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ABSTRACT

Several studies, both theoretical and experimental, have already proven that mathematical
modelling of wastewater treatment plants (WWTP) is an elegant and cost-effective tool to
study and to optimise these treatment processes. In most cases, interpretation of the simula-
tion results is done on ad hoc complex databases based on so-called expert knowledge. As
such, the interpretation of the results becomes difficult. In this study, interpretation of the
WWTP simulation results is aided by the means of principal component analysis (PCA). The
main influencing factors were found to be the influent flow rate and load, and the settler per-
formance in terms of the non-settleable fraction of the biomass. A PCA analysis indicated
three principal components. The first principal component explained 37% of the total vari-
ance and contains most of the information on nitrogen removal. The second principal compo-
nent (PC2) explains 20% of the total variance and can be considered as a measure of the
secondary settler performance. The third principal component (PC3) explains 17% of the total
variance and mostly contains information on the different flow rates in the WWTP (influent
flow rate, nitrate recycle flow rate, sludge recycle flow rate and waste flow rate).

Keywords: Scenario analysis; Statistical evaluation; ASM1; Modelling and simulation; Principal
components analysis

1. Introduction

Several studies, both theoretical and experimental,
have already proven that mathematical modelling of
wastewater treatment plants (WWTP) is an elegant
and cost-effective tool to study and optimise these
treatment processes [1]. Modelling offers the possibil-
ity to investigate certain engineering questions
without time-consuming and expensive laboratory

tests. In the last 30 years, relatively reliable dynamic
simulation models for the activated sludge process,
including biological N and/or P removal [2–4] have
been developed. These models have been summarised
in the activated sludge models series (ASM1, ASM2,
ASM2d and ASM3, [4]). ASM models have been used
and extended for specific case studies (e.g. greenhouse
gas production). Especially, large scale treatment
systems are almost routinely modelled for all sorts of
applications. Choubert et al. [5], for example, evalu-*Corresponding author.
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ated two operating strategies of activated sludge sys-
tems to cope up with the increase in carbon and nitro-
gen loading rates, generally, observed on WWTP
located in the winter resorts. Brdjanovic et al. [6] used
a model for better understanding of full-scale biologi-
cal phosphorus removal. Rousseau et al. [7] presented
a review on design models for horizontal subsurface
flow constructed treatment wetlands. Vandekerckhove
et al. [8] used an ASM1-based model to assess differ-
ent upgrade scenarios of a food industry WWTP,
while Van Hulle and Vanrolleghem [9] used an
extended ASM1 model to optimise the operation of a
chemical industry WWTP. Fang et al. [10] used a
dynamic model to simulate full-scale municipal
WWTP behaviour under fluctuating conditions.

In most cases, interpretation of the simulation
results is done ad hoc based on so called expert
knowledge. However, the increase in computational
capacity of the personal computer has led to an expo-
nential increase in the number of performed simula-
tions. This results in huge and complex data bases
which are often difficult to interpret, and hence it
becomes difficult to draw meaningful conclusions.
Recently, the use of efficient statistical tools such as
principal components analysis (PCA), multi-criteria
decision analysis and uncertainty analysis to facilitate
the interpretation of these large sets of simulation
results was introduced [11–14].

The aim of this study is to demonstrate how PCA
can be used to interpret simulated scenarios of the
operation of a waste water treatment plant. PCA was
used as it is useful for data reduction and to assess
the continuity/overlap of clusters or clustering/simi-
larities in the data [15]. The WWTP was designed
based on general design rules [16] and was imple-
mented in the modelling and simulation WEST� plat-
form (www.mikebydhi.com) [17]. To our knowledge
this is the first time that such a large WWTP simula-
tion dataset is interpreted by PCA or any bother sta-
tistical tools. This in contrast to the measurement data
[13,18–20]. As such, the main aim of the study was to
statistically interpret the ASM-based simulation results
when ad hoc interpretation is not possible anymore
due to the large dataset. By combining both the simu-
lation results and the statistical analysis, an insight in
the operation of the WWTP can be obtained.

