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ABSTRACT

In this study, the production of boric acid from borax was carried out by electrodialysis
with bipolar membranes. The current efficiencies for boric acid and sodium hydroxide
production by bipolar membrane electrodialysis were determined to be between 93.13 and
99.53%. In addition, the products with purity up to 99.52% (in weight) H3BO3 and 99.12%
(in weight) NaOH were obtained. This method gives a facility of producing of sodium
hydroxide and boric acid without any harmful waste material and offers an alternative
process to commercial production methods for boric acid and sodium hydroxide.
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1. Introduction

Boron, which is one of less available elements in
the earth, is an important substance used widely in
the chemical industry for the production of numerous
chemicals such as fiber glass, ceramic, detergent, fire-
resistive substances, insulators, etc., and in a number
of industries such as agriculture, metallurgy, and
nuclear [1]. Turkey has the largest boron reserves in
the world; it is estimated that Turkey has approxi-
mately 61% of the known world reserves [2]. Turkey’s
commercially recoverable boron reserves are coleman-
ite (Ca2B4O8·5H2O), pandermite (CaB6O9·7H2O), ulex-
ite (NaCaB5O9·8H2O), and tincal (Na2B4O7·10H2O) [3].

Many studies on the upgradation of boron miner-
als were made by some researchers [4–8]. Boric acid
(H3BO3) is produced industrially from borate miner-
als; generally by the reaction of earth alkali metal

borates with strong acids to form boric acid. In
Turkey, boric acid is obtained by the reaction of
colemanite (2CaO·3B2O3·5H2O) concentrates with
sulfuric acid.

Many methods have been proposed for the pro-
duction of boric acid from borax, such as boric acid
production from a solution of borax [9]. Boric acid is
produced from boron minerals, using mainly strong
acids such as sulfuric acid, hydrochloric acid, and
nitric acid. However, in these processes, the equip-
ment life is short due to strong acidity, and high acid
cost [10]. The most commonly used commercial
method is the process which uses sulfuric acid
to produce boric acid from tincal [11]. All these
processes employing strong acids produce hazardous
wastes such as Ca(NO3)2, Na2SO4, CaSO4, and cause
serious environmental pollution. Researchers have
been more concerned with the environmental risks of
the wastes from boric acid production processes and
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boron-containing wastes [12,13] and its toxicity to
exposed workers [14,15]. Besides, all these processes
require multi-stage operations, usually performed at
high temperatures and are often dangerous.

Bipolar membrane electrodialysis (BPMED) is a
technique, which is well adapted to convert a salt into
its conjugated acid and base [16]. The technique is
based upon the use of a bipolar membrane to dissoci-
ate water to H+ and OH− [17]. Some researchers stud-
ied the regeneration of concentrated organic and
inorganic acids by BPMED [17–21].

There are increasing demands for alternative pro-
cess solutions, which are more energy efficient and
less harmful to the environment, over the classical
production processes. Since, in the production of acid
and base, conventional methods generate large
amounts of chemical wastes, BPMED can be consid-
ered as an alternative technique for acid and base
production from salts, avoiding the use of strong
acids [21]. The purpose of this study is to investigate
an alternative, environmentally friendly process,
BPMED, for the production of boric acid and sodium
hydroxide.

2. Experimental

2.1. Materials

Chemicals (Na2B4O7·10H2O (Borax), H2SO4, H3BO3,
NaOH, and Carmine indicator) used in the experi-
ments and analysis were purchased from MERCK.
Ion-exchange membranes and bipolar membranes
were provided from PCA GmbH. Table 1 illustrates
main characteristics of the commercial membranes
used in this work. The cathode is stainless steel and
the anode is Pt/Ir-MMO coated Ti-stretched metal.
The applied voltage was supplied and controlled by a
direct-current source.

The analysis of boron was performed by Carmine
method and was monitored by UV spectrophotometer
(Mapada V-1100) at a wavelength of 585 nm. The anal-
ysis of sodium was carried out by flame photometer
(Sherwood 410).

2.2. Methods

The arrangement of the membranes in the labora-
tory cell is shown in Fig. 1 which illustrates the
scheme of laboratory cell of process. The laboratory
cell was composed of three cells with three compart-
ments. The three-compartment cell was obtained by
combining the bipolar membrane cation exchange
with conventional electrodialysis cell and anion-ex-
change membranes. The solutions circulated through
the compartments were H3BO3 solution between the
bipolar and the anion-exchange membranes, NaOH
solution between the bipolar and the cation-exchange
membranes, and borax solution between the cation-
and anion-exchange membranes [22]. Thus, B4O

¼
7 ions

pass across the anion-exchange membrane and Na+

ions pass across the cation-exchange membrane. These
ions were combined with H+ and OH− ions coming
from bipolar membrane, producing H3BO3 and
NaOH.

