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ABSTRACT

The degree of aromaticity or hydrophobicity in wastewater effluent organic matter (EfOM)
increases during flow-through constructed wetlands connected directly to a wastewater
treatment plant (WWTP), as identified using fractionation followed by analysis methods, with
respect to major biopolymers (polysaccharides, amino sugars, protein, polyhydroxy aromatics,
and lignins). In this study, WWTP effluent and wetland EfOM were fractionated using prepara-
tive high-performance liquid chromatography (prep-HPLC) with both UV and RI detectors, and
then, their physical and chemical properties were characterized using UV/Vis, high-perfor-
mance size exclusion chromatography (HPSEC), 3D fluorescence, and pyrolysis-GC/MS
(Py-GC/MS). WWTP and wetland EfOM were separated into three fractions (peak #1–3), using
prep-HPLC, through C-18 and size exclusion mechanisms. Results of specific UV absorbance
(SUVA), 3D fluorescence, and Py-GC/MS analyses indicate that relative aromaticity/hydropho-
bicity of organic matter are in the order of peak #3>peak #2>peak #1, which also represents
order of molecular weight (MW) (peak #1>peak #2>peak #3).

Keywords: Constructed wetland; Effluent organic matter; Preparative HPLC; Pyrolysis GC/
MS; Humification

1. Introduction

Natural organic matter (NOM) present in ground
and surface waters consists of a heterogeneous
mixture of humic and fulvic acids, carbohydrates,

proteins (PRs), and lignins (LG), which are chemical
and biological products of plant and animal residues
[1–4]. NOM is known to play an important role in glo-
bal carbon/nutrient cycling, and in the outcome and
transport of many toxic organic or inorganic chemicals
[5–8]. The structural and functional characterization of
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NOM has been extremely challenging because of its
heterogeneous and ill-defined nature.

Effluent organic matter (EfOM) is mixture of struc-
turally complex, heterogeneous organic compounds
derived from raw wastewater and microbial activities
in biological treatment processes. When investigating
the composition of EfOM, only 15–20% of effluent
organic carbon matter was identified, although a few
major components of EfOM have been identified, such
as aquatic humic substances (AHS), extracellular poly-
meric substances (EPS) or soluble microbial products
(SMP), lipids and organic acids [9,10]. The chemical
composition of EfOM has been compared with and is
thought to be similar to NOM [11].

In order to understand the structural and functional
properties of NOM better, various NOM fractionation
methods have been used, which are either based on
charge characteristics (ion-exchange, electrophoresis),
on chemical and physical properties, on adsorption
behavior (XAD resin methods), or on molecular size
(size-exclusion chromatography, flow-field-flow frac-
tionation, ultrafiltration) [12–14].

Preparative high-performance liquid chromatogra-
phy (prep-HPLC) has been used for the isolation and
purification of valuable products in the chemical and
pharmaceutical industry, as well as in biotechnology
and biochemistry [15–18]. However, it was not until
Piccolo et al. [19] used this system to fractionate
humic acid (HA) based on molecular weight (MW)
that prep-HPLC was applied to NOM. Piccolo et al.
[19] and Peuravuori and Pihlaja [20] later proposed an
alternative method of NOM fractionation using
high-performance size exclusion chromatography
(HPSEC) in preparative mode. They collected samples
up to eight fractions for further analyses. Unlike ana-
lytical HPLC, the prep-HPLC system requires a much
larger amount of sample for the column as well as a
higher flow rate, which allows for the collection of a
target amount of fractionated NOM samples by repeat
injections.

In this study, the fractionation of NOM samples
was conducted using a prep-HPLC system with UV
and RI detectors. This system allowed relatively large
volume injection up to 10mL, as it was equipped with
a specialized preparation column; further analyses of
fractionated samples were also performed. The
objective of this study was to fractionate the bulk
NOM from a wastewater treatment plant (WWTP)
and wetland effluent into well-defined subcomponents
by using prep-HPLC, and then characterize their
physical and chemical properties using UV/Vis,
HPSEC, 3D fluorescence, and pyrolysis-GC/MS
(Py-GC/MS). We focused on the characterization of
fractionated organic matter with respect to major

biopolymers (polysaccharides (PS), amino sugars (AS),
PR, polyhydroxy aromatics (PHA), and LG) using
Py-GC/MS and understanding the degree of
aromaticity/hydrophobicity in those samples.

