

52 (2014) 2956–2965 April

Electrical conductivity as a novel technique for control of lime softening process

M.C. Amiri^{a,*}, M. Ostovar^b, S.M. Shariat Pannahi^c

^aDepartment of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran Tel. + 98 311 3913003; Fax: + 98 311 3912677; email: amir33@cc.iut.ac.ir ^bDepartment of Chemical Engineering, Islamic Azad University (South Tehran Branch), Tehran, Iran ^cEsfahan Steel Company, Isfahan, Iran

Received 13 July 2011; Accepted 12 April 2013

ABSTRACT

Lime softening is a well-established process for partially separating of hardness ions from water. Currently, the lime softening process is adjusted manually based on chemical titration tests aimed at maintaining the simple and total alkalinities in a certain range. Analysis of experimental data from bench and full-scale lime clarifier showed that the current control based on alkalinity is often not correct. It was found in this work that electrical conductivity (EC) can be used as a good indicator for evaluating the performance of lime clarifiers. Therefore, an eco-friendly and very cost effective alternative technique based on EC is introduced in this paper for successful control of lime softening process.

Keywords: Hardness; Lime clarifier; Control; Alkalinity; Electrical conductivity

1. Introduction

1.1. Water softening

The hardness in water causes a cost of millions and even billions of dollars annually due to heat loss and scaling in boilers, and heat exchangers [1,2]. Hardness has also fouling effects on reverse osmosis and other desalination units [1]. Separation of hardness ions from water is called softening. Water softening is almost a common unit operation in many industries and makes the water suitable for using in cooling operation or prepares it for additional purification. Although total or partial removal of hardness ions is possible in various processes such as reverse osmosis, electro dialysis, distillation or freezing, most industrial plants solve their water hardness problem by using two familiar separation processes: sedimentation (lime or lime/ soda) and adsorption (ion exchange) [2,3].

Although the high pH associated with excess softening provides alkaline toxicity to bacteria [4] and virus removal and/or deactivation [5,6], pathogen removal is not the main interest for industrial water. Currently, many lime clarifiers use only lime instead of lime-soda as other methods for removing non-carbonate (permanent) hardness are more attractive [3].

Control of softening process is important for a number of reasons. First, consistent quality of the treated water with minimum hardness is most desirable in every industry. Second, optimal control results in minimum solid waste that must be disposed of. Finally, it can reduce the operating costs of water treatment.

It is unanimously accepted that pH has a vital role on the performance of lime softening. However, as the pH does not change in a decisive trend, alkalinities

^{*}Corresponding author.

^{1944-3994/1944-3986 © 2013} Balaban Desalination Publications. All rights reserved.

are currently controlled as an indicator for optimum operating conditions. This is usually achieved in lime clarifiers by regulating working conditions in such that twice the P-alkalinity of treated water be a little greater than M-alkalinity [2,3,7], i.e. (2*P-M*) must be about 5 ppm as CaCO₃.

Universal practices indicate that many lime clarifier operators feel that this is not enough reliable condition and they usually check concurrently other operating parameters such as pH and hardness [2,3]. However, in spite of its shortcoming, alkalinity method of control is currently used and a considerable amount of chemical wastewater is generated during various titration tests.

1.2. Electrical conductivity

Electrical conductivity (EC) of water represents solution's ion conductivity and is usually expressed as mhos per centimeter (mho/cm), often called Siemens per centimeter (S/cm).

The utilization of conductivity to oversee the chemical process in liquid phase is itself not a new finding of this work. EC has been utilized in the past as a means of controlling many processes such as, regulating the rate of blow down in power plants or for characterization of colloidal gas aphrons as reported recently by Moshkelani and Amiri [8].

A known lime addition process similar to softening is called alkalinity reduction in scientific literatures. Both processes use lime but for two different targets. The primary purpose in softening process is to achieve minimum hardness in the treated water but the main aim in alkalinity reduction process is to control alkalinity concentration within a certain range. There is no document in scientific literatures to report that these two processes produce precisely the same results.

A number of control systems based on EC have been patented in the past to manage addition of lime for regulating alkalinity, including the following:

- Gustafson [9] disclosed in his patent a control system for optimizing the addition of lime for alkalinity reduction based upon the conductivity ratio between raw water and treated water.
- (2) Carlson [10] disclosed a control system for optimizing the addition of lime for alkalinity reduction. A pacer unit determines the conductivity of water at optimal treatment. The conductivity of water in the treating unit is also measured. The controller calculates the ratio of the conductivities of the pacer unit and the treating unit. The controller adjusts the rate feed of lime

into the treating unit to maintain a predetermined conductivity ratio.

- (3) The King system for controlling lime feed for alkalinity control is based on the U-shape conductivity curve [11]. He uses a sample cell to periodically determine the minimum conductivity. A correction signal is then generated to adjust the feed setting to maintain a desired set point based upon the difference between this minimum conductivity and the current conductivity of a sample taken from the treating unit.
- (4) Rivers [12] patented methods of analyzing conductive solution. He discovered that the amount of ionized constituent in a liquid phase may be accurately determined by measuring the EC of the liquid phase. This can be done by adding a buffering type reagent capable of reacting with the ionized constituent in this phase, measuring the EC of the reacted stream, and determining the amount of constituent present from a curve of differential EC versus concentration prepared from known concentration of the same constituent.
- (5) A proportional control system for alkalinity control using a variable capacity feed pump was disclosed by Zaander et al. [13].
- (6) Hawthorne and Herbert [14] disclosed a system for regulating the addition of lime to reduce water alkalinity includes two sensors for measuring the conductivity of the water prior to and after addition of lime, a pump for adding lime to the water, and a controller for regulating the pump. The controller periodically samples the conductivities measured by both sensors and computes the ratio of the conductivities for each sample as well as the slope of the ratio between samples.

In this work, it was found that a very cost effective technique based on EC of treated water can be developed for controlling the performance of softening process. This aspect of using EC for probing the least hardness in the lime clarifier was not realized in any of the previous works.

1.3. Lime softening reactions

Lime process can decrease only bicarbonate (temporary) hardness. By adding hydrated lime the following reactions (softening) results in precipitation of solid calcium carbonate and magnesium hydroxide [2,15]:

$$2CO_2 + Ca(OH)_2 \rightarrow Ca(HCO_3)_2 \rightarrow Ca^{2+} + 2HCO_3^{-} \quad (1)$$

$$[Ca^{2+} + 2HCO_3^{-}] + Ca(OH)_2 \rightarrow 2CaCO_3(s) + 2H_2O \quad (2)$$

$$\begin{split} & [Mg^{2+} + 2HCO_3^-] + 2Ca(OH)_2 \\ & \rightarrow 2CaCO_3 + Mg(OH)_2(s) + 2H_2O \end{split} \tag{3}$$

Solubility of both calcium carbonate and magnesium hydroxide is highly sensitive to pH, but in different trends. The solubility of magnesium hydroxide sharply decreases in pHs more than 10 but the solubility of calcium carbonate increases at such high pHs. Therefore regulating pH or alkalinity is a decisive factor in controlling the performance of lime clarifier.