2. Materials and methods

2.1. WWTP design and model

A WWTP was designed based on the general
design rules [16] and acts as an example WWTP. In
future, other WWTP configurations could be investi-
gated such as the ones provided by the Benchmark

simulation model guidelines [21,22]. A pre-denitrifica-
tion layout was used for COD and nitrogen removing
WWTP. The volume of the anoxic reactor was chosen
to be 1,500m3, while the volume of the aerobic reactor
was chosen to be 3,000m3, which results in an aero-
bic/anoxic volume ratio of 2/1. Different kind of
operational conditions were simulated (see below).

The WWTP was implemented in the modelling
and simulation software WEST� (www.mikebydhi.
com) [17]. Although the activated sludge reactors have
a very large volume, they can still be considered as
ideally mixed [9]. An ideal point settler with a non-
settleable fraction of the biomass (fns) was considered
as an appropriate model for the secondary settler,
similar to the work of Van Hulle and Vanrolleghem
[9]. The non-settleable fraction of the biomass (fns)
reflects both the settling properties of the biomass and
the operational performance of the settler. An insuffi-
cient residence time for example will lead to a higher
fns value. The non-settleable fraction of the biomass
(fns) was set at two different values: 0.1 and 0.5%.

The activated sludge processes (bacterial growth
and decay) were described by the activated sludge
model 1 (ASM1; [4]). Both COD and nitrogen removal
are incorporated in this model. For the simulations,
default parameter values were used as specified by
Henze et al. [4]. Parameter uncertainty was not stud-
ied as this is the focus of other research (e.g. [11]).
Also, this study wants to focus more on the interpre-
tation of the modelling result and the translation of
the modelling findings to practice.

In total five different influent concentrations were
simulated: 125, 250, 500, 750 and 1,000mg COD/l.
COD fractionation, that is, the conversion of the influ-
ent COD concentration to the variables used in ASM1
was based on Goudeseune and Van Hulle [23]. The
influent COD concentration was as such divided into
a soluble, biodegradable fraction (SS), a soluble non-
biodegradable fraction (SI), a particulate biodegrad-
able fraction (XS) and a particulate non-biodegradable
fraction (XI). This division is presented in Table 1. The
nitrogen content was assumed to be 10% of the COD
content, which is the ideal C/N ratio. Also, it was
assumed that 90% of the nitrogen content was ammo-
nium and the remaining 10% was assumed to be solu-
ble organic nitrogen.

In order to mimic different design choices and as
such different operational performances, simulations
with three different hydraulic residence times (0, 5, 1
and 1, 5 days), three different oxygen set-points (2, 4
and 6mg/l) were run. The oxygen set-points were
chosen to have a wide range of possible oxygen
concentrations and were controlled by adapting the
Kla value of the aerobic reactor. As strict oxygen con-
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trol was implemented, the actual oxygen concentra-
tion did not vary significantly from the set-point. Two
different reactor configurations (one and five tanks in
series for both the aerobic and the anoxic reactor)
were performed. In case, if five tanks in series were
assumed, the volume of each tank was assumed to be
1/5 of the total tank volume. Also, three different acti-
vated sludge concentrations were used: 2,500, 4,000
and 6,000mg/l. The activated sludge concentration
was maintained in the reactors by controlling the
waste flow rate. The nitrate recycle and the sludge

Table 1
Classification of the influent COD concentration in the
different fractions expressed as percentage of total influent
COD concentration

Component Fraction of the total influent
COD concentration (%)

SS 22

SI 7

XS 35.5

XI 35.5

Fig. 1. The implementation of the studied WWTP in the modelling and simulation software WEST� (top: 1 reactor
implementation; bottom: 10 reactors in series implementation).
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recycle flow rate were assumed to be a percentage of
the influent flow rate. For the nitrate recycle 50, 100
and 200% of the influent flow rate was used, while for
the sludge recycle flow rate 50, 100 and 300% of the
influent flow rate was used.