When expressing in a simple way, the reactions
occurring in the cell can be written as follows:

Anode reaction: 2OH� ! 1=2O2 þH2Oþ 2e�

Cathode reaction: 2H2O
þ þ 2e� ! H2 þ 2OH�

Acid compartment: 2Hþ þ B4O
¼
7 ! 5H2O ! 4H3BO3

Base compartment: Naþ þOH� ! NaOH

The overall reaction for the process can be expressed
as:

Na2B4O7 þ 8H2O ! 2NaOH þ 4H3BO3 þ 1=2O2ðgÞ
þH2ðgÞ

Fig. 2 illustrates the concentration profile and material
balance of this process. The mass balance of the acid
compartment can be written as:

V
dCNaþ

dt
¼ A

X
JNaþ (1)

Table 1
Main characteristics of the homopolar membranes used in
this work

PC acid 60 PC SK

Transference number
KCl (0.1/0.5 N) a >0.95 >0.95
Acid (0.7/3 N) b 55

Resistance (Ω cm2) ~2 ~2.5
Water content (wt%) ~17 ~9
Ion exch. capacity
Strong basic (meq/g) ca 1.14 n/a
Weak basic (meq/g) ca 0.45

aCalculated from potentiometric measurements.
bObserved current efficiencies.
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V
dCB4O

2�
7

dt
¼ A

X
JB4O

2�
7

(2)

DCB4O
2�
7
Q ¼ ðCOut

B4O
2�
7
� Cin

B4O
2�
7
ÞQ

¼ ðJB4O
2�
7 BPM � JB4O

2�
7 AEMÞAM (3)

The mass balance of the base compartment:

DCNaþQ ¼ ðCout
Naþ � Cin

NaþÞQ ¼ ðJNaþBPM � JNaþCEMÞAM (4)

CNaþ ¼ JNaþ ; CHþ ¼ JHþ (5)

Fig. 1. Schematic diagram of laboratory cell for boric acid production by (BPM: bipolar membrane, CEM: cation-exchange
membrane, AEM: anion-exchange membrane [23]. Adapted from PCCELL GMBH).

Fig. 2. The concentration profiles and material balance of this process for all membrane separated by an electrolyte solution.

J. Erkmen and S. Yapici / Desalination and Water Treatment 57 (2016) 20261–20269 20263



The flux of the hydronium ion can be written as:

JHþ ¼ Iapp � Ilim
ZHþF

(6)

The flux of the sodium ion can also be written as:

JNaþ ¼ Tapp Iapp
ZNaþF

(7)

Assuming that the flow through the compartments is
well mixed, add the contribution of bulk flow to the
mass transfer is negligible in boundary layers, the
driving force becomes the electric field for migration,
and concentration gradient for diffusion. The sum of
the transport of an ion occurs by the contribution of
diffusion and migration. For two sides of bipolar
membrane, the salt ion transport in a solution can be
expressed by the equation, based on the Nernst–
Planck equations:

Ji ¼ Jmig þ Jdif ¼ �Di
dCi

dx
�Di

ZiCi

RT

dVi

dx
(8)

In this study, four values of the initial borax concen-
trations (0.025, 0.05, 0.075, and 0.1 M), three values of
the flow rate (0.38, 0.5, and 0.75 L/min), three values
of the cell temperature (25, 40, and 50˚C) and five val-
ues of the applied potential (5, 7.5, 10, 12.5, and 15 V)
were tested. For each experiment, the original solu-
tions before starting the electrodialysis had the con-
centration of about 1 × 10−6 M for H3BO3 in the acid
compartment and about 1 × 10−6 M for NaOH in the
base compartment to assure electrical conductance.

3. Results and discussion

Because of the large number of experiments, in this
paper, some sample data were considered for each
parameter. To test the reliability of the readings and
measurement, the cell was operated under the same
conditions at different times. The reproducibility of
the experimental results is given in Fig. 3. These
experimental results show that the cell operated
steadily.