Currently for simplicity, alkalinity rather than pH is usually controlled for checking optimum operating conditions. This is accomplished by keeping a positive value for (OH) concentration about 5 ppm as CaCO₃. This corresponds to a pH of approximately 10.2–10.5. The concept behind of this working condition is that all of the bicarbonate ions must be converted into carbonate ions for having the least soluble form of calcium; therefore, it is recommended a slight excess of hydroxyl ion should be maintained in the treated water.

However, as softening reactions result in removing hardness ions from the aqueous phase by precipitation, the efficiency of this process can also be checked by total dissolved solids (TDS). EC is a good surrogate measure of TDS. Therefore, reduction in total ions due to removing calcium, magnesium, and bicarbonates can be detected by measuring the conductivity of aqueous phase. It has also been found that the change of conductivity of water with addition of lime has a concave nature. It initially progressively decreases to a minimum value due to precipitation of insoluble products but then increases due to excess lime. Our bench scale (and then full scale) tests demonstrated clearly that EC is a good indicator even better than alkalinity for following the performance of limes clarifiers in view of water softening.

This idea was checked even in full scale and it was found that the workability of EC analysis for lime clarifier was more meaningful than alkalinity tests. Contrary to the current method based on alkalinities, in this new method, no chemical waste is produced and no chemical materials or water is needed for titration.

1.4. Esfahan Steel Company lime clarifier

The Esfahan Steel Company (ESC) is located in the central part of Iran and can currently soften up to 530 m³/h surface water. ESC utility uses both lime clarifier and ion exchange units for generating soft water. Two parallel lime clarifier (cylindrical building, 12 m in diameter, and 6.1 m total height) are compact upflow

softening units that provide a place for chemical reaction of softening, coagulation, flocculation, and sedimentation in the single circular concrete tanks, where the water flows up toward the effluent launders and at the same time the suspended solids settle down. In each "solids-contact" clarifier, the incoming water from the bottom passes through the agitated previously formed flocs that produced by softening reactions. In fact, each clarifier employs scientific principles for enhancing flocculation, sedimentation, and clarification in one single basin.

Operators in ESC perform frequently characterizing tests (usually every 2 hour) on the raw water as well as the treated water for adjusting lime dosage to proper control of softening process. Conscious efforts are made by ESC operators to maintain a caustic alkalinity (twice the phenolphthalein alkalinity minus the total alkalinity) of positive value (greater than zero) in the treatment basin. ESC operators used to vary lime dosage as a tool to maintain *P* and *M* alkalinity ratio in the softened water at a specific level rather than target a specific lime dose.

Daily tests in lime clarifier of ESC showed that changes in lime feed rate would not dramatically affect on the total hardness of finished water. Therefore, for examination of lime clarifier performance, it was decided to change systematically the lime dosage rate. The operators initially were concerned about the effect this would have on turbidity and final hardness (outlet hardness and filter duty) but ESC has sand filters and ion exchange softener in downstream of the lime clarifier to accommodate any dynamic operating changes. Therefore, a short course on softening process was addressed for operators and since the laboratory tests were closely monitoring the situation, worries slowly subsided. The operating results encouraged us to explore a new method, rather than current P and M monitoring, for controlling the lime clarifier performance.

2. Materials and methods

All physical data or chemicals reported in this paper were obtained either from ESC daily log sheets or local central laboratory, where detailed protocols for the experiments, including titration and calculation methods, are usually based on standard methods [15].

The addition of commercial hydrated lime to the clarifier took place by dosing from a raw material container in the form of a lime silo via a worm conveyor to a slurry tank to dissolve the lime in mixing unit prior to supply to the raw water to be treated. Three dosages of lime were tested by regulating the control valve: normal dosage (170 ppm), less and higher than normal dosage (146 and 202 ppm).

Log sheet data (8-h per shift coverage) of lime clarifier in ESC utility was examined for about four weeks. We have decided to consider all data without any judgment, although only a few data in night shifts seemed incorrect probably due to careless recording.

The characterizing parameters of ESC lime clarifier, collected during this case study, have been included in the appendix spreadsheet. Each of 150 rows, shows details of a series of site data at a given time of sampling as follows: inlet water hardness, treated water hardness, inlet EC, outlet EC, outlet *P* alkalinity, inlet *M* alkalinity, outlet *M* alkalinity, Temperature, *P* and *M* alkalinity ratio, and lime dosage. The "no. column" is a four digit number such as ABCD, where CD is the hour of, and A and B are the week and day of sampling, respectively. For example no. 3208 column represents the sample that was collected at 8 am in the second day of the third week.

The jar tests were executed with the conventional apparatus with six 1-L beakers to determine changes of hardness, EC and alkalinities (P and M) versus lime dosage. To run each test, an increasing quantity of lime was added to each beaker and stirred at 150 rpm for 10 min. Turning off the mixers and allow the containers to settle for 15 min, then, analyses of the clear supernatants for hardness, calcium, alkalinity, and pH were performed. Ferric chloride as the coagulant in ESC utility is maintained at constant dosage during this period of case study.

3. Results and discussion

The accuracy of the current control method for evaluation of lime process was examined both in bench and in full-scale units.

Changes in hardness and (2P-M) of a typical softened water generated in a lime treated jar test have been shown in Fig. 1. It can be seen that the current

control condition, i.e. 2P-M = 5 ppm as CaCO₃, does not result in minimum hardness of the treated water.

The corresponding results have also been recorded in ESC lime clarifier for various lime dosages (146,170 and 202 ppm) and have been shown in Fig. 2. Inconsistency in hardness readings in Fig. 2 is due to various sources such as changes in temperature, errors in data collection as these data were collected from a large clarifier at different times and by different operators, effect of sludge on hardness process, change in inlet water analysis, effect of residence time, and other minor factors.

It can be seen that a positive value for (2*P-M*) is not any assurance for having minimum hardness, since a good control parameter should be satisfied in spite of various operating conditions. Therefore, current control of evaluating the performance of lime clarifier does not anticipate the optimum operation conditions (minimum hardness of treated water).

