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ABSTRACT

In this study, decolorization of Acid Blue 113 textile azo dye (AB 113) by a bio-Fenton
process has been performed in an aqueous medium. The bio-Fenton oxidation process tested
is the oxidation process of glucose for H2O2 generation and in situ use of H2O2 with Fe2+ as
Fenton reagents to produce hydroxyl radicals which degrade the organic dyes. The effect of
different parameters such as AB 113, glucose, FeSO4 concentrations, and also the glucose
oxidase activity on the decolorization of AB 113 dye was assessed. Artificial neural network
was used to simulate the decolorization of AB 113 aqueous solution. Different networks were
designed for this process. The best network was 5-14-1 due to the best coefficient of
determination (0.996) and mean square error (0.42). The results indicated that ANN is
provided reasonable predictive performance.

Keywords: Acid Blue 113; Artificial neural network; Bio-Fenton; Decolorization; Glucose
oxidase

1. Introduction

Synthetic dyes vastly are used in many industries
such as textile, leather, plastic, paper, cosmetics, print,
pharmaceutical, and food industries. They are major
sources of environmental, especially water, pollution
[1]. Releases of the wastewater of these industries to
environment without treatment are damageable and
retrievable. Existence of chromatic materials in water
reduces the influence of light and photosynthesis of

aquatic plants. Toxicity of dyes caused death of
aquatic life forms [2]. An additional difficulty is that
these dyes are not easily degraded by common waste-
water treatment systems. Therefore, the employment
of these dyes must be managed and must be treated
before being released into the environment [3].

Numerous processes such as ozonation, photooxi-
dation, flocculation and coagulation, adsorption, froth
flotation, reverse osmosis, ion exchange, and
membrane filtration have been tested for color removal
[4]. Nevertheless, expensive plant requirements,
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high-operational costs, regeneration problem, second-
ary pollutants, sensitivity to variations in wastewater
input, interference by other wastewater constituents,
and residual sludge generation are some technological
and economical disadvantages of these methods [5,6].

Azo dyes, the largest class of synthetic dyes, are
characterized by structures with one or more azo
group (–N=N–) that are bounded to the aromatic
rings. It has to be emphasized that due to their com-
plicated and recalcitrant molecular structure, they are
difficult to remove from wastewater by using common
physical, chemical, and biological treatment methods
[7,8]. Therefore, it is essential to look for appropriate
methods or techniques for the treatment of this kind
of pollutants to reduce their environmental impact.

Currently, the major methods of textile wastewater
treatment are advanced oxidation processes [9] which
include bleaching, ozonation, Fenton oxidation [10],
and wet-air oxidation. Fenton reagent exhibits a
number of features that make its use advantageous as
compared to other methods such as high catalytic
efficiency, high specificity, absence of side reactions,
and cost-effectiveness. Experimental observations
indicate that it can be used to degrade many
pesticides [11], harmful chemicals [12], dyes [13], etc.

Hydroxyl radicals have great oxidizing potential
(Eo = 2.8V), so they can quickly and non-selectively
oxidize a wide diversity of organic dyes [14]. So,
advanced oxidation processes can be a good selection
to treat this kind of wastewaters because of their pow-
erful oxidizing capability to oxidize dyes to nontoxic
products of CO2 and H2O [15]. This method does not
have the problem of residuals and also can be used in
room temperature and atmospheric pressure [16]. In
Fenton process, ferrous ion reacts with hydrogen
peroxide to produce hydroxyl radical as Eq. (1) [2]:

Fe2þ þH2O2�!Fe3þ þHO� þHO� ð1Þ

Bio-Fenton process includes H2O2 production
through the glucose oxidation in the presence of
glucose oxidase (GOx) as the biocatalyst and in situ
consumption of generated H2O2 for reacting with Fe2+

to generate hydroxyl radicals which degrade the
organic dyes [17].

For the present investigation, water soluble
disazo dye Acid Blue 113 (Molecular formula:
C32H21N5Na2O6S2 and molecular weight of 681.65 g/
mol) (Sigma-Aldrich) was selected. AB113 is toxic and
carcinogenic in nature (LD50> 2,000mg/kg and LC50
1–10mg/l). In this study, we considered a neural
network modeling for bio-Fenton process of AB113
azo dye degradation. In this study, the optimal
condition of bio-Fenton reaction was investigated. An

artificial neural network, which consists of many
simple process units, can simulate the structural
organization and function of a human brain. The
usage of artificial neural network (ANN) has several
advantages, some of them being listed below [18].

(1) ANN estimates reaction rate without requiring
any kinetic model equation.