3.1. Effects of potential on production of boric acid and
sodium hydroxide

One of the important parameters for BPMED pro-
cess is the applied potential value [23]. Fig. 4 shows
the behavior of current with time at different applied

potentials. As seen from this figure, the current
increased with applied potential and time. This
increase can be a result of the increase in migration of
the ions with the increase in the potential difference,
which is the driving force of ionic migration, and the
increase in the dissociation rate on the electrolyte sur-
face with increasing potential. The maximum current
achieved for 5, 7.5, 10, 12.5, and 15 V were 10, 16, 44,
65, and 105 mA, respectively, in 480 min. The mea-
sured results for the conversion of (at 25˚C, 0.38 L/
min and 0.025 M) borax into sodium hydroxide and
boric acid are presented in Figs. 5 and 6. It can be seen
from these figures that the sodium hydroxide and
boric acid concentration increased with a parallel
behavior of that of current with time at a specified
potential.

3.2. Effect of concentration on production of boric acid and
sodium hydroxide

Fig. 7 illustrates the effect of the initial salt
concentration on current values; increasing initial salt
concentration increased the current with time for a
specified concentration at a constant applied potential.
The maximum current achieved for the initial
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Fig. 3. Repeatability of experiments (0.5 L/min, 0.1 M,
50˚C and 15 V).
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Fig. 4. Current–time curves at various applied potentials
(25˚C, 0.38 L/min and 0.025 M).
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concentrations of 0.025, 0.05, 0.075, and 0.1 M was 60,
64, 82, and 116 mA, respectively, in 600 min. This
effect can be attributed to the increase in the concen-
tration gradient, thus in the driving force for diffusion,
between the bulk of the solution and at the interfaces
of electrodes and membranes.

Figs. 8 and 9 present the conversion of borax into
boric acid and sodium hydroxide at different initial
salt concentrations. It can be seen from these figures
that the sodium hydroxide and boric acid concentra-
tions increased almost linearly with time at a specified
initial salt concentration.

3.3. Effect of flow rate on production of boric acid and
sodium hydroxide

The effect of the flow rate of the electrolytic solu-
tion is given in Fig. 10. As seen from this figure, at a
constant applied potential, the current increases when
the flow rate increases. The maximum current
achieved was 99, 159, and 174 mA for 0.38, 0.5, and
0.75 L/min, respectively, in 390 min. This increase
results in the thinning of the boundary layer over the
surfaces of the electrodes and the membranes, and in
the increase in turbulence; therefore both of these
results in an increase in the rate of the transport of
ions from bulk to the interfaces.

The experimental results for the formation of
(15 V, 0.025, and 25˚C) boric acid and sodium hydrox-
ide from borax are presented in Figs. 11 and 12, which
exhibit similar behavior with time as the previous
ones. It can be seen from these figures that sodium
hydroxide and boric acid concentration increased
linearly with time at a specified flow rate.
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Fig. 5. NaOH concentration–time curves for base compart-
ment at various potentials (25˚C, 0.38 L/min and 0.025 M).
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Fig. 6. Boric acid–time curves for acid compartment at
various potentials (25˚C, 0.38 L/min and 0.025 M).
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Fig. 7. Current–time curves at various borax concentrations
(10 V, 0.5 L/min and 25˚C).
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Fig. 8. NaOH concentration-time curves for base
compartment at various borax initial concentrations (10 V,
0.5 L/min and 25˚C).
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Fig. 9. Boric acid concentration–time curves for acid
compartment at various initial borax concentrations (10 V,
0.5 L/min and 25˚C).
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3.4. Effect of temperature on production of sodium
hydroxide and boric acid

It can be seen from Fig. 13 that the current increased
with increasing temperature at constant applied
potential. The maximum current achieved for 25, 40,
and 50˚C were 115, 230, and 313 mA, respectively, in

550 min. This shows that the temperature of the cell
contents is also an important parameter for the process.
Temperature increase is expected to increase the diffu-
sion coefficient for the diffusion across the boundary
layer over the surfaces and across the membranes, and
also the reaction rates on the electrodes.
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Fig. 10. Current–time curves at various flow rates of borax
solution (15 V, 0.025 M and 25˚C).
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Fig. 11. NaOH concentration–time curves for base com-
partment at various flow rates (15 V, 0.025 M and 25˚C).
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Fig. 12. Boric acid concentration–time curves for acid com-
partment at various flow rates (15 V, 0.025 M and 25˚C).
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Fig. 13. Current–time curves at various temperatures of
borax solution (15 V, 0.5 L/min and 0.1 M).
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Fig. 14. NaOH concentration–time curves for base
compartment at various temperatures (15 V, 0.1 M and
0.5 L/min).
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The change for the conversion of (15 V, 0.5 L/min,
and 0.1 M) borax into boric acid and sodium hydrox-
ide in the process is given in Figs. 14 and 15. In this
case, the similar behavior with time is also observed
again.

