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ABSTRACT

In water treatment, the technical processes study aims generally to deal with problems that
natural processes are unable or only inadequate to perform. The technical systems aim for a
good control of process and therefore a good stability. This is the case of coagulation process
in drinking water treatment by removing suspended particles. It requires a good knowledge
of raw water characteristics to ensure adequate choice of the coagulant rate. Without the ade-
quate coagulant, this method is not effective. The good coagulation control is therefore essen-
tial to guarantee the reliability of the water treatment and the final quality of water
produced. This paper presents a neural approach in combination with a fuzzy methodology
to study the impact of raw water characteristics on the coagulation process control. Using
the concepts of evolutionary algorithms, we developed a decision support tool using fault
detection, data validation-reconstruction, and predictive control methods to predict the opti-
mum coagulant dosage to be used in a drinking water treatment plant. Simulation results
using experimental data stemming from four treatment plants show the reliability of this sys-
tem to optimize one of critical processes in drinking water treatment.

Keywords: Coagulation process; Artificial neural networks; Fuzzy logic; Fault detection; Data
validation; Data reconstruction

1. Introduction

The coagulation process is a major and critical step
during the surface water clarification [1]. The aim of
applying coagulation treatment is to remove the col-
loidal suspension present in the raw water, e.g. to
destabilize the particle charges by neutralizing the
forces that keep them apart. Coagulants added pro-
vide positive electric charges to reduce negative

charges (zeta potential) of the colloids. As a result, the
particles collide to form larger particles (flocs). Rapid
mixing is required to disperse the coagulant through-
out the liquid. Care must be taken not to overdose the
coagulants as this can cause a complete charge rever-
sal and re-stabilize the colloid complex. The jar-test is
a traditional laboratory procedure [1,2] that simulates
coagulation-flocculation with different chemical doses.
The purpose of the procedure is to estimate the opti-
mal coagulant dosing required achieving certain water*Corresponding author.
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quality goals. Samples of raw water to be treated are
placed in several jars, various amounts of chemicals
are added to each jar, they are stirred, and the settling
of solids is observed. The lowest dose of chemicals
that provides satisfactory settling is the dose used to
treat the water. Disadvantages associated with this
procedure are the necessity to rely on manual inter-
vention and the resulting problems of excess or an
insufficient coagulant, particularly during periods of
fast variations of raw water characteristics. In more
recent years, a device called streaming current detec-
tor (SCD) has become widely used in water treatment
as a method that offers online monitoring, measuring,
and control functions for the coagulation process [3].
It was first introduced as a new technology in 1966. It
has been experimentally demonstrated that a correla-
tion exists between the SCD output and the measured
zeta potentials [4]. However, drawbacks associated
with this device are the lack of an exact quantitative
model explaining its functioning, and its operation
cost and limited efficiency for certain types of raw
water quality (particularly when pH>/8).

Good control of this process is essential for the
maintenance of satisfactory treated water quality and
economic plant operation. Some variables can be mea-
sured online with simple physical sensors. In contrast,
access to certain information requires long and expen-
sive laboratory analysis, which cannot be executed
online. Nevertheless, the possession of this informa-
tion is generally a key point for control and monitor-
ing of these processes. The development of such a
model is still a problem under study: it needs to
describe plainly the interactions between transfer
mechanisms, chemical, and biological kinetics in a
misunderstood environment. Given that the coagula-
tion process is relatively complex and strongly nonlin-
ear, an artificial neural network can be used to build a
model for this type of process to replace the tradi-
tional methods, e.g. the jar-test and the SCD. More-
over, as we have not an explicit knowledge of the
coagulation process, it is very difficult to model it in a
determinist way. We are therefore interested to
develop a decision support tool (DST) based on artifi-
cial neural networks, which describes intrinsically
nonlinear relationships between raw water characteris-
tics (such as the turbidity (TUR), the total suspended
solids, the temperature (T), the pH, the conductivity
(COND), the dissolved oxygen (DO), etc.) and the
optimal coagulant dosage. The neural approach was
the object of several works showing their efficiency
and their potential for coagulation control [5–7]. It
offers the advantage of very short computational
times and it is likely to describe some nonlinear rela-
tionships between inputs and outputs system. Given

the strong evolution of the raw water characteristics,
an important property for such system is indeed the
robustness with regard to the sensors failings or to the
unexpected raw water characteristics, owing to acci-
dental pollution for example. In this context, and in
combination with the neural approach, we applied an
expertise and fuzzy classification technique to identify
the functional states of a plant towards the operating
conditions. This technique has the advantage to aggre-
gate expert knowledge to information stemming from
process and its environment. In this way, we pro-
posed an optimization method [8] that takes four
models into account to build this DST (Fig. 1):