Some industries such as ESC prefer to observe the current control condition by keeping dimensionless M/P slightly less than two instead of a positive value for (2P-M). Fig. 3 shows the change of outlet hardness of treated water at various lime dosages versus M/Palkalinity ratio. This operational data clearly demonstrates that the least hardness may be distributed from M/P less than two to more than three. These results are obviously inconsistent with the recommended condition and there is no guarantee for having minimum hardness when M/P is slightly less than two. Fig. 3 also shows that the recommended condition can occur either at high or low lime dosages and there is high chance for ill performance of lime clarifier when lime dosage and simple alkalinity is high. This ill performance of lime clarifier (higher outlet hardness) is possible as a result of increasing in calcium carbonate solubility at higher pH.

59

54

49

44

39

34

29

-25

-15

Outlet Hardness (ppm)

2P-M (ppm as CaCO₃)

-5

5

Lime Dosage (ppm) • 146

> ×170 ▲202

15

25

Fig. 3. Change of hardness of treated water at various lime dosages versus M and P alkalinity ratio.

As an overall conclusion, Figs. 1 and 3 illustrate that evaluating the lime clarifier performance based on P and M alkalinities is neither accurate and nor easy. In addition, this current performance criterion may depend on lime dosage.

Fig. 4 shows change of outlet hardness versus lime dosage for all 150 series data. It clearly shows that increase in lime dosage often results in higher hardness. Increase in calcium carbonate solubility at higher pH may explain this ill performance of lime clarifier.

To search for finding a decisive parameter for evaluating the performance of lime clarifier, other parameters were also checked. Fig. 5 shows EC of treated water as a function of *P* and *M* alkalinity ratio at various lime dosage. It shows that there is no coherent correlation between these two parameters. Rivers' patent about alkalinity regulation [12] had already found that there is no linear relationship between EC and (2*P*-*M*). Fig. 5 indicates that lower lime dosage that means lower pH, results in lower range of EC of treated water.

Fig. 4. Change of outlet hardness versus lime dosage.

Fig. 5. Outlet EC as a function of *M* and *P* alkalinity ratio of the treated water at various lime dosages.

This result can be expected as a result of lower calcium carbonate solubility at lower pHs \simeq 8.5–9.5. It also can be seen that lower *M*/*P* that means higher pH and lime dosage, enhances higher EC of treated water. This result is possible due to increase in calcium carbonate solubility at higher pH.

The results of our bench scale tests always showed that minimum EC conform minimum hardness in lime process. Changes in hardness and EC of a typical softened water in a lime treated jar test have been shown in Fig. 6. This finding encouraged us to follow these changes in ESC lime softening clarifier for various lime dosages as shown in Fig. 7. It can be seen that three discrete sections corresponding to three lime dosages could be detected well in this figure. It shows that when hardness of treated water is high (poor performance), ECs are high in magnitude and scattering of data but when the treated water hardness is low, both the magnitude and also the range of changes in EC are small.

Fig. 6. Changes in hardness as a function of EC for a typical water in a lime treated jar test.

Fig. 7. Outlet hardness as a function of EC of treated water in ESP lime softening clarifier.

Fig. 8. Changes in outlet hardness as a function of the ratio of the ECs of outlet and inlet water in various lime dosages in ESP lime softening clarifier.

As high efficient operation of lime clarifier is certainly corresponding to the least hardness of outlet treated water, this situation is well correlated with changes in EC (both in magnitude and in scattering) of treated water as Fig. 7 demonstrates it. This is the main finding of this work and based on this finding, a scheme was patented for daily evaluating the performance of lime softening clarifiers [16]. No chemical waste is generated in this method.

Fig. 8 shows changes in outlet hardness as a function of the ratio of the conductivities of treated water and raw water in various lime dosages. Contrary to the patented methods for alkalinity reduction process [9–14], the ratio of the conductivities (in comparison to outlet conductivity in Fig. 7) is not a good indicator for probing lime clarifier as it enhances the data scattering.

4. Conclusions

The current method for evaluating the lime clarifier performance based on *P* and *M* alkalinities measurement could be cumbersome and it was found that this method is not often quite accurate. In addition, the current practice usually depends on lime dosage.

It was found that EC, an intensive property that can be measured easily for characterization of water, is a good indicator for following the performance of lime clarifier in view of water softening. It is an eco-friendly technique for routine tests without using any chemicals. The proposed method is a very cost effective alternative technique for optimizing the performance of lime clarifier without producing any chemical waste.

Acknowledgement

The authors wish to acknowledge and highly appreciate both for allowing to report site data and the financial support of Esfahan Steel Company in this common project between Isfahan University of technology and Esfahan Steel Plant.

References

- M.C. Amiri, M. Samiei, Enhancing permeate flux in a RO plant by controlling membrane fouling, Desalination. 207 (2007) 362–369.
- [2] S.T. Powell, Water Conditioning for Industry, McGraw-Hill, New York, NY, 1954.
- [3] M.C. Amiri, Principles of Water Treatment, eighth ed., Arkan, Isfahan, 2010.
- [4] S.R. Roalson, J. Kweon, D.F. Lawler, J. Speitel, Enhanced softening: Effects of lime dose and chemical additions, AWWA 95 (2003) 97–109.
- [5] T.D. Brock, M.T. Madigan, J.M. Martinko, J. Parker, Biology of Microorganisms, seventh ed., Prentice Hall, Englewood Cliffs, NJ, 1994.
- [6] H.W. Wolf, R.S. Safferman, A.R. Mixson, C.E. Stringer, Virus inactivation during tertiary treatment, AWWA 66 (1974) 526–533.
- [7] S.D. Faust, O.M. Aly, Chemistry of Water Treatment, Ann Arbor Press, Chelsea, 1998.
- [8] M. Moshkelani, M.C. Amiri, Electrical conductivity as a novel technique for characterization of colloidal gas aphrons (CGA), Colloids Surf. A 317 (2008) 262–269.
- [9] D. Gustafson, Control system for optimizing the addition of lime for alkalinity reduction, 3,236,128, March 1, 1966.
- [10] H.G. Carlson, Method and apparatus for optimizing chemical treatment, U.S. Patent 3,462,364, August 19, 1969.
- [11] R.S. King, Process and apparatus for chemical feed, U.S. Patent 3,474,032, October 21, 1969.
- [12] H.M. Rivers, Methods of analyzing conductivity solution, U. S. Patent 3,531,252, September 29, 1970.
- [13] C.J. Zaander, C. Hill, V. Milenkvic, B.A. Johnson, Method to control dosage of additive into treatment process and automatic device therefore, U.S. Patent 3,605,775, September 20, 1971.
- [14] W.H. Hawthorne, G.J. Herbert, System for controlling addition of lime to reduce water alkalinity, U.S. Patent 5,340,468, August 23, 1994.
- [15] R. Shariff, A. Cudrak, S.J Stanley, Lime softening clarifier modeling with artificial neural networks, J. Environ. Eng. Sci. 3(Suppl. 1. (12)) (1 April 2004) S69–S80.
- [16] M. Amiri, A method for evaluating the performance of a lime softening clarifier, U.S. Patent, Application number 13,279,372, 2011.