2. Materials and methods

2.1. Sampling collection and measurement

WWTP effluent, treated by secondary (activated
sludge process) and tertiary process for the removal
of nitrogen and phosphorus, and wetland effluent
were collected from the discharge points of the
Damyang wastewater treatment plant (DY WWTP) in
Korea and the adjacent free surface-flow constructed
wetlands (35˚18´N, 126˚58´E), on 24 May 2011. The
wetlands involved two different ponds, containing
Acorus followed by Typha plants (i.e. WWTP!Acorus
pond!Typha pond!wetland effluent). The wetland
effluent flows to the Youngsan River, Korea. The
entire wetland was designed to have a hydraulic
retention time (HRT) of 6 h and a flow rate of
1,800m3/day. It was 220m in length and 30m in
width, with an average depth of 0.13m [21]. The
samples were filtered through 0.45lm microfilters
(Mixed cellulose ester, Advantec, Japan) and then
stored at 4˚C until further analyses.

The concentrations of dissolved organic carbon
(DOC) and total nitrogen (TN) in the wastewater and
wetland effluent samples were determined by a total
organic carbon analyzer (TOC-V CPH, Shimadzu,
Japan) equipped with a TN analyzer (TNM-1, Shima-
dzu, Japan). The UV absorbance at wavelength 254 nm
(UV254) was measured by a UV–vis spectrophotometer
(UV-1601, Shimadzu, Japan). The specific UV absor-
bance (SUVA) value (an indicator of aromaticity) was
calculated by dividing the UV254 by the DOC concen-
tration. Both nitrate and nitrite in the samples were
quantified using an ion chromatography (IC) appara-
tus (DX-120, Dionex, CA, US), equipped with an AS14
column (4� 250mm, Dionex, CA, US). 1.5 L of sample
was concentrated to 50mL with a rotary evaporator
(Eyela, Japan) prior to fractionation by prep-HPLC.
15mL of concentrated samples were freeze-dried
using a freeze dryer (Ilshin, Korea) for Py-GC/MS
analysis.

2.2. Preparative HPLC (prep-HPLC)

Fractions of NOM from DY WWTP effluent and
wetland effluent were obtained by using prep-HPLC
(JAI-LC-9201, Japan Analytical Industry Co. Ltd.,
Tokyo, Japan) with both UV (JAI UV3702) and RI (JAI
RI RI-50) detectors. A gel permeation chromatography
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(GPC) column (Jaigel GS310, 21.5mm I.D.� 500mm
length, Japan Analytical Industry Co. Ltd.,) was used,
and deionized (DI) water was used as elution solvent
at a flow rate of 5mL/min. According to the manufac-
turer, separation by the column is based on a combi-
nation of hydrophobic interaction and size exclusion.
The injection volume of the concentrated samples was
3mL. The experimental data were acquired and
processed with Multichro 2000 V4.2 (JAI, Japan).

2.3. High-performance size exclusion chromatography
(HPSEC)

The MW distribution analyses of samples were
performed by high-performance size exclusion
chromatography (HPSEC) using UV (SPD-10Avp,
Shimadzu, Japan) and fluorescence (RF-10A XL,
Shimadzu, Japan) detectors with a SEC column (PR
pak 125, 7.8� 300mm, Part No. WAT084601). The UV
wavelength was 254 nm for detecting aromatic
compounds. The fluorescence detector at excitation
wavelength of 279 nm, and emission wavelength of
353 nm was used to identify PR-like substances. The
HPSEC mobile phase was prepared from a phosphate
buffer (2.4mM NaH2PO4 and 1.6mM Na2HPO4 at pH
6.8) and 96mM NaCl. The flow rate of the buffer solu-
tion was 0.70mL/min, with a sample injection volume
of 200ll. A MW calibration curve was constructed by
using standards of polystyrene sulfonates (PSS) with
different MWs of 210 (Fluka, Switzerland), 1,000,
4,600, 8,000, and 18,000Da (Polysciences, USA).

2.4. Fluorescence spectroscopy

Fluorescence measurements were conducted using
a fluorescence spectrophotometer (model F-2500, Hit-
achi, Japan) with a 400-W xenon lamp (Tokyo, Japan).
A 3D excitation-emission matrix was obtained by
measuring the excitation and emission spectra in the
range 220–500 nm at 10 nm intervals. The excitation
and emission slit widths were set to 5 nm with a scan
speed of 3,000 nm/min. The 3D fluorescence spectra
data were plotted by the SigmaPlot 10 program
(Systat Software, Inc., San Jose, CA, USA).

2.5. Pyrolysis-GC/MS (Py-GC/MS)

Curie-point Py-GC/MS was performed on an
Agilent 7890A gas chromatograph coupled to a 5975C
quadrupole mass spectrometer (ion source tempera-
ture 220˚C, scanning from 40 to 500 amu, electron
energy 70 eV). About 0.5–1.0mg of freeze-dried sample
powder was tightly wrapped in a pyrofoil (Pyrofoil
F590, Japan Analytical Industry, Japan) and inserted

into a quartz sample tube and inductively heated to
their Curie temperature of 590˚C by a Curie point
injector JCI-22 (Japan Analytical Industries, Japan).
Pyrolysis fragments were separated by a GC equipped
with a 30-m DB-5MS column (0.25mm i.d., 0.50lm
film thickness, Agilent Technologies, USA) and identi-
fied using a mass spectrometer. Helium was used as
the carrier gas. The temperature program of the GC
oven was initially kept at 40˚C for 5min, then raised at
a rate of 7˚C/min up to 300˚C, and kept there for
10min, giving a total run time of 52.14min. The
pyrochromatograms were interpreted by the methods
described by Bruchet et al. [22]. Each peak compound
was identified by the comparison of its mass spectra
with library spectra and literature data. Each sample
could be fractionated into specific biopolymer
components, including PS, PR, AS, PHA, and LG.

