sampling inter-
val used, i= 1, 2,…, N� (m� 1)s/Dt; m is termed the
embedding dimension; and Dt is the sampling time.

A variety of techniques have emerged for detecting
the existence of chaos. For instance, the popular
methods used for estimating the delay time s are: (1)
autocorrelation function method (ACF); (2) the average
mutual information method (AMI); and (3) correlation
integral (CI). ACF method only reflects linear charac-
teristics of the time sequence, CI method need more
data. For study of hydrological time series, the most
popularly used method is the AMI method [13].

AMI as an information theoretic technique
suggested by Kantz and Schreiber, are estimated for
different lag time to estimate the approximate embed-
ding dimensions. Since autocorrelations only measure
linear dependence, mutual information provides an
enhanced nonlinear estimate of the time lag for use in
the phase space reconstruction. The AMI method
defines how the measurements Xt at time t are
connected in an information theoretic fashion to
measurements Xt+s at time t+ s.
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The average mutual information is commonly
computed in the form as given below:

AMIðsÞ ¼
X
xi;xi�s

pðxi; xi�sÞ log pðxi; xi�sÞ
pðxiÞpðxi�sÞ

� �
ð2Þ

where AMI(s) is the mutual information of two
discrete variables xi and xi-s, p(xi), and p(xi-s) are the
individual probability of xi and xi-s, respectively. p(xi,
xi-s) is the joint probability density of xi and xi-s.
Conversely, a lower value of AMI(s) means a lower
interrelationship between the two measurement xi and
xi-s. One frequently used to select the first local
minimum of AMI between two measurements xi and
xi-s as the time delay.

2.2. Estimation of system dimensionality

The embedding dimension m is usually
determined using the FNN method. When the
percentage of these false nearest neighbors drops to
zero, the geometric structure of the attractor has been
unfolded and the orbits of the system are now distinct
and do not cross.

Correlation dimension is one of the most efficient
nonlinear measures of the correlation between pairs
lying on the attractor. If the correlation dimension gets
a finite fractional value even on increase in
embedding dimension m, then the time series under
investigation is generally considered as chaotic on the
other hand, it is stochastic.

The correlation dimension method is also known
as correlation integral analysis which is estimated by
the G-P algorithm. According to the reconstructed
phase space of the vector (1), the correlation integral
function C(r) is given by:

CðrÞ ¼ lim
N!1

1

NðN � 1Þ
XN
i;j¼1

Hðr� jYi � YjjÞ; i–j ð3Þ

where N is the number of data; H is the Heaviside
step function, with H(u)=1 for uP 0, and H(u)=0 for
u6 0, where u= r-|Yi-Yj|; r is the radius of sphere
centered on Yi or Yj, for small values of r, the
correlation function C(r) is related to the radius r by
the following relation: C(r)�rD2, where D2 is the corre-
lation exponent, which can be calculated from the
slope of the logC(r) versus logr in plot given by:

D2 ¼ lim
r!1

logCðrÞ= log r ð4Þ

If the correlation exponent D2 increases without
saturation value with increasing embedding dimension

m, then the time series is generally considered to be
stochastic series. On the contrary, if the correlation
exponent D2 saturates to a constant value on increase
in embedding dimension m, the time series is
generally considered to be chaotic.

The FNN algorithm was introduced by Kennel
et al. and provides information on the optimal embed-
ding dimension of the phase space for representing
the system dynamics. After a short time into the
future, the percentage of these false nearest neighbor-
ing states would drops to zero. The geometric orbits
of the attractor have been extended out and the trajec-
tory of the system does not intersect and are distinct.
The basic idea in the false nearest neighbor algorithm
is to determine how to decide upon increasing the
embedding dimension that a nearest neighbor is false.
In this study, the false nearest neighbor method is
implemented using the TISEAN package and is used
to determine the minimal sufficient embedding
dimension m of the series.