(1) FSI (functional states identification) classifica-
tion model to identify the functional states (nor-
mal and abnormal) of treatment plant
investigated. LAMDA (Learning Algorithm for
Multivariate Data Analysis) [9] technique is
used to detect these states.

Raw Water Characteristics
{pH, Temperature [°C],   
Turbidity [NTU],…}
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Fig. 1. The DST developed to predict coagulant dosage.
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(2) DV (data validation) neural model to validate
the invalid data and those stemming from
abnormal states detected by LAMDA algorithm.
Self-Organizing Maps of Kohonen (SOM)
[10,11] are used to develop this model.

(3) DR (data reconstruction) neural model for miss-
ing DR built by means of SOM algorithm.

(4) CDP (coagulant dose prediction) neural model
using a multilayer perceptron (MLP) [11] to pre-
dict the optimal coagulant dose to use in the plant.

For each modeling step, the methodological devel-
opment and validation results by means of LAMDA
technique, SOM, and MLP algorithms have been pub-
lished in [12–14]. Experimental data to validate this
part of work are stemming from Rocade plant located
in Marrakech city of Morocco. In this paper, we pres-
ent the prediction results using experimental data
stemming from three other plants of drinking water
treatment located in Tensift-Marrakech area. Our main
purpose is to show the reliability of this optimization
approach to build and provide a DST that allows opti-
mizing the coagulant dosage used in a water purifica-
tion plant, and this at different variations of raw
water characteristics. Taking into account the operat-
ing state of the plant, we could develop a fast and
simple tool that can substitute the coagulant dosage in
reducing the operational costs. A description of algo-
rithms used for system development is given in Sec-
tion 2 and validation results are included in Section 3.

2. DST development

2.1. FSI using LAMDA technique – FSI model

LAMDA is a fuzzy methodology of conceptual
clustering and classification [9] developed and applied
in several studies [13,15–17]. It allows the representa-
tion of classes or concepts by means of the logic con-
nection of all marginal information available. The
formation and the recognition of classes are based on
the attribution of each object to a class according to
the heuristic rule of maximal adequacy. An object is
then most likely to belong to the class which presents
the greater adequacy degree (GAD). It models the
total indistinguishability (chaotic homogeneity) or
homogeneity inside the description space from which
the information is extracted. This is carried by means
of a special class called the noninformative class
(NIC). This class accepts all items with the same ade-
quacy; therefore, it introduces naturally a classification
threshold. LAMDA has two fundamental steps: learn-
ing and recognition. At the first stage of learning step

(self-learning or unsupervised learning), no previous
information is given and LAMDA generates clusters
or classes. In this case, it allows obtaining different
classifications with the same data-set, by changing
LAMDA parameters. Using this strategy on a known
data-set, the expert proceeds to a knowledge-based
interpretation of such classes. He modifies the LAM-
DA parameters in order to improve the quality of the
final classification. The classes and updated learning
parameters are the output of this initial learning stage.
In the second stage (supervised learning), this learning
allows performing a different number of choices, like
learning from an initial set of classes, which can be
modified by adding new classes or by updating their
parameters or both. It has two alternatives, either the
user allows unclassified individuals, meaning that an
individual has not been recognized in any class (its
adequacy degree is lower than the minimum thresh-
old) and has been placed in the NIC class, or force
every individual to be assigned to a class, in this last
case the NIC is not taken into account for recognition.