Appendix

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Number	Dosage	Т	2 <i>P</i> - <i>M</i>	M/P	M out	Р	EC out	EC in	H out	H in
1,110 13.5 34.1 2 1.904762 40 21 231 378 40 127 1,112 13.5 34.5 -3 2.166667 39 18 235 379 39 130 1,116 13.5 34.7 -4 2.235294 38 17 226 399 38 132 1,118 13.5 40.4 -4 2.253294 38 17 226 399 38 132 1,122 13.5 40.6 2 1.9 38 20 248 391 38 133 1,124 13.5 39.1 -1 2.055556 37 18 244 379 38 136 1,212 13.5 31.4 -7 2.466667 37 15 2.32 380 38 135 1,222 13.5 31.4 -3 2.166667 39 18 253 425 437 136 1,304 13.5 32.7 2 1.909 38 20 283 41	1,108	13.5	31.7	-4	2.25	36	16	229	374	39	128
1,112 13.5 34.5 2 1.9 38 20 237 382 40 131 1,114 13.5 34.7 -4 2.235294 38 17 226 389 39 136 1,118 13.5 40.4 -4 2.25 36 16 224 392 38 132 1,120 13.5 42.7 4 1.818182 40 22 257 394 40 132 1,124 13.5 301 -1 2.055566 37 18 244 375 37 134 1,212 13.5 37 -3 2.1875 35 16 234 375 38 135 1,214 13.5 30.4 2 1.909091 42 22 245 397 42 136 1,302 13.5 41 -3 2.16667 37 17 258 418 43 137 1,304 13.5 37.7 1 195 39 20 285 417	1,110	13.5	34.1	2	1.904762	40	21	231	378	40	127
1,114 13.5 34.5 -3 2.166667 39 18 2.25 389 39 130 1,118 13.5 34.7 -4 2.2529 36 16 224 392 38 132 1,120 13.5 42.7 4 1.818182 40 22 257 394 40 132 1,121 13.5 39.1 -1 2.055556 37 18 244 379 38 132 1,212 13.5 31. -6 2.4 36 15 229 379 38 135 1,212 13.5 31.4 -6 2.4 36 15 229 379 38 136 1,222 13.5 31.4 -3 2.166667 39 18 253 425 45 137 1,302 13.5 41 -3 2.16667 39 18 253 425 45 137 1,314 13.5 32.7 2 1.99 39 20 283 417	1,112	13.5	34.5	2	1.9	38	20	237	382	40	131
1,116 13.5 34.7 -4 2.23294 38 17 2.26 389 39 386 132 1,118 13.5 40.4 -4 2.25 36 16 224 392 38 132 1,120 13.5 40.6 2 1.9 38 20 248 391 38 132 1,124 13.5 37 -3 2.1875 35 16 234 375 37 134 1,214 13.5 324 -7 2.466667 37 15 232 380 38 135 1,222 13.5 30.4 2 1.909091 42 22 245 397 42 136 1,308 13.5 32.7 2 1.96667 37 17 258 418 43 137 1,314 13.5 37.7 1 1.95 39 20 228 417 45 141 1,314 13.5 32.7 2 1.97 38 20 275 41	1,114	13.5	34.5	-3	2.166667	39	18	235	379	39	130
1,118 13.5 40.4 -4 2.25 36 16 224 392 38 132 1,120 13.5 42.7 4 1.818182 40 22 257 394 40 132 1,124 13.5 39.1 -1 2.055556 37 18 244 375 37 134 1,212 13.5 31 -6 2.4 36 15 229 379 38 135 1,214 13.5 31.4 -7 2.466667 37 15 232 380 38 135 1,222 13.5 41 -3 2.166667 39 18 253 425 45 137 1,308 13.5 37.7 1 1.95 39 20 2.83 417 45 141 1,402 13.5 37.7 1 1.95 39 20 275 406 48 138 1,404 13.5 37.4 1 1.95 38 18 200 275 40	1,116	13.5	34.7	-4	2.235294	38	17	226	389	39	136
1,120 13.5 42.7 4 1.818182 40 22 257 394 40 132 1,122 13.5 40.6 2 1.9 38 20 248 391 38 133 1,124 13.5 37 -3 2.1875 35 16 234 375 37 134 1,212 13.5 31.4 -7 2.466667 37 15 232 380 38 135 1,222 13.5 30.4 2 1.909091 42 22 245 397 42 136 1,302 13.5 42 -3 2.16667 39 18 253 425 45 137 1,303 13.5 32.7 2 1.97 38 20 275 416 43 141 1,314 13.5 32.7 2 1.9 38 20 275 416 43 141 1,314 13.5 34.4 -2 2.111111 38 18 240 440	1,118	13.5	40.4	-4	2.25	36	16	224	392	38	132
1,122 13.5 40.6 2 1.9 38 20 248 391 38 133 1,124 13.5 39.1 -1 2.05556 37 18 244 379 38 132 1,212 13.5 31 -6 2.4 36 15 229 379 38 136 1,212 13.5 31.4 -7 2.466667 37 15 232 380 38 135 1,222 13.5 41 -3 2.166667 39 18 253 425 45 137 1,308 13.5 42 -3 2.176471 37 17 288 418 43 138 1,314 13.5 37.7 1 1.95 39 20 283 417 45 141 1,402 13.5 34.5 8 1.666667 40 24 257 406 48 138 1,404 13.5 34.4 -2 2.11111 38 18 240 441 <td< td=""><td>1,120</td><td>13.5</td><td>42.7</td><td>4</td><td>1.818182</td><td>40</td><td>22</td><td>257</td><td>394</td><td>40</td><td>132</td></td<>	1,120	13.5	42.7	4	1.818182	40	22	257	394	40	132
1,124 13.5 39.1 -1 2.035556 37 18 244 379 38 132 1,210 13.5 37 -3 2.1875 35 16 234 375 37 134 1,214 13.5 32.4 -7 2.466667 37 15 232 380 38 135 1,222 13.5 30.4 2 1.909091 42 22 2.45 397 42 136 1,302 13.5 41 -3 2.166667 39 18 253 420 43 137 1,314 13.5 39.7 1 1.95 39 20 283 417 45 141 1,318 13.5 32.7 2 1.9 38 20 275 415 43 141 1,404 13.5 34.4 -2 2.11111 38 18 246 402 43 141 1,404 13.5 38.8 -2 2.11111 38 18 246 402	1,122	13.5	40.6	2	1.9	38	20	248	391	38	133
1,210 13.5 37 -3 2,1875 35 16 234 375 37 134 1,212 13.5 31 -6 24 36 15 229 379 38 135 1,222 13.5 30.4 2 1,909091 42 22 245 397 42 136 1,302 13.5 41 -3 2,166667 39 18 253 425 45 137 1,304 13.5 39 -3 2,176471 37 17 258 418 43 138 1,314 13.5 32.7 2 1.9 38 20 275 415 43 141 1,406 13.5 34.4 -2 2,11111 38 18 246 402 43 144 1,406 13.5 34.4 -2 2,11111 38 18 246 402 40 144 1,406 13.5 39.4 -1 2,052632 39 19 269 409 <td< td=""><td>1,124</td><td>13.5</td><td>39.1</td><td>-1</td><td>2.055556</td><td>37</td><td>18</td><td>244</td><td>379</td><td>38</td><td>132</td></td<>	1,124	13.5	39.1	-1	2.055556	37	18	244	379	38	132
1,212 13.5 31 -6 2.4 36 15 229 379 38 136 1,214 13.5 32.4 -7 2.466667 37 15 232 380 381 135 1,202 13.5 41 -3 2.166667 39 18 253 425 45 137 1,308 13.5 42 -3 2.176471 37 17 258 418 43 138 1,316 13.5 37.7 1 1.95 39 20 283 417 45 141 1,402 13.5 34.4 -2 2.111111 38 18 246 402 43 141 1,404 13.5 34.4 -2 2.111111 38 18 246 402 43 141 1,404 13.5 38.4 -2 2.111111 38 18 246 402 43 141 1,404 13.5 39.4 -1 2.052632 39 19 2.68 408 <td>1,210</td> <td>13.5</td> <td>37</td> <td>-3</td> <td>2.1875</td> <td>35</td> <td>16</td> <td>234</td> <td>375</td> <td>37</td> <td>134</td>	1,210	13.5	37	-3	2.1875	35	16	234	375	37	134
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1,212	13.5	31	-6	2.4	36	15	229	379	38	136