3. Results and discussion

WWTP effluent and wetland effluent were frac-
tionated into three fractions by using prep-HPLC, as
shown in Fig. 1. The RI peak #3 of the WWTP
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Fig. 1. Fractionation of organic matter from (a) WWTP
effluent and (b) wetland effluent by prep-HPLC.
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effluents disappeared in the wetland effluent sample.
UV peaks were separated into three fractions in both
WWTP and wetland effluent samples.

As listed in Table 1, nitrate was efficiently
removed throughout the wetland. However, the
constructed wetlands exhibited relatively negative
performance for the removal of wastewater EfOM.

Water characteristics of each peak of WWTP and
wetland effluent fractionated by prep-HPLC were
summarized in Table 2. The recovery of collected
fractions from WWTP and wetland effluents was 93.8
and 89.2%, respectively. The level of DOC, TN, and
SUVA (index of aromaticity) increased from peak #1
to peak #3 in both WWTP effluent and wetland
effluent samples. TN was mainly composed of nitrate
as N. This result corresponded with the separation by
the GPC column, based on a combination of
hydrophobic interaction and size exclusion.

MW distribution of the aromatic and PR-like
substances in WWTP effluent and wetland effluent are
shown in Fig. 2. The MW of aromatic substances
ranged from about 1,278–2,300Da in both WWTP and
wetland effluents. In the case of PR-like substances,
both low MW (555 and 893Da) and high MW
(29,233Da) were found to be major fractions of
organic matter in WWTP and wetland effluents. Both

WWTP effluent and wetland effluent had similar MW
distributions of aromatic and PR-like substances.

MW distributions of each peak from WWTP effluent
and wetland effluent separated by prep-HPLC are
shown in Fig. 3. From peak #1 to peak #3, the MW of
aromatic and PR-like substances of WWTP effluent and
wetland effluent decreased. HPSEC analysis of EfOM
for fractionated samples revealed that the column
separated organic matter based on size exclusion. The
highest intensity of UV detection were at 2,242, 1,625,
and 1,282Da in peak #1–#3 WWTP effluent samples,
respectively. The highest intensity of fluorescence
detection corresponded to the 1,672, 889, and 573Da
fraction in peak #1–#3 WWTP effluent samples,
respectively. Wetland effluent fractionated samples had
similar MW distribution of aromatic and PR-like
substances as the WWTP effluent fractionated samples.

The fluorescence characteristics of WWTP and
wetland effluents are shown in Fig. 4. The maxi-
mum peak of PR-like substances was found at
Ex= 280/Em=310nm, and humic-like fluorescence
had two maximum peaks at Ex= 330nm/
Em=410nm and Ex= 270nm/Em=420 nm in WWTP
effluent. Wetland effluent sample had two strong
maximum peaks at Ex= 330nm/Em=410 nm and
Ex= 250nm/Em=420nm, and one maximum peak of

Table 1
Water characteristics of WWTP effluent and wetland effluent

NOM WWTP effluent Wetland effluent

pH 1 6.40 6.03

Conductivity (lS/cm) 1 567 589

DOC (mg C/L) 2 7.10 (±0.02) 7.95 (±0.33)

UVA254 (cm
�1) 2 0.1528 (±0.0003) 0.1778 (±0.0002)

SUVA (L mg�1 m�1) 2 2.15 (±0.01) 2.23 (±0.21)

TN (mg N/L) 2 9.48 (±0.09) 3.77 (±0.02)

Nitrate (mg N/L) 2 8.90 (±0.36) 3.28 (±0.10)

Note: NOM: number of measurements.