(2) Estimation of reaction rate without a kinetic
model eliminates the errors arising from the
selection of kinetic model, and the estimation of
kinetic constants.

(3) Usage of ANN reduces the number of the
experimental work and provides more
information.

ANN was used for simulation and modeling of
AB 113 removal from water by enzymatic method and
the best structure of neural network for this process
was determined.

2. Materials and methods

2.1. Chemicals and reagents

GOx type II (EC 1.1.3.4, 25 U/mg, from Asper-
gillusniger-solid, molecular weight: 160 kDA), b-D-(+)-
glucose (C6H12O6)/molecular weight: 180.16 gmol�1,
sodium acetate (C2H3NaO2)/molecular weight: 82.03
gmol�1, acetic acid (C2H4O2)/molecular weight:
60.05 gmol�1, sulfuric acid (H2SO4)/molecular weight:
98.08 gmol�1, sodium hydroxide (NaOH)/molecular
weight: 40 gmol�1/ solid, 2,2´-azino-di-[3-ethylbenz-
thiazolin-sulfonate]/(formula: C18H16N4O6S4)/molecu-
lar weight: 514.6 gmol�1/solid, FeSO4 (molecular
weight: 151.91)/ solid, and Acid Blue 113 (AB 113)/
(molecular formula: C32H21N5Na2O6S2/molecular
weight: 681.65 gmol�1/kmax = 566 nm/soluble in water)
in the analytical grade were obtained from Sigma
Aldrich Corporation.

All reagents are of analytical purity. There were
made some pH adjustments during the bio-Fenton
process or final treatment corrections using some com-
mon acid and alkaline solutions (H2SO4 0.1M and/or
NaOH 0.1M) and also buffer solution (sodium ace-
tate).

2.2. Analytical methods

The absorption spectrum of AB 113 in aqueous
solution was recorded in the range of 400–850 nm, and
it was found that the maximum wavelength was at
566 nm. Aqueous solutions of AB 113 with different
concentrations were prepared, and their absorption at
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566 nm was measured and calibration curve, for
finding dye concentration in decolorization
experiments, was plotted.

The concentration of AB 113 at different reaction
times was determined by measuring the absorption
intensity of the solution at 566 nm. The decolorization
efficiency of AB 113 is defined as follows [1]:

Rð%Þ ¼ C0 � Ct

C0

� 100 ð2Þ

where R is decolorization efficiency, C0 is initial
AB113 concentration, and Ct is AB113 concentration at
t, min.

UV–Vis spectrophotometer made in England
Biowave S2100-WPA was used for absorption
measurements, related to a blank with distillate water.

2.3. Experimental procedures

All experiments were carried out in a 100mL flask
bioreactor in a shaker incubator at 160 rpm. We used
five parallel samples in order to get comparison of all
performed experimental results. Temperature of the
reaction mixture in all experiments was constant at
23± 1˚C. The initial pH of solutions was adjusted by
using acetate buffer (0.1M), 0.1mol/L sulfuric acid,
and 0.1mol/L sodium hydroxide solutions by pH
meter Labtron (PHT-110). The required concentrations
of glucose, glucose oxidase, FeSO4, and AB 113 were
prepared in deionized water correspondingly.

As can be seen from Eq. (3), the production rate of
H2O2 depends on glucose concentration. Due to this
reason, the effect of glucose concentration on the
decolorization of AB 113 was examined in different
initial concentration of glucose from 0.005 to
0.05mol/L, while concentration of dye (40mg/L),
Fe2+ (0.2mmol/L), GOx activity (2,000U/L), and the
initial pH (4.0) were constant.

A series of experiments were performed with dif-
ferent initial Fe2+ concentrations (0.1, 0.15, 0.2, 0.25,
0.3, 0.35, 0.4mmol/L) for studying the effect on dye
removal while the concentration of dye (40mg/L),
glucose (0.02mol/L), GOx activity (2,000U/L), and
initial pH (4.0) were constant.

The effect of initial pH on the decolorization of AB
113 by bio-Fenton process has been shown in Fig. 2(d).
The experiments were done at constant concentra-
tion of dye (40mg/L), glucose (0.02mol/L), Fe2+

(0.2mmol/L), and initial GOx activity (2,000U/L)
while the pH varied from 3.0 to 7.0 with 0.5 interval of
variation. The pH 3.0 and 4.0 were adjusted with
H2SO4 and sodium hydroxide solutions (1.0M), and
pH 5.0–7.0 was adjusted with acetate buffer solution.