The marginal adequacy degree (MAD) concept is a
term related to how similar is one object descriptor to
the same descriptor of a given class, and GAD is
defined as a membership degree of one object to a
given class. Classification process is performed
according to a similarity criteria computed in two
stages. First, MAD to each existing class is computed
for each object descriptor. Second, these partial results
will be aggregated in order to get a GAD of an indi-
vidual to a class. Given that MAD depends on the
nature of each descriptor, the algorithm uses general
possibility functions. For quantitative descriptors there
are several options introduced in [16] to compute the
MAD. One possibility function applied is a fuzzy
extension of the binomial probability function, which
gives as result the following expression:

MAD½xijqj;i� ¼ q
1�dj;i
j;i � ð1� qj;iÞdj;i ð1Þ

where dj;i ¼ jxi � cj;ij; qj;i is the possibility of the
observed element to belong to a class Cj; x is the

normalized value of the quantitative descriptor for a
particular element; cj;i is center of Cj.

According to Zadeh [18] concept, GAD calculation
is performed as an interpolation between T-Norm and
T-Conorm by means of the a parameter. a ¼ 1 repre-
sents the intersection and a ¼ 0 means the union.

GADaðMAD1; . . . ;MADnÞ
¼ aTðMAD1; . . . ;MADnÞ
þ ð1� aÞSðMAD1; . . . ;MADnÞ ð2Þ
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2.2. Data processing using self-organizing maps

The self-organizing feature maps [10] draw some
inspiration from the way we believe the human brain
works. There are several public domain implementa-
tions of SOM, of which we would like to highlight the
SOM_PAK and Matlab SOM Toolbox, both developed
by Kohonen’s research group. In this study,
Kohonen’s SOM are used to failure data detection and
reconstruction. The Kohonen’s SOM is trained using
unsupervised learning to produce low-dimensional
representation of the training samples while preserv-
ing the topological properties of the input space. It
performs a topology preserving mapping from high-
dimensional space onto map units so that relative dis-
tances between data points are preserved. The map
units, or neurons, form usually a two-dimensional
regular lattice. The SOM can thus serve as a clustering
tool of high-dimensional data. It also has capability to
generalize, i.e. the network can interpolate between
previously encountered inputs. Each neuron i of the
SOM is represented by an N-dimensional weight
mi ¼ ½mi1;mi2; . . . ;miN�, where n is the dimensional of
the input vectors. The weight vectors of the SOM form
a codebook also called prototype vectors or referent
vectors. The neurons of the map are connected to
adjacent neurons by a neighborhood relation, which
dictates the topology of the map. Usually rectangular
or hexagonal topology is used. Immediate neighbors
(adjacent neurons) belong to neighborhood Ni of the
neuron i. In the basic SOM algorithm, the topological
relations, and the number of neurons are fixed from
the beginning. The number of neurons determines the
granularity of the mapping, which affects accuracy
and generalization capability of the SOM. In the train-
ing phase, a given training pattern x is presented to
the network, and the closest unit is selected. This unit
is called Best-Matching Unit (BMU), denoted here by
b:

kx�mbk ¼ min
i
fkx�mikg ð3Þ

where kx�mik is a distance measure, typically
Euclidean.

After finding the BMU, the weight vectors of the
SOM are updated. The BMU and its topological neigh-
bors are moved closer to the input vector in the input
space. The update rule [10] for the weight vector of
unit i is:

miðtþ 1Þ ¼ miðtÞ þ gðtÞ � hbiðtÞ � ½ðx�miðtÞ� ð4Þ

gðtÞ is the learning rate and hbiðtÞ is the neighborhood
function how much unit i is updated when unit b is

the winner. Both parameters decrease with time in the
learning phase.

2.2.1. Application to DV–DV model

Outliers have always been considered like a
source of information distortion gotten from raw
data. It is therefore necessary to highlight the diver-
sity of available methods to interpret or to charac-
terize these abnormal values, either while rejecting
them in order to restore the data initial properties,
or while adopting methods that decrease their
impact during the statistical analysis [19,20]. The
SOM model combines the goals of projection and
clustering algorithms, and may be seen as a method
for automatically arranging high-dimensional data.
In our case, self-organizing maps allow not only to
visualize the evolution of raw water characteristics
in two dimensions, but also to detect atypical data
by computing the distance between each input vec-
tor and its closest reference vector. The basic idea of
DV approach consists of the determination of a con-
fidence degree in every data sample, based on mon-
itoring this distance. The validity of a characteristic
measurement, for instance, may be put for different
reasons: (1) the value is abnormally high or low; (2)
the variation between two successive measurements
is too important; (3) and the value is incompatible
with other measurements of the same quantity
obtained by an independent device, etc.