Table 2
Water characteristics of WWTP effluent and wetland effluent separated by prep-HPLC

Sample DOC
(mgC/L)

TN
(mgN/L)

UVA254

(cm�1)
SUVA
(Lmg�1m�1)

Nitrite
(mgN/l)

Nitrate
(mgN/l)

Recovery
(%)

WWTP effluent #1 5.73 0.73 0.107 1.88 N.D. 0.03

WWTP effluent #2 11.20 26.59 0.236 2.11 0.66 25.38

WWTP effluent #3 12.57 58.32 0.293 2.33 N.D. 57.81 93.8

Wetland effluent #1 6.81 0.87 0.131 1.92 N.D. 0.02

Wetland effluent #2 11.90 15.04 0.270 2.27 N.D. 13.84

Wetland effluent #3 13.27 19.01 0.332 2.50 N.D. 18.61 89.2

Note: N.D.: not detected.
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PR-like substances at Ex= 280/Em=310nm. The
maximum peak of samples appeared near the refer-
ence material of the humic-like fluorescence (SRHA
and SRFA) and PR-like fluorescence [23]. The fluo-
rescence contour plots of each peak of WWTP and
wetland effluent separated by prep-HPLC are shown
in Fig. 5. Two strong humic-like fluorescence peaks
were observed in peak #3 of fractionated WWTP

and wetland effluent samples at the same Ex and
Em wavelengths (Ex= 330nm/Em=410nm and
Ex= 270nm/Em=430nm), but PR-like fluorescence
was not observed in peak #3. This indicated that
peak #3 sample had relatively high SUVA and
aromaticity compared with peak #1 and #2.

Fractions of the fragments from the pyrochromato-
grams of WWTP and wetland effluents are summarized
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in Table 3. Wetland effluent revealed stronger PHA
characteristics than WWTP effluent. The proportion of
PHA increased throughout the constructed wetland.
This result agrees with previous findings that

wastewater EfOM becomes more aromatic during wet-
land treatment [24,25]. The composition of the organic
matters in the EfOM shifted from PS/PRs to PHA (i.e.
through humification), which is a good news, with
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respect to the water management of discharging river
since it could provide more biologically stable forms of
organic matter.

Fractions of biopolymers for each peak of WWTP
and wetland effluents separated by prep-HPLC are
shown in Table 4. Peak #3 of WWTP and wetland efflu-
ents exhibited strong PHA characteristics to a greater
extent than peak #1 and #2 samples, while peak #1 of
both WWTP and wetland effluents showed higher PS
and PR characteristics than other peak samples.

The proportion of PHA increased from peak #1 to
#3 of WWTP and wetland effluent, but the percentage
of PS and PR decreased. With the SUVA, 3D fluores-
cence, and Py-GC/MS results, it can be concluded
that the peak comes off the column later had more
aromaticity/hydrophobicity of organic matter. We
suggest that in conjunction with fractionation of NOM
using prep-HPLC, Py-GC/MS data can provide useful
insights into the origin of organic matter from WWTP
and wetland effluents.

4. Conclusions

Relatively large volume of organic sample was
attempted to be fractionated based on both hydropho-
bic interaction and size exclusion for further analyses,
including the revelation of fundamental biopolymers
using Py-GC/MS. This type of organic sample

pretreatment with a large volume column with HPLC
was firstly developed by our group, to our
knowledge. By comparing the WWTP and constructed
wetland effluents, it was found peaks that come off
the column of the prep-HPLC later had greater
aromaticity and portion of poly-aromatic carbon,
identified using 3D fluorescence and Py-GC/MS, and
lower MW identified using HPSEC. With this, the
constructed wetland is believed to transform some
portions of the WWTP EfOM into organic matters
exhibiting greater humic (aromatic) properties,
providing a notion that the wastewater stabilizing
treatment wetland plays an important role in humifi-
cation of wastewater EfOM. In this study, fundamen-
tal biopolymers were only tried to be identified using
the developed pretreatment protocols, however, other
analyses can be further conducted with fractionated
organic samples, with respect to biodegradability,
disinfection by-products formation potential, and even
comprising organic structures.
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Table 3
Fractions of biopolymers for WWTP effluent and wetland effluent

Fractions (%)

PSa AS PR PHA LG Sum

WWTP effluent 9.9 5.4 24.0 38.6 22.1 100

Wetland effluent 3.1 N.D. 32.6 60.5 3.8 100

aPS=polysaccharides; AS= amino sugars; PR=protein; PHA=polyhydroxy aromatics; LG= lignins. N.D.: not detected.

Table 4
Fractions of biopolymers for WWTP effluent and wetland effluent separated by prep-HPLC

Fractions (%)

PSa AS PR PHA LG Sum

WWTP effluent #1 9.7 3.2 32.3 34.3 20.5 100

WWTP effluent #2 7.5 15.9 21.8 54.8 N.D. 100

WWTP effluent #3 1.8 0.7 19.2 64.2 14.1 100

Wetland effluent #1 48.6 N.D. 29.5 15.4 6.5 100

Wetland effluent #2 17.4 16.9 15.5 25.8 24.4 100

Wetland effluent #3 1.2 N.D. 10.5 80.7 7.6 100

aPS=polysaccharides; AS= amino sugars; PR=protein; PHA=polyhydroxy aromatics; LG= lignins. N.D.: not detected.
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