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ABSTRACT

In order to reduce the complexity of wastewater treatment modeling, a principal component
analysis (PCA) was introduced to allow reducing the dimensionality of the original histori-
cal data by projecting it into a lower dimensionality space. Indeed, an application of PCA
on activated sludge treatment plant was effected to reduce the dimension of the problem
described initially by several raw variables of the dominant parameters of the upstream and
downstream pollution of the process, such as the physicochemical parameters necessary to
describe organic and nitrogen pollutants (SS, COD, BOD, NHþ

4 -N, NO�
3 -N, NO�

2 -N, PO3�
4 -P,

and TKN, as well as the decision parameters like energy consumption and amount of recir-
culated sludge. The results show that the performance of the purification process on the
energy consumption is primarily related to the excess removal of organic pollution and to
excess nitrates product in the process.
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1. Introduction

Many different processes happen simultaneously
in wastewater treatment plants (WWTP), which were
originally designed to reduce the biological oxygen
demand, total suspended solids (SS) and nitrogen and
phosphorus pollution [1]. These processes leading to
the complexity and the difficulty of understanding the
whole system due to the variations in wastewater flow
rate and its composition, combined with time-varying
reactions in a mixed culture of microorganisms [2,3],
to the random aspect of the polluted load injected at
the input of the reactors increasing the difficulty of

controlling such a process. Moreover, the nature of
influents is continuously changing over time, leading
to an important variability of the system. The perfor-
mance of the biological treatment depends on the pol-
lution degradation by the biomass and on the
separation of the biomass from the treated water, the
sludge settling, all those reasons make this process
nonlinear [2] and complex.

The development of computer tools allowed to
filter and to exploit data process to obtain the
information and relevant knowledge. The extracting
techniques of information and knowledge from data
have evolved rapidly due to the necessity to reduce
the complexity of phenomena.
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Recently, multivariate statistical process control, such
as principal component analysis (PCA), has been used to
monitor the chemical and biological treatment processes.

These multivariate statistical data have several appli-
cations, such as multilinear regression using principal
components (PCR), reduction of number of variables,
identification of structures that explain the most relevant
variance of the data and for clustering analysis [4].

PCA reduces the number of variables in a data-set
[5] by finding linear combinations of those variables
that explain most of the variability and often generates
components that have valuable biological meanings.
Analysis via this technique produces easily inter-
pretable results, and this method has been successfully
applied to many industrial treatment processes [6].

PCA uses an orthogonal transformation to convert a
set of observations of possibly correlated variables into
a set of values of linearly uncorrelated variables called
principal components. The number of principal compo-
nents is less than or equal to the number of original
variables. This transformation is defined in such a way
that the first principal component has the largest possi-
ble variance (that is, accounts for as much of the vari-
ability in the data as possible), and each succeeding
component in turn has the highest variance possible
under the constraint that it is orthogonal to (i.e. uncor-
related with) the preceding components. The principal
components are orthogonal because they are the eigen-
vectors of the covariance matrix, which is symmetric.

This paper presents a statistical analysis by PCA in
order to minimize and to define the dominant param-
eters for modeling the activated sludge process.
Indeed, PCA includes, the raw water, purified water,
elimination yields of pollution parameters such as: SS,
organic matter (COD, BOD), nutrients (NHþ

4 -N,
NO�

3 -N, NO�
2 -N, and TKN) and phosphorus (PO3�

4 -P),
recycle sludge (RS) as well as energy consumption.

2. Materials and methods

2.1. Activated sludge plant

Activated sludge treatment is a technically and
economically feasible option to treat many types of
wastewaters containing highly biodegradable organic
matter [7,8]. It is a biological process in which
microorganisms oxidize and mineralize organic matter
in presence of oxygen by using agitators. The microor-
ganisms grow in the aerated tank and are kept
suspended either [9].

The activated sludge plant of this research located
in Boumerdes (Algeria), it is within the “extended

aeration activated sludge” category. This site has a
processing capacity of 75,000 inhabitant equivalents
with a low mass loading (of the order of 76 kg
(BOD)/kg (VSS)/d). It is designed to treat domestic
sewage, and the daily nominal flow is 15,000 m3/d. It
mainly consists of several biological reactors (aerated
tanks), and solid–liquid separators (secondary clari-
fiers or settlers).