Given a N prototype vectors fmi; . . . ;mNg: Every
prototype mk represents a Ck som class. The reference

space is divided thus in N classes NðCk � somÞNk¼1: To

determine the confidence degree involved in defining
the activation of unit i for input x using a Gaussian
kernel as:

hiðxÞ ¼ exp
�1

2r2
i

kx�mik2
� �

ð5Þ

r2i is a parameter defining the size of the influence

region of unit i. r2i may be computed as the average

empirical variance of the n input features, among the

samples associated to unit i. More r2i is bigger; more

the influence region of mi is bigger and therefore more
hiðxÞ is closer to one.

If the activation hbðxÞ of the winning prototype is
smaller than a specified threshold, the current sample
is considered as abnormal. The contributions of each
of the components of vector x to the distance kx�mbk
are then examined to determine more precisely which
data should be declared as abnormal.

4082 B. Lamrini et al. / Desalination and Water Treatment 52 (2014) 4079–4088



2.2.2. Application to DR – DM model

If vector prototypes provide a good data represen-
tation, each missing value of a given input variable
can be estimated by the value of the corresponding
component of the winning prototype. Given x a new
vector, composed of two parts xo and xm, containing,
respectively, observed and missing values. The main
aim is to rebuild xm from the information provided by
Kohonen’s map. The method proposed rests on simi-
larity between this new vector x ¼ ðxo; xmÞ and the ref-
erence vectors mk: Given Xo and Xm the under-spaces,
respectively, of xo and xm variables. mo and mm are the
projections of these under-spaces. According to the
activation defined by the Eq. (5), more xo is closer to
mo, more we will have chance that xm is closer.

hiðxoÞ ¼ exp
�1

2r2
i

kxo �mo
i k2

� �
ð6Þ

The approaches of missing data estimation call for
the various techniques, generally presupposing a
probabilistic context. For instance, the heuristic meth-
ods (such as average and median replacing tech-
niques) are often used and also constitute some
simple and little expensive solutions. The parametric
methods of maximization, as the expectation maximi-
zation (EM) algorithm [21], are extensively used and
proved their efficiency, but they require the knowl-
edge or the estimation laws of the variables probabili-
ties. In our case, we can use a simple method that
estimates missing data by the component value corre-
sponding to winning prototype mb:

8 p 2 MðxÞ; x̂p ¼ mbp ð7Þ
where MðxÞ is the indexes set of missing values.

This method is very sensitive to the prototype
change between two successive vectors of x:

To resolve this problem, we considered another
method which takes into account the influence of the
k nearest prototypes. Each missing or invalid value j
is estimated by a combination of the corresponding
component in the k nearest prototypes:

x̂ðjÞ ¼
Pk
i¼1

hðiÞmiðjÞ
Pk
i¼1

hðiÞ
ð8Þ

where miðjÞ denotes component j of prototype i .

2.3. CDP – CDP model

For CDP model, the perceptron architecture was
used with one hidden layer. The architecture of the

neural network (number of hidden layers and number
of neurons) has been fixed a priori: it is well known
that, generally, only one hidden layer is sufficient to
model any continuous system if this layer contains
enough neurons. The number of neurons in the hid-
den layer has been optimized with a weight decay
pruning method [22] in combination with the Leven-
berg–Marquardt algorithm [23], allowing the weak
weights to be penalized (the connections with weak
weight are eliminated). In this framework, the weights
and biases of the network are assumed to be random
variables with specified distributions. The regulariza-
tion parameters are related to the unknown variances
associated with these distributions. We can then esti-
mate these parameters using statistical techniques.
This approach consists of minimizing CfðwÞ, defined
in Eq. (9), using training and modifying this objective
function to:

Cf 0ðwÞ ¼ CfðwÞ þ bXðwÞ and XðwÞ ¼ 1

p

Xp

i¼1

w2
i ð9Þ

p is the number of network weights and b is a parame-
ter that determines the importance of the two terms in
the new performance function Cf 0ðwÞ. Using this, per-
formance functions will cause the network to have
smaller weights and biases, and this will force the net-
work response to be smoother and less likely to over-
fit. This method has the advantage of being simple to
implement, since the gradient of Cf 0 can be easily calcu-
lated from the gradient of Cf and the network weights.