2.4. GOx activity determination

GOx oxidizes b-D-glucose in the presence of oxygen
to b-D-glucono-d-lactone and H2O2. The produced
H2O2 is then utilized to oxidize a chromogenic
substrate in a secondary reaction in the presence of
catalase and a resultant color change is monitored spec-
trophotometrically. 2,2´-Azino-di-[3-ethylbenzthiazo-
lin-sulfonate] was used for forming a greenish-blue
oxidized product that was measured spectrophotomet-
rically at 420 nm. One unit of catalyst activity (U) is
defined as the amount of GOx required to consume
1lmol substrate in one min at 25˚C [19].

2.5. Construction of ANN model

The ANN was used to model AB 113 decoloriza-
tion from solution that was created by writing
computer codes in Matlab 7.1. The enzymatic AB 113
decolorization was modeled using five variables as
the input parameters of the network: pH, dye concen-
tration, Fe2+ concentration, glucose concentration, and
GOx activity while temperature and shaking rate were
constant. Percentage of AB 113 decolorization after
60min was used as the output parameter.

3. Results and discussion

3.1. Bio-Fenton process

Water soluble bisazo dye Acid Blue 113 (Fig. 1)
was selected for degradation by Bio-Fenton reaction
[20].

Total bio-Fenton reaction used is:

C6H12O6 þH2OþO2 �!Glucoseoxidase
C6H12O7 þH2O2 ð3Þ

Mnþ þH2O2�!Mðnþ1Þþ þHO� þOH� ð4Þ

where M is a transition metal like iron [18].

Fig. 1. Molecular structure of Acid Blue 113 [21].
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3.2. Comparison of AB 113 absorption spectrum with other
material

For determination of the efficiency and rate of
decolorization, dye concentration measuring in differ-
ent steps is necessary. For awareness of uninterference
of the spectrum peaks of AB 113 with FeSO4, glucose,
and GOx, their absorption spectrum were recorded in
the range of 400–800 nm. Effect of initial AB 113
concentration on decolorization process was tested
using different concentrations of AB 113 (5, 10, 20, 30,
40, 50, 60, 70, 80, 90, 100mg/L), while glucose concen-
tration (0.02mol/L), Fe2+ concentration (0.2mmol/L),
initial GOx activity (2,000U/L), and the pH (4.0) were
constant. Comparison of the results indicates that AB

113 has spectrum peak at 566 nm. So, AB 113 concen-
tration easily can be calculated spectrophotometri-
cally.

3.3. Effect of glucose concentration

Dye decolorization efficiency in each concentration
of glucose after 60min is shown in Fig. 2(a); from the
figure, it can be observed that increasing the glucose
concentration from 0.005 to 0.02mol/L has caused
increasing in the decolorization of AB 113. However,
further increase of the glucose concentration above
0.02mol/L had negative effect on the decolorization
rate of AB 113. Because in the high concentrations of
glucose, there is the scavenging effect of excessive

Fig. 2. Investigation of the effect of each variable on percentage of AB 113 decolorization by Bio-Fenton process.
(a) Glucose concentration, (b) Fe2+ concentration, (c) AB 113 concentration, (d) pH, and (e) GOx activity.
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produced H2O2 to �OH [Eqs. (5)–(7)]. Also, with the
recombination of hydroxyl radicals [Eq. (8)], amounts
of �OH were declined and following it, the decoloriza-
tion efficiency of AB 113 was reduced [7,21].

H2O2 þOH��!HO�
2 þH2O ð5Þ

H2O2 þOH�
2�!HO� þO2 þH2O ð6Þ

OH� þOH�
2�!O2 þH2O ð7Þ

HO� þHO��!H2O2 ð8Þ

3.4. Effect of the initial Fe2+ concentration

The lowest and the highest degradation efficiency
were obtained at initial Fe2+ concentration of 0.1 and
0.2mmol/L, respectively, after 60min of reaction time.
The results have been presented in Fig. 2(b). The
degradation efficiency of AB 113 was significantly
changed over the initial Fe2+ concentration value of
0.1–0.4mmol/L.

Concentration of 0.25mmol/L FeSO4 has no
increasing effect in AB 113 degradation efficiency.
Much higher concentration of Fe2+ (0.4mmol/L) leads
to excessive �OH value and self-scavenging of �OH
radical by Fe2+ (Eq. (9)) that causes the decreasing in
decolorization rate of AB 113 [3].

Fe2þ þHO��!Fe3þ þHO� ð9Þ

3.5. Effect of initial AB 113 concentration

The results are shown in Fig. 2(c). It is observed
that in the lower concentrations of the dye, decoloriza-
tion is faster. The high concentration of dye in aque-
ous solution increases the number of dye molecules in
the solution while the number of hydroxyl radicals is
constant [22]; so despite of the increase of color
removal rate, the decolorizing efficiency decreases at
high concentrations of dye.