2.3. Lyapunov exponents

The largest Lyapunov exponent is another indica-
tor to determine the presence of chaotic behavior [14].
It gives the averaged divergence information of
nearby trajectories in the phase space. A positive
Lyapunov exponent indicates an exponential diver-
gence of the nearby trajectories, and is a strong indica-
tor of chaos. There are many algorithms to calculate
the maximal Lyapunov exponent. Rosenstein et al.
[15] proposed the small data-sets method to calculate
the maximal Lyapunov exponent from an observed
time series because it takes advantage of all the avail-
able data. For an observed time series, choosing
appropriate embedding dimension m and delay time
s, the phase space is reconstructed. A point x(n0) is
chosen and all the points x(n0) with the diameter are
selected, and the average distance between them is
calculated. An average quantity S is calculated by
repeating for N number of points along the orbit,
which is known as the stretching factor:

S ¼ 1

N

XN
n0

ln
1

uxðn0Þ
jxðn0Þ � xðnÞj ð5Þ

where |ux(n0)| is the number of neighbors found
around point x(n0). If S exhibits a linear increase, then
its slope can be taken as an estimate of the largest
lyapunov exponent k. So the largest Lyapunov
exponent k is defined as:

k1 ¼ 1

tM � t0

XM
k¼1

log2

L0ðtkÞ
Lðtk�1Þ ð6Þ
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where L(tk) is the Euclidean distance, and M is the
number of iteration, L´(tk) is referred to the evolution
length of L(tk) when the time is given as T= tk.

2.4. The multi-step Volterra adaptive method

The essence of the time series prediction is an
inverse problem of dynamic system, that is, given an
observed scalar sequence the system dynamics model
could be reconstructed as following:

xðt0 þ TÞ ¼ fðxðtÞ; xðtþ sÞ; :::; xðtþ ðmþ 1ÞsÞÞ ð7Þ

where t‘ = t+(m-1)s, T is forward prediction step
length. Due to a large number of nonlinear system
can be expressed by Volterra series, Volterra series
can be interpreted in the nonlinear approximation
function F(•), so the filter of series prediction is:

xðnþ 1Þ ¼ h0 þ
Xp

k¼1

ykðnÞ ð8Þ

ykðnÞ ¼
Xm�1

i1 ;...;ik¼0

hkði1; . . . ; ikÞ
Yk
j¼1

xðn� ijsÞ ð9Þ

where p is the order of the filter; hk (i1,…,ik) is the
nuclear to the order p. In practical applications,
the prediction of low-dimensional chaotic time series
the coupling structure is done based on the three-
order Volterra filter.

2.5. Principle of the 0–1 test algorithm for chaos

The numerical algorithm for chaotic identification
is proposed by Gottwald[8]. Given a one-dimensional
discrete observable data-set u(n) at time n= 1,2,…, N.
Choose a parameter c at random between 0 and 2p,
one defines:

pc ¼
Xn

j¼1

uðjÞ cosðhðjÞÞ; n ¼ 1; 2; . . . ;N ð10Þ

qc ¼
Xn

j¼1

uðjÞ sinðhðjÞÞ; n ¼ 1; 2; . . . ;N ð11Þ

hðjÞ ¼ jcþ
Xj

i¼1

uðiÞ; j ¼ 1; 2; . . . ;N ð12Þ

The mean-square displacement is defined as:

MðnÞ ¼ McðnÞ � ðEð/ÞÞ2ðð1� cos ncÞ=ð1� cos cÞÞ ð13Þ

Mc ¼ lim
N!1

1

N

XN
j¼1

½ðpðjþ nÞ � pðjÞÞ2 � ðqðjþ nÞ � qðjÞÞ2�

ð14Þ

EðuÞ ¼ lim
N!1

1

N

XN
j¼1

uðjÞ ð15Þ

The asymptotic growth rate Kc is given by the
definition:

Kc ¼ lim
n!1

logDcðnÞ= log n ð16Þ

If the behavior of p vs. q is Brownian, M(n) grows
linearly in time, then Kc�1, the underlying characteris-
tic of data-set u(n) is chaotic. If the behavior of p vs. q
is bounder, M(n) is a bounded function in time, Kc�0;
the underlying characteristic of data-set u(n) is non-
chaotic. The test is now that Kc close to zero means
regular dynamics and Kc close to 1 implies chaotic
dynamics. Based on the above parameters, the method
provides a simple visual test method whether the
underlying characteristic of data-set u(n) is chaotic or
nonchaotic.