This resulted in the following two implementations
in WEST� (Fig. 1). All simulations (in total 4,860 sce-
nario’s obtained by combining the above mentioned
design settings) were performed until steady state.
The complete set of results in given as supplementary
material and the main findings will be discussed in
the results section.

Next to the effluent concentrations and the
removal percentages, also the operational costs were
calculated. The resulting effluent fines were calculated
based on the formula imposed by the Flemish Envi-
ronment Agency (www.vmm.be, www.heffingen.be).

H ¼ N � T

N ¼ N1þN2

N1 ¼ Q

180
� 0:35� SS

500
þ 0:45� 2� CODþ BOD

1; 350

� �

N2 ¼ Q�N

10; 000

where H—effluent fines (e/y); T—effluent tariff (31,67
e); Q—flow rate (m3/y); SS—effluent suspended sol-
ids concentration (mg/l); COD—effluent COD concen-
tration (mg COD/l); BOD—effluent BOD
concentration (mg BOD/l), assumed to be the sum of
soluble, biodegradable COD and particulate, biode-

gradable COD and N—effluent nitrogen concentration
(mg N/l).

The pumping energy (PE) was calculated based on
the influent flow rate, the nitrate recycle flow rate, the
sludge recycle flow rate and the waste flow rate by
assuming a PE of 0.075 kWh/m3 for the first three
flow rates and a PE of 0.05 kWh/m3 for the waste
flow rate [24].

The mixing energy (ME) was calculated according
to Fenu et al. [25], based on the value of 63.6 kWh/
m3/j. As the volume of the reactors was the same for
every simulation, this ME was also the same for the
different scenarios.

The aeration energy (AE) was calculated according
to Nopens et al. [22] based on the oxygen transfer rate
(OTR) and assuming a transfer efficiency of 1.8 kg O2/
kWh used.

AE ¼ OTR

1:8
¼ V � Kla� SSAT

O

1; 000� 1:8

where V—volume of the aerobic reactor (1,500m3);
Kla—aeration rate (y�1); SSATO —oxygen saturation con-
centration (8mgO2/l).

The three types of energy discussed above are
expressed in kWh/y. For conversion o euro/year
an electricity cost of 0.1e/kWh was assumed [26].
The total working costs can be calculated as the
sum of the three energy costs and the effluent
fines.

2.2. Principal component analysis

For statistical analysis with principal component
analysis (PCA), the software program SPSS version 17
was used (www.ibm.com). PCA was used to select
the most discriminating parameters and to investigate
the overall variation of the data. PCA was used as
pattern recognition method and aims at reducing a
large number of variables to a smaller number of
representative variables (principal components or
PC’s) [27]. Varimax normalised rotation of principal
components was carried out in order to reduce the
contribution of variables with minor significance and
increase the interpretability of the components [27].
Initially 12 factors (influent flow rate, influent COD
concentration, effluent COD concentration, dissolved
oxygen set-point, effluent BOD concentration, effluent
ammonium concentration, effluent nitrate concentra-
tion, effluent total nitrogen concentration, effluent sus-
pended solids concentration, nitrate recycle flow rate,
the sludge recycle flow rate and the waste flow rate)
were used. The influent total nitrogen concentration

Table 2
Summary of the scenario analysis in terms of percentage
of discharge limit violations

Effluent value Discharge
limit

Percentage of
violations (%)

Effluent COD 125mgCOD/l 10

Effluent BOD 25mgBOD/l 3

Effluent suspended
solids

35mg/l 35

Effluent total
nitrogen

15mgN/l 42
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was not considered as in this study it is related to the
influent COD concentration. This relation would make
the correlation matrix a non-positive definite matrix

and would make further analysis such as the Bartlett
test impossible.