3. Results and discussion

3.1. Coagulant dose prediction

A first validation was performed on five descrip-
tors of the raw water quality of Rocade plant. Descrip-
tors used are: the turbidity [NTU], the temperature
[˚C], the pH, the DO [mg/l], and the conductivity
[ls/cm2]. DV and invalid DR were performed before
the neural prediction step. The MLP is used with four
tangents hyperbolic as transfer functions in the hidden
layer. The experimental database (2,511 samples) was
separated into two sets: a data-set (2/3 of all data)
used for the learning step, in order to identify the
model parameters (weights of connections) and a
data-set for validation (1/3 of the all data) used to test
the network but not used during learning. Simulation
results (model structure, adjustment parameters, and
validation results) are published in [12].

In the present paper, we tested the system devel-
oped with data stemming from other water drinking
plants: Safi plant, Ouarzazate plant, and El-Kelaa
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plant. But the use of data collected during our study
encountered a difficulty stemming from the missing
descriptors measurements necessary to test this pre-
dictive model. We used therefore the same model
developed using only three descriptors: the tempera-
ture [˚C], the pH, and the turbidity [NTU]. The other
two inputs (conductivity [ls/cm2] and DO [mg/l]) are
disabled during processing. Data according to temper-
ature, pH, turbidity, and coagulant dose variables are
shown in Figs. 2–4. Treatment plants are all supplied
by surface water deriving from dams and they are
exposed to weather conditions. The temperature has
significant variations. The results show a decrease in
temperature variable during cold periods and increas-
ing during warm periods. The pH evolution of raw
water is almost stable for all samples collected from
three plants. However, there was a decrease in pH
caused by air pollutants during the winter period. We
note fluctuations in turbidity during flood periods that
provides charges resulting of the soil erosion and min-
eral substances dissolved. The water supplying El-
Kelaa plant is more turbid (turbidity can happen up
to 2,000 NTU). Indeed, the supply of water to the
plant is via an open channel. They are therefore
exposed to the contributions of storms and floods that
cause very high values of turbidity. As for the injected
dose of coagulant in the three stations, we see clearly
that does not change necessarily with respect to the
turbidity variable. For example, the coagulant rate
used at the Ouarzazate plant is almost invariable with
respect to turbidity changes. Table 1 presents

parameters modeling used to identify FSI, DV, DR,
and CDP models.

Fig. 5 shows the neural output computed by the
CDP model. According to mean squared error
computed for four plants (Table 2), we see that the net-
work response is very close to the real output, and con-
sequently, the model will generalize to new data.
Figs. 6–8 present simulation results were obtained with
experimental data stemming from Safi, Ouarzazate,
and El-Kelaa plants. Invalid and missing data stem-
ming from these three plants have been reconstructed
by DM model. Given the current results and those pre-
viously obtained [12–14], the system developed seems
completely adapted to possible variations of raw water
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characteristics of Rocade and El-Kelaa plants. The results
obtained in this study clearly showed that the coagulant
dose is relatively nonlinear characteristics of the raw
water such as turbidity, temperature, and pH. These
experimental results showed also the efficiency and
reliability of this approach. Model performance
depends on the quality and quantity of data available
for learning. The importance of neural model is its abil-
ity to consider multiple sources of uncertainty, such as

inputs atypical and limited information contained in
the learning set. However, for Safi and Ouarzazate
plants, we proposed a statistical study for example by
means of principal components analysis to extract other
key information needed for coagulant modeling.

Given that the systemic study performed about
coagulation process and operating conditions of these
various plants, the three variables were selected as key-
information proof that their influence on the coagulant
dose is not useless in the absolute, with the data-set
considered for this modeling problem. Therefore, the
results of this analysis indicate that, in the context of
model optimization, it is possible to keep these
variables (including the least influents, in our case
conductivity and DO) without disrupting significantly
the results of neural modeling. For all validations, the

Table 1
Parameters modeling used to identifier FSI, DV, DR, and CDP models

FSI model Lamda algorithm Exigency parameter

MAD xi qj;i

���h i
¼ q

1�dj; i
j;i � ð1� qj;iÞdj; i a= 0.85

DV+DR model Map lattice Map size Neighborhood function Neighborhood radius Initial learning rate

Hexagonal 25� 10 Gaussian rfin ¼ 1 g ¼ 0:95

CDP model Hidden layer Nbre of parameter connexions

1 86
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Fig. 6. Experimental coagulant dose (real output [mg/l])
and predicted (neural output) according to DV stemming
from Safi plant.