3. Case study

The daily runoff data of Pingshan hydrological
station on the Jinsha River in China are considered for
the present study [16]. The length of its trunk is
2,316 km, and the drainage area is 0.34million km2.
Over the territory rich in water resources, many
hydropower stations and dams have been built across
the river. The observed daily runoff data is 53 years
(19,359 days) long with an observation period from
January 1940 to December 1992. The daily time series

Fig. 1. Time series plot for river in Pingshan hydrological
station.
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graph is given in Fig. 1. Monthly series are obtained
from daily data by taking average of daily discharges
in every month. The statistical characteristics of the
runoff series at different timescales are summarized in
Table 1.

3.1. Phase space

The reconstruction of phase space diagram for run-
off time series at different timescale are shown in
Fig. 2. There is an attractor in the phase space, which
is reconstructed in two dimensions (m= 2) with delay
time t = 1, the {xi,xi + 1} state-space maps with different
timescale are displayed in Fig. 2. For both time series,
the phase space diagram exhibit clear attractors in
well-defined regions, suggesting that dynamic charac-
teristics of the system are simple and can possibly are
indicated by deterministic chaos, without a need for
stochastic modeling.

The delay time is commonly selected by using the
mutual information method where the function first
attains a minimum. The runoff data are used for
chaotic nature analysis and for determining delay
time. As a preliminary investigation, the mutual infor-
mation function of the three runoff series are plotted
and shown in Fig. 3. Day 96 is selected as the time
delay of the daily runoff data of 53 years, because this
observation is the first local minimum observed from
Fig. 3 (left). Thus, the time delay of 13 is selected as
the time delay of the 1/3 monthly runoff data of
53 years from Fig. 3 (right). The 5month is selected as
the month runoff data of 53 year from Fig. 3 (lower).
The initial exponential decay of mutual information

functions indicates that the runoff series may be of
chaotic nature. The periodic behavior of the mutual
information for higher lags is due to the seasonal
periodicity of the rainfall.

3.2. Dimension estimation

The FNN method provides a further evidence for
the presence of low-order chaos in the time series for
the present study. It is implemented by varying the
values of the embedded dimension from 1 to higher
values until the percentage of these false nearest
neighbors drops to zero. The results in Fig. 4 show
that the value of embedding dimension is 8, 6, and 5,
respectively. The identification of these values means
that both time series have an attractor, the geometric
structure of which is unfolded as a distinct system
whose orbits are distinct and do not cross.

To further verify the reliability of the best delay
time, this paper has selected the correlation dimension
method. We calculated the correlation function for our
data-set using the delay times (s= 96, 13, 5),
determined by the mutual information method in the
previous section, with the embedding dimension m
increases gradually from 1 to 20, the log C(r) versus
log r graphs and the correlation exponent v versus log
r for the three runoff series are shown in Figs. 5 and
6, respectively. It can be seen that the correlation
exponent value increases with the embedding dimen-
sion up to a certain value and then saturates beyond
that value. The saturation of the correlation exponent
beyond a certain embedding dimension value is an
indication of the existence of deterministic dynamics.

Table 1
The statistical parameters of runoff data of Pinshan hydrologic Station at different timescales

Statistics Number Min (m3/s) Max (m3/s) Average (m3/s) Standard-D Skew Kurtosis

Daily 19,359 1,060 28,600 4,575 3948.55 1.4427 1.8395

1/3 month 1908 9,090 239,800 46,421 39,529 1.3227 1.2367

month 636 33,340 582,500 139,263 113,347 1.1122 0.3291

Fig. 2. Phase space maps; left: daily runoff series; right: 1/3monthly runoff series; and lower: monthly runoff series.
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Fig. 3. Average mutual information; left: daily runoff series; right: 1/3monthly runoff series; and lower: monthly runoff
series.

Fig. 4. False nearest neighbors; left: daily runoff series; right: 1/3 monthly runoff series; and lower: monthly runoff series.

Fig. 5. log C(r)�log r plot; left: daily runoff series; right: 1/3 monthly runoff series; and lower: monthly runoff series.

Fig. 6. Correlation integral results; left: daily runoff series; right: 1/3 monthly runoff series; and lower: monthly runoff
series.
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The saturated correlation dimension of the two runoff
series are about d1 = 3.957, d2= 5.7, and d3= 4.35,
respectively. The saturated value of correlation dimen-
sion suggests the possible presence of chaotic behavior
in the three runoff time series.