Fig. 2. Effluent fines (expressed as euro/year) as a function of the effluent concentration (expressed as mg/l). Top: total
nitrogen concentration, middle: COD concentration and bottom: BOD concentration.
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A first PCA analysis revealed that the correlation
of the dissolved oxygen set-point with the other fac-
tors is too low (<0.4). As such, the dissolved oxygen
set-point was not included in further statistical analy-
sis and only 11 factors are considered further. The
rule of thumb that the ratio “Cases to Factors” should
be at least 5/1 is met with over 4,000 cases and 11
factors. The Kaiser–Meyer–Olkim criterion for

sampling adequacy (KMO) and the Bartlett test were
used to verify that correlations between items were
sufficiently large for PCA. This KMO value should be
above 0.5 [28].

The resulting PCA score plots are given as
supplementary material and the main findings will be
discussed in the results section.

Fig. 3. The effluent fines, the operational cost and the total cost as function of the COD influent load.

Fig. 4. Comparison between operational costs and effluent fines.
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3. Results

3.1. Scenario analysis results

3.1.1. Overall performance

In Table 2, the simulation results are compared to
the discharge limits set by the Flemish government. In

general, it can be seen that the WWTP design is rather
robust for removing COD as only 10% of all simula-
tion results result in a violation of the COD discharge
limit (125mg COD/l) and only 3% of all simulation
results result in a violation of the BOD discharge limit
(25mg COD/l). Especially high COD influent

Fig. 5. The relation between effluent nitrate concentration and PC1.

Fig. 6. The relation between effluent BOD concentration and PC2.
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concentrations (>500mg COD/l) led to a high (>85%)
removal.

For total nitrogen and suspended solids removal, a
different result is obtained as 42 and 35%, respec-
tively, of all simulation results violate the discharge
limit of 15mgN/l and 35mg/l, respectively. For sus-
pended solids removal, this violation is mainly attrib-
uted to the scenarios related to a high value of the
non-settleable fraction of the biomass (0.5%, see
below). For total nitrogen removal, a combination of
factors could lead to this violation. For example, a low
dissolved oxygen set-point (2 mgO2/l) combined with
a low HRT (0.5 d) could lead to an increased total
nitrogen concentration.

Concerning the energy use, it can be stated that
the average energy consumption calculated over all
simulations is 0.33 kWh per m3 of water treated. This
value was calculated based on the PE, the aeration
energy and the ME. Further, this value is very similar
to the average energy consumption of municipal
WWTP installations in Flanders (Belgium): 0.3 kWh/
m3 [25].

3.1.2. Effluent fines

The effluent fines as a function of effluent concen-
tration are depicted in Fig. 2. Logically, the effluent
fines increase with increasing effluent concentration.
As can be seen in Fig. 2, an important influencing fac-
tor is the influent flow rate, especially when the efflu-
ent fines are expressed in terms of effluent nitrogen
concentration (Fig. 2, top and middle). However, the
main influencing factor for effluent fines is the opera-
tion of the secondary settler, expressed in terms of the

non-settleable fraction of the biomass (Fig. 2, bottom).
If this fraction is high, then the COD, BOD and sus-
pended solids effluent concentrations will also be high
and this will result in a high effluent fine.

3.1.3. Operational costs

In Fig. 3, the effluent fines, the operational cost
and the total cost is depicted as function of the
COD influent load. In can be seen that all costs will
increase because of the effluent concentration, the
pumping costs and the aeration costs will also
increase. It should be noted that the slope of the
effluent increase is five times higher than the slope
of the operational costs increase this indicates that
an increased load will affect the fines more than the
operational costs.

In Fig. 4, the operational costs are compared to the
effluent fines. Is can be seen that these two values are
linearly related except for some points which was due
to the absence of sufficient nitrogen removal caused
by a low HRT and the effluent fines increase.