3.6. Effect of initial pH

The optimum pH was observed at 4.0. Increasing
or decreasing of the pH value of dye solution had
undesirable effects on the decolorization rate of AB
113. This is because of the concentrations of Fe2+ and
H2O2 depend on pH, and, correspondingly, pH affects
on the yield of active �OH and decolorization rate.

The decolorization efficiency of AB 113 was decreased
with the increase of pH from 4.0 to 7.0. This is mainly
caused by the fact that Fe(OH)3 is formed when pH is
high [1], and inhibit the reaction between Fe2+ and
H2O2. Therefore, only a small amount of the �OH is
generated. When the pH is lower than 4.0 approxi-
mately, GOx is become inactive and just a little
amount of H2O2 is produced [23]. Thus, the rate and
the efficiency of AB 113 degradation are decreased,
correspondingly. In addition, when the pH of reaction
environment is lower than 3.0, H2O2 reacts with exces-
sive H+ and forms oxonium ion (H3O

+) [4] which do
not have positive role on the decolorization.

3.7. Effect of GOx concentration

As shown in Fig. 2(e), the dye degradation rate
increases with increasing GOx activity until to
3,000U/L. In the presence of high GOx activity, due
to high rate of H2O2 production, reaction between
active radicals and produced H2O2 is done, and this
reaction decreases the AB 113 degradation rate [24].

3.8. Modeling by ANN

3.8.1. The number of neurons and hidden layers

It is important to find a right structural organiza-
tion of neural network. In fact, the number of neurons
and the hidden layers of network are chosen by
experience, because no uniform method has been
developed to decide it yet in theory [25]. By trying in
time, a better structural organization of network could
be found; the result is listed in Fig. 3. Different neural
networks were designed with one hidden layer and
different number of neurons in it.

Fig. 3. Effect of the number of neurons in the hidden layer
on the performance of the neural network (MSE).
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Table 1
List of experiments were used for training and testing of neural networks

No. Dye C0

(mg/L)
Fe2+ C0

(mM)
Glucose
C0 (mM)

GOx activity
U/L

pH Experimental
dye removal
efficiency

Predicted dye
removal
efficiency

1 50 0.2 0.006 1,500 3.8 68 66.18

2 50 0.2 0.011 1,500 3.8 80 79.15

3 50 0.2 0.018 1,500 3.8 85 86.73

4 50 0.2 0.022 1,500 3.8 86 85.38

5 50 0.2 0.03 1,500 3.8 84 84.2

6 50 0.2 0.036 1,500 3.8 81 80.75

7 50 0.2 0.042 1,500 3.8 72 71

8 50 0.2 0.05 1,500 3.8 64 63

9 40 0.1 0.018 2,000 4 79 83.5

10 40 0.15 0.018 2,000 4 87 90.2

11 40 0.2 0.018 2,000 4 92 91.7

12 40 0.25 0.018 2,000 4 91 91.05

13 40 0.3 0.018 2,000 4 89 89.16

14 40 0.35 0.018 2,000 4 81 81.14

15 40 0.4 0.018 2,000 4 77 86.93

16 5 0.18 0.02 2,500 4.2 92 92.86

17 10 0.18 0.02 2,500 4.2 89 89.47

18 20 0.18 0.02 2,500 4.2 85 85.8

19 30 0.18 0.02 2,500 4.2 78 77.85

20 40 0.18 0.02 2,500 4.2 72 72.23

21 50 0.18 0.02 2,500 4.2 68 68.42

22 60 0.18 0.02 2,500 4.2 64 64.69

23 70 0.18 0.02 2,000 4 59 59.85

24 80 0.18 0.02 2,000 4 54 53.59

25 90 0.18 0.02 2,000 4 50 50.32

26 100 0.18 0.02 2,000 4 47 47.09

27 40 0.2 0.018 2,000 3 10 10.8

28 40 0.2 0.018 2,000 3.5 44 44.91

29 40 0.2 0.018 2,000 4 80 79.86

30 40 0.2 0.018 2,000 4.5 78 79.5

31 40 0.2 0.018 2,000 5 70 69.55

32 40 0.2 0.018 2,000 5.5 57 57.26

33 40 0.2 0.018 2,000 6 46 47

34 40 0.2 0.018 2,000 6.5 37 37.8

35 40 0.2 0.018 2,000 7 32 32.15

36 50 0.2 0.006 1,500 3.8 68 66.18

Validation data

37 35 0.22 0.025 200 4 26 26.5

38 35 0.22 0.025 500 4 61 60.88

39 35 0.22 0.025 800 4 68 67.95

40 35 0.22 0.025 1,000 4 74 74.2

41 35 0.22 0.025 1,500 4 79 79.22

42 35 0.22 0.025 2,000 4 84 84.09

43 35 0.22 0.025 2,500 4 87 87.23

44 35 0.22 0.025 3,000 4 91 90.86

45 35 0.22 0.025 4,000 4 88 87.23

46 35 0.22 0.025 5,000 4 81 80.41

(Continued)
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3.8.2. Training and testing of artificial neural network