Table 2
Mean-squared error (MSE) according to data plants

Rocade
plant

Safi
plant

El-Kalaa
plant

Ouarzazate
plant

MSE 0.0076 0.13 0.042 0.03
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Fig. 5. Experimental coagulant dose (Real Output [mg/l])
and predicted (neural output) according to DV stemming
from Rocade plant.
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three descriptors, temperature, pH, and turbidity, have
a greater influence than other two variables, conductiv-
ity, and DO. The three descriptors inform the model

and report some knowledge about physical and chemi-
cal interactions generated in the coagulation process.

4. Conclusion

These development issues are mitigated in this
work by using soft computing techniques: neural net-
works and fuzzy logic. At recent years, this type of
approaches is contributed to various fields of water
treatment research such as demand forecasting, purifi-
cation performance prediction, and control processes
[24–26]. Here, different models are improved by using
a priori knowledge of raw water descriptors and by
exploiting knowledge of the plant operator to achieve
a flexible and reliable predictor as a DST for coagulat-
ing automatic control of the water purification plants
of Tensift-Marrakech area as on as case study.

In this paper, we proved through the validation
results of system developed that the coagulation pro-
cess is relatively nonlinear with respect to raw water
characteristics studied in this work. We initially built
the neural model to predict the coagulant dose from
five descriptors: temperature [˚C], pH, turbidity
[NTU], conductivity [ls/cm2], and DO [mg/l]. A step
of DV and DR has been evaluated in a previous study
[12]. The experimental results showed the effective-
ness and reliability of the fuzzy-neural approach for
this type of complex process. The fuzzy-neural model
has a prediction rate close to 93.6% towards data
acquired from Rocade plant. Model performances
depend on the quality and quantity of data available
for learning. We tested this model on data stemming
from other plants and the results were satisfactory
according to database used for validation.

From the perspective of development time, it is
clear that the approaches developed are advantageous
compared to other techniques, where the deployment
of other data requires the built of a new model that will
be much easier to carry by learning. The model vari-
ables remain the same (in a first approximation and
unless major evolution of technique), so that learning of
a new neural model boils down to elaborate a represen-
tative database, and to implement usual learning algo-
rithms by varying the model complexity (varying the
number of hidden neurons). It is always desirable and
often possible to use for network design, mathematical
knowledge or physical laws, which are available for the
phenomenon to model. As a first perspective of this
work, we plan to expand this type of modeling
approach to optimize others process of water treatment.
Another aim is to emerge this methodology to optimize
other processes and develop other DSTs for control and
supervision plants of water purification.
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Fig. 8. Experimental coagulant dose (real-output [mg/l])
and predicted (neural output) according to DV stemming
from Ouarzazate plant.
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Symbols

Cf (w) — cost function optimized with Levenberg–
Marquardt algorithm

Cf´ (w) — cost function optimized with weight decay
and Levenberg–Marquardt algorithm

c j,i — center of Cj

d j,i — |{x_i - c_{j,i} }|

GAD — global adequacy degree (GADa ðMAD1; . . . ;
MADnÞ ¼ aTðMAD1; . . . ;MADnÞ þ ð1� aÞ
SðMAD1; . . . ;MADnÞ)

hbi (t) — neighborhood function how much unit i is
updated when unit b is the winner
miðtþ 1Þ ¼ miðtÞ þ gðtÞ � hbiðtÞ � ½ðx�miðtÞ�;
hiðxÞ ¼ exp �1

2r2
i

kx�mik2
� �

mb — best matching unit
(kx�mbk ¼ min

i
fkx�mikg)

MAD — marginal adequacy degree

MAD½xijqj;i� ¼ q
1�dj;i
j;i � ð1� qj;iÞdj;i

� �

x — normalized value of the quantitative
descriptor for a particular element

kx�mik — Euclidean distance

a — exigency parameter of LAMDA algorithm.
a ¼ 1 represents the intersection and a ¼ 0
means the union

b — parameter that determines the importance
of the two terms in the new performance
function

g (t) — learning rate

q j, i — the possibility of the observed element to
belong to a class Cj

ri
2 — neighborhood radius defining the size of

the influence region of unit i
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