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1,214	13.5	32.4	-7	2.466667	37	15	232	380	38	135
	1.222	13.5	30.4	2	1.909091	42	22	245	397	42	136
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1,302	13.5	41	-3	2.166667	39	18	253	425	45	137
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.308	13.5	42	-3	2.1875	35	16	268	420	43	137
1.3161.3537.711.953920283417451411,31813.532.721.93820275415431411,40213.534.581.6666674024257406481381,40413.534.4-22.1111113818246402431411,40613.538.8-22.1111113818290414451401,40613.539.4-12.0526323919268408441291,41013.542-12.0526323919270441421431,41213.543024020251420401451,41413.541-12.0526323919270441421431,42013.539.9-42.253616265435401421,42113.534.4024020283428431471,50213.535.5023819269429421431,50413.537.8-22.1111113818276431411461,50213.537.8-22.1111113818276431421451,50413.537.8	1.314	13.5	39	-3	2.176471	37	17	258	418	43	138
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.316	13.5	37.7	1	1.95	39	20	283	417	45	141
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.318	13.5	32.7	2	1.9	38	20	275	415	43	141
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 402	13.5	34.5	8	1 666667	40	<u>-</u> 0 24	257	406	48	138
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 404	13.5	34.4	_2	2 111111	38	18	246	402	43	141
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1,101	13.5	38.8	_2	2.111111	38	18	290	414	45	140
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1,400	13.5	39.4	_1	2.052632	39	10	250	408	43	170
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1,400	13.5	42	-1 1	2.052632	39	10	260	400	13	12/
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1,410	13.5	42	-1	2.052052	40	20	209	409	40	1/5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1,412	13.5	43	1	2 052622	40	20	231	420	40	143
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1,414	13.5	41 20.0	-1	2.032632	39	19	270	441	42	143
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1,420	13.5	39.9 24.4	-4	2.23	30 27	10	265	433	40 20	142
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1,422	13.5	54.4 24.4	-1	2.055556	37	18	239	418	39 42	142
1,50213.535.5023819269429421431,50413.535.2024020278432411411,50613.537.8-22.111113818276431421451,50813.533.8-42.253616269425411461,51013.53521.9090914222267433431461,51213.537.4-153.53510271431421471,51413.538.4-143.43410271435411451,51613.540-102.833333412280450401411,52413.537.5-22.1176473617273433401401,60213.533.8-22.1176473617274430411381,60413.532.8-42.2666673415275430401421,60613.532.8-42.2666673415275430401421,60813.539-72.5384623313277434401421,61013.540.5-52.3846153113281443431451,62013.5 <td>1,424</td> <td>13.5</td> <td>34.4</td> <td>0</td> <td>2</td> <td>40</td> <td>20</td> <td>283</td> <td>428</td> <td>43</td> <td>147</td>	1,424	13.5	34.4	0	2	40	20	283	428	43	147
1,50413.535.2024020278432411411,50613.537.8-22.111113818276431421451,50813.533.8-42.253616269425411461,51013.53521.9090914222267433431461,51213.537.4-153.53510271431421471,51413.538.4-143.43410271435411451,51613.540-102.833333412280450401411,52413.537.5-22.1176473617273433401401,60213.533.8-22.1176473617274430411381,60413.532.8-42.2666673415275430401421,60613.532.8-42.2666673415275430401421,61013.540-62.4285713414300427411401,61213.53711.9411763317287426401411,61813.540.5-52.3846153113281443431451,62013	1,502	13.5	35.5	0	2	38	19	269	429	42	143
1,50613.537.8 -2 2.111111 38 18 276 431 42 145 1,50813.5 33.8 -4 2.25 36 16 269 425 41 146 1,51013.5 35 2 1.909091 42 22 267 433 43 146 1,51213.5 37.4 -15 3.5 35 10 271 431 42 147 1,51413.5 38.4 -14 3.4 34 10 271 435 41 145 1,51613.5 40 -10 2.833333 34 12 280 450 40 141 1,52413.5 37.5 -2 2.117647 36 17 273 433 40 140 1,60213.5 33.8 -2 2.117647 36 17 274 430 41 138 1,60413.5 32.8 -4 2.266667 34 15 275 430 40 141 1,60813.5 39 -7 2.538462 33 13 277 434 40 142 1,610 13.5 40 -6 2.428571 34 14 300 427 41 140 1,612 13.5 37 1 1.941176 33 17 287 426 40 141 1,620 13.5 35 -5 2.384615 31 <td>1,504</td> <td>13.5</td> <td>35.2</td> <td>0</td> <td>2</td> <td>40</td> <td>20</td> <td>278</td> <td>432</td> <td>41</td> <td>141</td>	1,504	13.5	35.2	0	2	40	20	278	432	41	141
1,508 13.5 33.8 -4 2.25 36 16 269 425 41 146 $1,510$ 13.5 35 2 $1,909091$ 42 22 267 433 43 146 $1,512$ 13.5 37.4 -15 3.5 35 10 271 431 42 147 $1,514$ 13.5 38.4 -14 3.4 34 10 271 435 41 145 $1,516$ 13.5 40 -10 2.833333 34 12 280 450 40 141 $1,524$ 13.5 37.5 -2 2.117647 36 17 273 433 40 140 $1,602$ 13.5 33.8 -2 2.117647 36 17 274 430 41 138 $1,604$ 13.5 33.2 -3 2.1875 35 16 271 428 40 142 $1,606$ 13.5 32.8 -4 2.266667 34 15 275 430 40 141 $1,608$ 13.5 39 -7 2.538462 33 13 277 434 40 142 $1,610$ 13.5 40.5 -5 2.384615 31 13 281 443 43 141 $1,612$ 13.5 40.5 -5 2.384615 31 13 281 443 43 145 $1,620$ 13.5 3	1,506	13.5	37.8	-2	2.111111	38	18	276	431	42	145
1,510 13.5 35 2 1.909091 42 22 267 433 43 146 $1,512$ 13.5 37.4 -15 3.5 35 10 271 431 42 147 $1,514$ 13.5 38.4 -14 3.4 34 10 271 435 41 145 $1,516$ 13.5 40 -10 2.833333 34 12 280 450 40 141 $1,524$ 13.5 37.5 -2 2.117647 36 17 273 433 40 140 $1,602$ 13.5 33.8 -2 2.117647 36 17 274 430 41 138 $1,604$ 13.5 33.2 -3 2.1875 35 16 271 428 40 142 $1,606$ 13.5 32.8 -4 2.266667 34 15 275 430 40 141 $1,608$ 13.5 39 -7 2.538462 33 13 277 434 40 142 $1,610$ 13.5 40 -6 2.428571 34 14 300 427 41 140 $1,612$ 13.5 37 1 1.941176 33 17 287 426 40 141 $1,618$ 13.5 40.5 -5 2.384615 31 13 281 443 43 145 $1,620$ 13.5 35	1,508	13.5	33.8	-4	2.25	36	16	269	425	41	146