Before training, normalization was applied on the
input and output data (X) to calculate the normalized
input and output values (X⁄) using Eq. (3) [26]:

X� ¼ X �minðXÞ
maxðXÞ �minðXÞ ð10Þ

The back propagation algorithm was constructed
as the learning algorithm to adapt the weights. Tansig
and purlin were selected as transfer and training
function, respectively. Thirty-six data were used for
training of the ANN, 10 data were used as testing,
and 10 data were applied as validating the trained
network (Table 1). The training data-set (five input
and their corresponding desired responses) was pre-
sented to the network, and a feedforward algorithm
automatically adjusted the weights. This means that
the artificial neurons are organized in layers, and send
their signals “forward”, and then the errors are propa-
gated backwards. The network receives inputs by neu-
rons in the input layer, and the output of the network
is given by the neurons on an output layer [27]. Esti-
mation was made and the results were compared with
the corresponding experimental value. Then the esti-
mation error (the difference between the estimated
and the experimental values) was distributed across
the network in a manner which allowed the intercon-
nection weights to be modified according to the
scheme specified by the learning rule. This process
was repeated while the prediction error decreased.
After 1,000 learning epochs, the target was achieved
and the learning stage was completed. In order to test

the trained network, another data-set was used, and
the input test set was presented to the network and
the output was obtained. The output of the ANN was
compared with the experimental data for the test
data-sets in Table 1.

The coefficient of determination (R2) and the mean
square error (MSE) were used to test the statistical
success of the models as shown in the following
equations [27]:

R2 ¼ 1�
Pn

1 ðpi � tiÞ2
Pn

1 ðti � t
�Þ2

ð11Þ

MSE ¼ 1

N

XN

K¼1

ðpi � tiÞ2 ð12Þ

where pi is the predicted, ti is the target value, and �t is
the mean of the target values; and n is the total
number of experiments.

MSE value for each network was calculated (as in
Fig. 3). Considering the amount of MSE, the best
network is (5-14-1). Addition to MSE, it is clear that
the regression coefficient of determination is high
between estimated and experimental response for this
network (Figs. 4 and 5).

The relative importance of input variables on the
value of AB 113 removal efficiency (%) obtained
through the neural weight matrix is represented in
Table 2 [28]. As can be seen, all of the independent
variables strongly influence the AB 113 removal
efficiency, but the effect of GOx activity is higher than
of the other variables.

Table 1
(Continued)

No. Dye C0

(mg/L)
Fe2+ C0

(mM)
Glucose
C0 (mM)

GOx activity
U/L

pH Experimental
dye removal
efficiency

Predicted dye
removal
efficiency

Testing data

47 35 0.22 0.025 6,000 4 71 69.7

48 30 0.2 0.006 1,500 3.5 69 69.11

49 30 0.2 0.011 1,500 3.5 77 77.27

50 80 0.2 0.018 3,000 3.5 65 65.59

51 90 0.2 0.018 3,000 3.5 60 59.35

52 100 0.2 0.018 3,000 3.5 56 55.45

53 20 0.2 0.018 200 4 26 26.35

54 20 0.2 0.018 500 4 61 59

55 60 0.2 0.018 800 4 68 69.03

56 60 0.2 0.018 1,000 4 74 73.09
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4. Conclusion

This study demonstrates that Bio-Fenton reaction
can decolorize a dye effluent without adding any
external H2O2. This method, involving enzymatic

in situ generation of H2O2, was developed for AB 113
decolorization. Effect of several parameters on Bio-
Fenton process was investigated. The best conditions
were achieved, and these are: Fe2+ concentration of
0.2mmol/L, pH of 4.0, glucose concentration of
0.02mol/L, and GOx activity of 3,000U/L, at constant
temperature (23 ± 0.1˚C) and shaking rate (160 rpm),
while the concentration of AB 113 was 40mg/L. In
these conditions, AB 113 degradation efficiency after
60min was resulted of ca 91%. Also, it was found that
ANN with 5-14-1 structure with the best MSE
(0.42� 10�3), and the coefficient of correlation (0.996).
This proposed neural model can predict AB 113
removal from water by Bio-Fenton process.
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