3.3. Lyapunov exponent method

Using the optimal delay time and embedding
dimension as before. The largest Lyapunov exponent
could be calculated by the small amount data method.
Fig. 7 shows the curves for the stretching factors vs. the
number of points N indicating an expected linear
increase leading towards flat regions with some fluctu-
ations superimposed on the linear part of the curve.
The slope vales corresponding to the largest Lyapunov
exponents are obtained after the least squares line
fitted for different timescale time series with the
respective values being 0.0018, 0.0034, and 0.0077.

3.4. The multi-step Volterra adaptive method

The runoff series of different time series are
normalized and then the normalized samples are used
to train the Volterra series. The calculation of the
method is simple because it has only two parameters
with a certain leading time. Because, the seasonality
in the raw flow series play a role in nonlinearity. As

the timescale increases, the nonlinearity weakens, and
the effects of seasonal variance dominate the nonlin-
earity of some 1/3 monthly and monthly runoff series.
It has been shown in runoff series that the multi-step
Volterra method brings bad prediction effect at the
peak in which this method has poor hydrocarbon
prediction effect in Fig. 8. It is shown that the result
of model calculation is very close to the measured
data, and that further forecast on the tendency of the
equipment condition could possibly be made by this
method. Prediction performance will drop with the
lapse of time. Melt temperature had no influence on
the hollow ratio when the temperature reached a
specific range. This prediction results also indicated
that there exists some weak nonlinearity in daily, 1/3
monthly, and monthly series of Jinsha River.

3.5. The 0–1 test algorithm

To demonstrate the reliability and universality of
the test, we apply the 0–1 test algorithm to above
three runoff series. The plots of asymptotic growth
rate are shown in Fig. 9.

The length of the runoff series affects the nonlinear
of runoff sequence. When the length of the runoff
series increases, the asymptotic growth rate of runoff
series Kc increase gradually, runoff series that periodic
gradually abate. It is noted that, the nonlinearity

Fig. 7. Lyapunov exponents; Left: daily runoff series; right: 1/3 monthly runoff series; lower: monthly runoff series.

Fig. 8. Prediction performance; left: daily runoff series; right: 1/3 monthly runoff series; and lower: monthly runoff series.
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increases with the increase of the length, when sample
capacity reach to 30 years, the different time scales of
runoff series nonlinear gradually close; when the
sample size for 53 years, the asymptotic growth rate
close to 1. The timescales variance composes only a
small fraction of the nonlinearity underlying these
processes. Timescale of runoff series have limited
influence on nonlinear. In fact, chaos is the state
between cycle and random. For runoff series, the key
elements of seasonal factors affect the nonlinear
characteristics. Table 2 shows the identification index
of chaos characteristics of runoff time series.

4. Conclusion

The significance of accepting runoff processes as
nonlinear has been gaining considerable in recent
times. However, it is hard to explore the types of non-
linearity acting underlying the runoff processes and
the intensity of the nonlinearity at different timescales.
In the application of chaos theory, some basic physical
conditions are ignored, because runoff is in an open
channels, the nonlinear characteristics of runoff is
likely to stem from the initiation of a combination of
reservoir operations, tributary inputs, and saturation
of groundwater. This paper studies, possible chaotic
behaviors in the runoff dynamics for the data
recorded at Pingshan station at three timescales (one

day, 1/3month, and one month). The investigation
was based on widely used nonlinear research
techniques; (1) average mutual information method to
determine the delay time, and phase space reconstruc-
tion; (2) using false nearest neighbor algorithm the
correlation dimension method to estimate the dimen-
sion; (3) using Lyapunov exponent method for the
analysis of divergence and convergence; the multi-step
Volterra adaptive prediction method on the predict-
ability analysis; and (4) using 0–1 test algorithm for
the quantitative analysis of chaos characteristics of
sample size and timescale. According to 0–1 chaotic
algorithm, the asymptotic growth rate closer to 1 with
the increase of the sample size and time scales, which
means that runoff series of different timescales main-
tain the similar nonlinear. Time scales have a little
impact on the chaos characteristics as the data-set is
enough large. The results from these methods provide
convincing indication, cross-verification, and confirma-
tion of the existence of low-dimensional chaotic
characteristics. For example, existing clear attractor in
the phase space; correlation dimension is fractal
dimension. The biggest Lyapunov exponents are
positive, short-term prediction results are also found
to be good. It is evident from the above results that
timescales composes only a limit fraction of the
intensity of nonlinear behavior.
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