1,512 13.5 37.4 -15 3.5 35 10 271 431 42 147 $1,514$ 13.5 38.4 -14 3.4 34 10 271 435 41 145 $1,516$ 13.5 40 -10 2.833333 34 12 280 450 40 141 $1,524$ 13.5 37.5 -2 2.117647 36 17 273 433 40 140 $1,602$ 13.5 33.8 -2 2.117647 36 17 274 430 41 138 $1,604$ 13.5 33.2 -3 2.1875 35 16 271 428 40 142 $1,606$ 13.5 32.8 -4 2.266667 34 15 275 430 40 141 $1,608$ 13.5 39 -7 2.538462 33 13 277 434 40 142 $1,610$ 13.5 40 -6 2.428571 34 14 300 427 41 140 $1,612$ 13.5 37 1 1.941176 33 17 287 426 40 141 $1,620$ 13.5 35 -9 2.692308 35 13 282 449 44 143 $1,622$ 13.5 34 -8 2.571429 36 14 288 449 43 141 $1,702$ 13.5 $37.$	1,510	13.5	35	2	1.909091	42	22	267	433	43	146
1,514 13.5 38.4 -14 3.4 34 10 271 435 41 145 $1,516$ 13.5 40 -10 2.833333 34 12 280 450 40 141 $1,524$ 13.5 37.5 -2 2.117647 36 17 273 433 40 140 $1,602$ 13.5 33.8 -2 2.117647 36 17 274 430 41 138 $1,604$ 13.5 33.2 -3 2.1875 35 16 271 428 40 142 $1,606$ 13.5 32.8 -4 2.266667 34 15 275 430 40 141 $1,608$ 13.5 39 -7 2.538462 33 13 277 434 40 142 $1,610$ 13.5 40 -6 2.428571 34 14 300 427 41 140 $1,612$ 13.5 37 1 1.941176 33 17 287 426 40 141 $1,618$ 13.5 40.5 -5 2.384615 31 13 281 443 43 145 $1,622$ 13.5 34 -8 2.571429 36 14 288 449 43 141 $1,702$ 13.5 37.7 -9 2.692308 35 13 286 445 41 140	1,512	13.5	37.4	-15	3.5	35	10	271	431	42	147
1,516 13.5 40 -10 2.833333 34 12 280 450 40 141 $1,524$ 13.5 37.5 -2 2.117647 36 17 273 433 40 140 $1,602$ 13.5 33.8 -2 2.117647 36 17 274 430 41 138 $1,604$ 13.5 33.2 -3 2.1875 35 16 271 428 40 142 $1,606$ 13.5 32.8 -4 2.266667 34 15 275 430 40 141 $1,608$ 13.5 39 -7 2.538462 33 13 277 434 40 142 $1,610$ 13.5 40 -6 2.428571 34 14 300 427 41 140 $1,612$ 13.5 37 1 1.941176 33 17 287 426 40 141 $1,618$ 13.5 40.5 -5 2.384615 31 13 281 443 43 145 $1,620$ 13.5 35 -9 2.692308 35 13 282 449 44 143 $1,622$ 13.5 37.7 -9 2.692308 35 13 286 445 41 140	1,514	13.5	38.4	-14	3.4	34	10	271	435	41	145
1,524 13.5 37.5 -2 2.117647 36 17 273 433 40 140 $1,602$ 13.5 33.8 -2 2.117647 36 17 274 430 41 138 $1,604$ 13.5 33.2 -3 2.1875 35 16 271 428 40 142 $1,606$ 13.5 32.8 -4 2.266667 34 15 275 430 40 141 $1,608$ 13.5 39 -7 2.538462 33 13 277 434 40 142 $1,610$ 13.5 40 -6 2.428571 34 14 300 427 41 140 $1,612$ 13.5 37 1 1.941176 33 17 287 426 40 141 $1,618$ 13.5 40.5 -5 2.384615 31 13 281 443 43 145 $1,620$ 13.5 35 -9 2.692308 35 13 282 449 44 143 $1,622$ 13.5 34 -8 2.571429 36 14 288 449 43 141 $1,702$ 13.5 37.7 -9 2.692308 35 13 286 445 41 140	1,516	13.5	40	-10	2.833333	34	12	280	450	40	141
1,602 13.5 33.8 -2 2.117647 36 17 274 430 41 138 $1,604$ 13.5 33.2 -3 2.1875 35 16 271 428 40 142 $1,606$ 13.5 32.8 -4 2.266667 34 15 275 430 40 141 $1,608$ 13.5 39 -7 2.538462 33 13 277 434 40 142 $1,610$ 13.5 40 -6 2.428571 34 14 300 427 41 140 $1,612$ 13.5 37 1 1.941176 33 17 287 426 40 141 $1,618$ 13.5 40.5 -5 2.384615 31 13 281 443 43 145 $1,620$ 13.5 35 -9 2.692308 35 13 282 449 44 143 $1,622$ 13.5 34 -8 2.571429 36 14 288 449 43 141 $1,702$ 13.5 37.7 -9 2.692308 35 13 286 445 41 140	1,524	13.5	37.5	-2	2.117647	36	17	273	433	40	140
1,604 13.5 33.2 -3 2.1875 35 16 271 428 40 142 $1,606$ 13.5 32.8 -4 2.266667 34 15 275 430 40 141 $1,608$ 13.5 39 -7 2.538462 33 13 277 434 40 142 $1,610$ 13.5 40 -6 2.428571 34 14 300 427 41 140 $1,612$ 13.5 37 1 1.941176 33 17 287 426 40 141 $1,618$ 13.5 40.5 -5 2.384615 31 13 281 443 43 145 $1,620$ 13.5 35 -9 2.692308 35 13 282 449 44 143 $1,622$ 13.5 34 -8 2.571429 36 14 288 449 43 141 $1,702$ 13.5 37.7 -9 2.692308 35 13 286 445 41 140	1,602	13.5	33.8	-2	2.117647	36	17	274	430	41	138
1,606 13.5 32.8 -4 2.266667 34 15 275 430 40 141 $1,608$ 13.5 39 -7 2.538462 33 13 277 434 40 142 $1,610$ 13.5 40 -6 2.428571 34 14 300 427 41 140 $1,612$ 13.5 37 1 1.941176 33 17 287 426 40 141 $1,618$ 13.5 40.5 -5 2.384615 31 13 281 443 43 145 $1,620$ 13.5 35 -9 2.692308 35 13 282 449 44 143 $1,622$ 13.5 34 -8 2.571429 36 14 288 449 43 141 $1,702$ 13.5 37.7 -9 2.692308 35 13 286 445 41 140	1,604	13.5	33.2	-3	2.1875	35	16	271	428	40	142
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1,606	13.5	32.8	-4	2.266667	34	15	275	430	40	141
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1,608	13.5	39	-7	2.538462	33	13	277	434	40	142
1,61213.53711.9411763317287426401411,61813.540.5-52.3846153113281443431451,62013.535-92.6923083513282449441431,62213.534-82.5714293614288449431411,70213.537.7-92.692308351328644541140	1,610	13.5	40	-6	2.428571	34	14	300	427	41	140
1,61813.540.5-52.3846153113281443431451,62013.535-92.6923083513282449441431,62213.534-82.5714293614288449431411,70213.537.7-92.692308351328644541140	1,612	13.5	37	1	1.941176	33	17	287	426	40	141
1,62013.535-92.6923083513282449441431,62213.534-82.5714293614288449431411,70213.537.7-92.692308351328644541140	1,618	13.5	40.5	-5	2.384615	31	13	281	443	43	145
1,62213.534-82.5714293614288449431411,70213.537.7-92.692308351328644541140	1,620	13.5	35	-9	2.692308	35	13	282	449	44	143
1,702 13.5 37.7 -9 2.692308 35 13 286 445 41 140	1,622	13.5	34	-8	2.571429	36	14	288	449	43	141
	1,702	13.5	37.7	-9	2.692308	35	13	286	445	41	140
1,704 13.5 39.6 -3 2.214286 31 14 288 447 45 143	1,704	13.5	39.6	-3	2.214286	31	14	288	447	45	143