3.5. Current efficiency and energy consumption

As seen in Figs. 16 and 17, the average current
density increased with the initial salt concentration
and the flow rates of the electrolytes at a specified
applied potentials, respectively. They also increased
with increasing electrodialysis period. For the condi-
tions of the system temperature of 25˚C, the initial salt
concentration of 0.1 M, the flow rate of 0.5 L/min, and
the applied potential of 5 V, the current efficiency was
calculated to be 99.53%. This value is in the range
recorded in the literature. For example, current effi-
ciencies up to 99.9 percent are recorded in the litera-
ture in this kind of works [17]. Table 2 shows some
current efficiency values, ranging 0.9310–0.9953.
Fig. 18 shows a comparison of energy consumption of
the system; it is seen that theoretically consumed
energy value and the real energy consumption value
of the system are very close to each other for the
process. This behavior shows that this process is
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Table 2
Current efficiency and energy consumptions of experiments

Temperature
İnitial
concentration (M)

Flow rate
(L/min) Potential volt Current efficiency

E—H3BO3

(kW h/kg)
E—NaOH
(kW h/kg)

25 0.025 0.38 5 0.96041 1.128932 3.560477
25 0.025 0.38 7.5 0.95208 1.708211 5.387436
25 0.025 0.38 10 0.97783 2.195183 6.923269
25 0.025 0.38 12.5 0.87108 3.111743 9.813959
25 0.025 0.38 15 0.93714 3.470899 10.94668
25 0.075 0.38 7.5 0.96271 1.689343 5.327928
25 0.025 0.50 10 0.95686 2.266246 7.14739
25 0.05 0.50 10 0.96735 1.690601 5.331895
25 0.075 0.50 7.5 0.96200 2.328209 7.342813
25 0.075 0.50 10 0.93139 2.321147 7.320541
25 0.010 0.50 5 0.9953 1.089289 3.435449
25 0.010 0.50 10 0.93422 1.7835097 5.6249153
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Fig. 18. Amount of energy required for the process (25˚C,
0.1 M, 0.5 L/min and 15 V).
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energetically efficient, promising a potential for practi-
cal applications [24].

For the conditions at which the high current effi-
ciency of 0.9953 was obtained, the energy consump-
tion was 3.4354 kW h/kg NaOH or 1.0893 kW h/kg
H3BO3 with an average current density of 3.05 mA/
cm2. In addition, the product purities up to 99.52%
H3BO3 for boric acid and 99.12% NaOH for sodium
hydroxide were obtained at these conditions.

4. Conclusions

From all the results presented above for the pro-
duction of boric acid and sodium hydroxide using
BPMED, the main characteristics of the present work
can be summarized as follows:

(1) This configuration allows the production of acid
and base with very good energy efficiencies and
with no harmful waste to environment.

(2) Increasing the applied potential, concentration,
flow rate, and temperature has an increasing
effect on the production rate.

(3) The study indicates that boric acid in high pur-
ity up to 99.52% can be produced in a single
operation with BPMED.

(4) This work shows that BPMED has a potential to
be an alternative for the production of H3BO3

and NaOH from borax to that of the conven-
tional one.

In spite of the above mentioned positive results,
the work needs further study in pilot scale to deter-
mine the operational problems before practical appli-
cation for the production. This new process is
attractive and has a promising potential due to high
energy efficiency and low impact on the environment.
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Nomenclature
AM — total active membrane area (m2)
AEM — anion exchange membrane
BPM — bipolar membrane
C — concentration (mol/L)
CEM — cation exchange membrane
CHþ — salt proton concentrations in the acid chamber

(mol/L)

CNaþ — salt cation concentrations in the acid chamber
(mol/L)

Di — ion diffusion coefficients (m2/s)
F — Faraday constant (F = 96,485 A s/mol)
Iapp — applied current density (A/m2)
Ilim — limiting current density (A/m2)
J — ion flux across the membrane (mol/m2 s)
JHþ — proton concentrations fluxes (mol/m2 s)
JNaþ — cation concentrations fluxes (mol/m2 s)
Q — volume stream of product (m3/s)
R — universal gas constant (8.314 J/ mol K)
T — cell temperature (K)
Tapp — actual transport number (A/A)
t — time (s)
V — electric potential (V)
x — dimension perpendicular to membrane (m)
ZHþ — electrochemical valence of the proton
ZNaþ — valence of the ion
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