3.1.4. Principal components analysis (PCA)

The KMO value for the sampling adequacy of the
PCA analysis was equal to 0.5. This indicates that cor-
relations between items were sufficiently large to
apply PCA [28]. This was confirmed by the Barlett’s
test of sphericity (p< 0.05). In Table 3, the resulting
rotated pattern of principal components (after varimax
rotation) is presented. It was decided to use the first
three principal components which can explain 75% of
the total variance of the simulate data. The first PC
explained 37% of the variance, while the second and
third PC explained 20 and 17% of the total variance,
respectively.

The first principal component explains 37% of
the total variance and contains most of the informa-
tion on nitrogen removal as it is related to the
effluent concentration of ammonium, nitrate and
total nitrogen and the influent COD concentration.
This is confirmed by the highlighted components in
Table 3. The influent COD concentration is related
to the amount of nitrate that can be denitrified. The
relation between PC1 and nitrogen removal is
illustrated in Fig. 5, where PC1 is plotted against
the effluent nitrate concentration. A linear trend is
observed.

The second principal component (PC2) explains
20% of the total variance and contains most of the
information on the effluent COD, BOD and suspended
solids concentration. As such, this principal

Table 3
The resulting rotated patterns of factors after varimax
rotation.

Variable Factor

1 2 3

Influent flow rate 0.12 0.05 0.88

Influent COD 0.89 0.27 �0.11

Effluent COD 0.41 0.89 �0.06

Effluent BOD 0.22 0.91 0.19

Effluent ammonium 0.47 �0.09 0.15

Effluent nitrate 0.76 0.25 �0.07

Effluent total nitrogen 0.93 0.12 0.06

Effluent Suspended solids �0.18 0.95 0.003

Waste flow rate 0.78 �0.03 0.46

Nitrate recycle flow rate 0.01 0.04 0.77

Sludge recycle flow rate 0.06 0.01 0.73
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component can be considered as a measure of the sec-
ondary settler performance as these values will greatly
be influenced by this performance. The relation
between PC2 and settler performance is illustrated in

Fig. 6, where PC2 is plotted against the effluent BOD
concentration. An increase of the effluent concentra-
tion is noticed as function of the non-settleable
fraction of the biomass (fns).

Fig. 7. The relation between the nitrate recycle flow rate and PC3.

Fig. 8. Score plots of the PCA analysis, relating PC1 and PC2 to the influent COD concentration and the non-settleable
fraction of the biomass (fns).
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The third principal component (PC3) explains 17%
of the total variance and mostly contains information
on the different flow rates. This is illustrated in Fig. 7
in which the relation between PC3 and the nitrate
recycle flow rate is depicted.

The relation between the two first principal com-
ponents (PC1 and PC2), the influent COD concentra-
tion and the settler performance is depicted in Fig. 8.
In this figure the increase in COD influent concentra-
tion is depicted in a grey scale (a darker colour indi-
cates a higher influent concentration). An increasing
PC1 coincides with an increasing influent COD con-
centration, while an increasing fns value coincides
with an increasing PC2.

During PCA analysis the influence of dissolved
oxygen set-point and the hydraulic regime, expressed
by the number of tanks in series was investigated, but
little or no effect was noticed (data not shown).

4. Conclusion

In this study, WWTP simulation results are inter-
preted in terms of system performance. The main
influencing factors were found to be the influent flow
rate and load, and the settler performance in terms of
the non-settleable fraction of the biomass. This was
further exemplified by a PCA analysis where three
principal components were used. The first principal
component explained 37% of the total variance and
contains most of the information on nitrogen removal.
The PC2 explains 20% of the total variance and can be
considered as a measure of the secondary settler per-
formance. The PC3 explains 17% of the total variance,
and mostly contains information on the different flow
rates in the WWTP (influent flow rate, nitrate recycle
flow rate, sludge recycle flow rate and waste flow
rate).
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