(Continued)

Appendix (Continued)

Number	Dosage	Т	2 <i>P</i> - <i>M</i>	M/P	M out	Р	EC out	EC in	H out	H in
1,706	13.5	40.5	-4	2.27	34	15	281	438	42	142
1,708	13.5	42.2	-17	3.89	35	9	290	449	42	145
1,710	13.5	39.2	-14	3.4	34	10	289	447	42	145
2,116	12.5	35.4	-5	2.33	35	15	225	365	40	139
2,118	12.5	35.8	2	1.91	42	22	221	368	39	140
2,120	12.5	31.2	0	2	40	20	218	377	39	138
2,204	12.5	35.8	-8	2.61	34	13	215	369	34	137
2,210	12.5	40	-2	2.12	36	17	226	377	37	131
2,212	12.5	38	-8	2.57	36	14	218	363	36	127
2,214	12.5	42	-4	2.25	36	16	222	381	35	128
2,216	12.5	44.6	$^{-2}$	2.12	34	16	227	379	38	135
2,218	12.5	43.1	-3	2.19	35	16	231	371	39	131
2,220	12.5	42.5	-1	2.05	37	18	221	373	40	136
2.302	12.5	30.1	-15	3.25	39	12	214	368	36	132
2.304	12.5	37.8	-12	2.86	40	14	214	374	38	128
2.306	12.5	39.8	-10	2.67	40	15	223	365	40	128
2.308	12.5	41.4	-10	2.67	40	15	222	367	35	129
2.310	12.5	39.9	-12	2.86	40	14	215	372	37	130
2.312	12.5	39.3	_9	2.6	39	15	218	371	36	129
2.314	12.5	42.3	_9	2.6	39	15	217	374	38	132
2 322	12.5	37	-6	2.0	36	15	220	369	34	132
2 324	12.5	37	-7	2.5	35	14	224	372	35	136
2,021	12.5	39	_4	2.0	34	15	218	368	36	134
2,102	12.5	36	-7	2.5	35	10	210	370	35	131
2,101	12.5	39 5	_2	2.0	32	15	220	367	34	133
2,110	12.5	42.3	_1	2.10	29	14	220	365	35	132
2,112	12.5	45	0	2	30	15	219	374	34	133
2,111	12.5	39.1	_2	2 14	30	14	215	368	34	128
2,110	12.5	36	_3	2.11	35	16	215	368	34	120
2,502	12.5	35.7	3	1.85	37	20	213	366	32	120
2,504	12.5	36.1	0	2	38	19	217	370	33	131
2,500	12.5	35.8	_8	2 53	38	15	210	351	36	131
2,500	12.5	38.5	-0 -12	2.00	38	13	210	369	36	132
2,510	12.5	34.9	_8	2.52	36	14	214	365	37	130
2,510	12.5	35.5	-6	2.37	34	14	214	366	37	130
2,520	12.5	36	-8	2.42	34	13	214	363	36	130
2,524	12.5	36.8	_2	2.01	38	18	210	370	37	125
2,524	12.5	30.0	-2	2.11	30	16	220	368	35	125
2,002	12.5	20.5	-/	2.44	39	10	221	261	36	120
2,000	12.5	20.5	-0 7	2.55	35	13	214	254	37	125
2,010	12.5	25.6	-/	2.5	28	14	210	267	32	127
2,014	12.5	36	-0 4	2.33	34	15	210	365	38	123
2,010	12.5	373	- 4 10	2.27	34	10	214	360	37	120
2,010	12.5	26.5	-10	2.85	22	12	217	261	35	129
2,022	12.0	30.3 38 7	-9 5	2.70	33	1Z 14	215	365	33	130
2,024 2,706	12.0 10 E	30.7 20.7	-3 12	∠.30 2.02	33 28	14	∠10 219	260	22	120
∠,700 2.709	12.3 12 E	59.1 24 4	-12	2.72	30 26	13	∠10 215	2502	55 21	123
2,700 2,710	12.5	34.4	-10	2.// 2.E	30 25	13	215	338 260	31 22	120
2,710 2,712	12.5	33.2	-15	3.3	35	10	216	360	32	122
2,712	12.5	32.8	-10	2.83	34	12	214	361	30	119

(Continued)

11										
Number	Dosage	Т	2 <i>P</i> - <i>M</i>	M/P	M out	Р	EC out	EC in	H out	H in
2,802	12.5	35.2	-9	2.75	33	12	220	370	34	130
2,804	12.5	38	-7	2.54	33	13	224	375	36	129
2,806	12.5	39	-4	2.28	32	14	231	386	39	128
2,808	12.5	37.8	-7	2.5	35	14	232	385	40	127
3,116	14.5	37.3	-4	2.25	36	16	230	410	41	138
3,118	14.5	39.5	-9	2.6	39	15	250	414	40	140
3,120	14.5	36.7	-2	2.11	38	18	257	418	41	139
3,122	14.5	38	0	2	40	20	260	419	40	142
3,208	14.5	43.6	0	2	40	20	264	430	40	140
3,216	14.5	33.2	1	1.94	35	18	262	427	42	143
3,218	14.5	34.6	-2	2.1	40	19	268	425	43	145
3,220	14.5	35.8	1	1.95	45	23	270	416	41	144
3,222	14.5	36.1	3	1.87	45	24	268	422	48	148
3.304	14.5	32.2	4	1.82	40	22	263	414	43	136
3.306	14.5	36	7	1.72	43	25	310	415	41	140
3.308	14.5	30.1	—2	2.1	40	19	309	420	40	140
3,310	14.5	23.3	12	16	48	30	311	408	48	130
3 312	14.5	26.4	11	1.62	47	29	310	412	46	135
3 320	14.5	33.4	3	1.02	35	19	295	420	54	163
3 377	14.5	20.4	7	1.64	37	22	290	420	52	100
3 404	14.5	27.5	14	1.50	37	20	20)	118	45	170
2 406	14.5	J 4 41.1	14	1.52	51	24	225	410	4J 54	140
2 400	14.5	20.0	17	1.5	51	24	210	410	54	142
3,400 2,410	14.5	39.9 25 5	10	1.55	32	34	310	410	55 EE	143
3,410 2,412	14.5	35.5 27.4	13	1.52	41	27	305	416	55 E4	145
3,41Z	14.5	57.4 26.7	12	1.55	42	27	273	413	54	140
3,414 2,414	14.5	30.7	1	1.95	43	22	208	412	34	145
3,416	14.5	32.6	-2	2.09	44	21	261	420	4/	145
3,418	14.5	35.2	9	1.64	41	25	272	424	46	146
3,420	14.5	35.9	I	1.96	47	24	291	428	47	140
3,502	14.5	35.6	4	1.82	40	22	298	420	49	140
3,504	14.5	33.6	6	1.7	34	20	295	418	45	139
3,506	14.5	33.4	2	1.89	34	18	296	422	47	141
3,508	14.5	36.7	0	2	40	20	300	444	46	140
3,510	14.5	33.3	2	1.91	42	22	299	439	48	141
3,512	14.5	36.6	2	1.91	42	22	284	439	47	140
3,514	14.5	29.3	0	2	40	20	291	427	48	142
3,520	14.5	34.6	3	1.87	43	23	303	434	48	139
3,522	14.5	32.8	0	2	40	20	305	445	48	138
3,524	14.5	33.4	2	1.91	42	22	295	438	47	142
3,602	14.5	34.2	4	1.82	40	22	292	434	48	140
3,604	14.5	37.6	6	1.76	44	25	312	439	46	136
3,606	14.5	39.1	6	1.75	42	24	318	441	49	142
3,616	14.5	25.2	9	1.67	45	27	313	428	54	140
3,618	14.5	22.8	6	1.76	44	25	330	423	55	141
3,620	14.5	27	0	2	40	20	328	436	47	142
3,624	14.5	25	2	1.91	42	22	330	435	48	143
3,706	14.5	21.3	1	1.95	43	22	320	444	49	142
3,708	14.5	20.5	4	1.81	38	21	307	445	50	145
3,716	14.5	21.3	1	1.95	43	22	315	436	43	145

Appendix (*Continued*)

(Continued)

Dosage	Т	2 <i>P</i> - <i>M</i>	M/P	M out	Р	EC out	EC in	H out	H in
14.5	21.6	3	1.87	43	23	323	448	45	139
14.5	28	4	1.83	42	23	338	448	47	145
14.5	26.2	5	1.8	45	25	335	457	46	143
14.5	27.2	4	1.84	46	25	333	461	47	145
	Dosage 14.5 14.5 14.5 14.5	Dosage T 14.5 21.6 14.5 28 14.5 26.2 14.5 27.2	Dosage T 2P-M 14.5 21.6 3 14.5 28 4 14.5 26.2 5 14.5 27.2 4	DosageT2P-MM/P14.521.631.8714.52841.8314.526.251.814.527.241.84	Dosage T 2P-M M/P M out 14.5 21.6 3 1.87 43 14.5 28 4 1.83 42 14.5 26.2 5 1.8 45 14.5 27.2 4 1.84 46	DosageT2P-MM/PM outP14.521.631.87432314.52841.83422314.526.251.8452514.527.241.844625	DosageT2P-MM/PM outPEC out14.521.631.87432332314.52841.83422333814.526.251.8452533514.527.241.844625333	DosageT2P-MM/PM outPEC outEC in14.521.631.87432332344814.52841.83422333844814.526.251.8452533545714.527.241.844625333461	DosageT2P-MM/PM outPEC outEC inH out14.521.631.8743233234484514.52841.8342233384484714.526.251.845253354574614.527.241.84462533346147

Appendix (*Continued*)