2.2. Description of PCA method

PCA is a multivariate statistical data analysis that
uses projection into latent variables to reduce high-di-
mensional and strongly correlated data to a much
smaller data-set that can then be interpreted. This
approach is important for problems with a large num-
ber of input variables and features in chemical and
biological processes [10]. PCA aims at finding and
interpreting hidden complex and relationships
between features in datasets [11,12]. Correlating fea-
tures are converted to the so-called factors, which are
themselves none correlated. PCA modeling, i.e. the
approximation of a matrix by a model, defined by
variables and a relatively small number of outer vec-
tor products, shows the correlation structure of a data
matrix X, approximating it by a matrix product of
lower dimension, called the principal components
(PC), plus a matrix of residuals [12].

In PCA, the original data are projected onto princi-
pal component axes. Each of the principal compo-
nents, PCs, captures as much as possible of the
variation which has not been explained by the former
PCs, i.e. the first PC maximizes the covariance in the
original data and the subsequent PCs maximize the
covariance in the residual matrices thatare left after
extracting the former PCs [13]. This means that the
first component will be correlated with at least some
of the observed variables. It may be correlated with
many.

In computational terms, the principal components
are found by calculating the eigenvectors and eigen-
values of the data covariance matrix. This process is
equivalent to finding the axis system in which the
covariance matrix is diagonal. The eigenvector with
the largest eigenvalue is the direction of greatest varia-
tion, the one with the second largest eigenvalue is the
(orthogonal) direction with the next highest variation
and so on.

The PCA considers “P” variables for which we
arrange of “N” individuals. The individual “i” is
described by the vector belonging to RP:
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Xi ¼ fXij=j ¼ 1 to Pg (1)

The term Xij is a real number that represents the
measurement of the variable Xj on individual i. On an
individual, there are a number of variables. The
variable “j” is described by the vector Rn:

Xj ¼ fXij=i ¼ 1 to Ng (2)

The matrix [X] resulting of the crossing “N × P”
constitutes the matrix of data.

The covariance matrix between Xj and Xk variables
is given by:

Cov ðXj;XkÞ ¼ 1

N

XN
i¼1

Xij � Xij

� � � Xik � Xik

� �
j ¼ 1;P;

k ¼ 1;P

(3)

The initial variables undergo, sometimes, a change in
reduced centered variables in order to reduce the dis-
tortion of valuable scales and to make dimensionless
variables on the other hand. The matrix of covariance,
in this case, describes the matrix of correlation
between variables Xj and Xk and it is given by the
following:

Cor ðXj;XkÞ ¼
Cov ðXj; XkÞ

Sj � Sk

¼
PN
i¼1

Xij � Xj

� � � Xik � Xk

� �

PN
i¼1

Xij � Xj

� �2 � PN
i¼1

Xik � Xk

� �2� �1=2

j ¼ 1;P; k ¼ 1;P

(4)

We note that:

½A� ¼ fCor ðXj;XkÞ; j ¼ 1;P; k ¼ 1;Pg (5)

Note that the correlation matrix [A] is a symmetric
matrix definite positive, it is therefore diagonalizable.
The correlation matrix is replaced by a diagonal
matrix noted [D] by reducing the number of variables
necessary to describe individuals with a minimal loss
of information.

The [D] matrix is obtained after resolution of the
following polynomial equation:

Det ðA� kiIÞ ¼ 0 (6)

where [I] is the Identity Matrix with (P × P) dimen-
sion, λi are called the eigenvalues and represent the
diagonal values of the diagonal matrix [D].

The (λi) values represent also the rates explanation
of axis Fi.

These new variables are called principal compo-
nents (PCs). PCs, Ratter Fj, represented as a linear
combination of the Xj variables, which are calculated
from the eigenvectors of the correlation matrix:

ðA� kjIÞFj ¼ 0 (7)

The PCA consists to rigidly rotate the axes of this
p-dimensional space to new positions (principal axes)
that have the following properties:

Ordered such that principal axis F1 has the highest
variance (λ1) and the last axis Fp has the lowest
variance (λp).

3. Results and interpretations

3.1. Application of PCA on input/output parameters

In order to reduce the number of the pollutants
parameters, a PCA was applied. The parameters of
the raw water and purified water used for this analy-
sis are as follows: SS, COD, BOD, NHþ

4 -N, NO�
3 -N,

NO�
2 -N, PO3�

4 -P, and TKN. We symbolize the raw
parameters by Xraw and purified parameters by Xpur.
The excess parameters of nitrite and nitrate are sym-
bolized by ENO2 and ENO3. The circle correlation is
represented in Fig. 1.

A PCA analysis indicated two principal compo-
nents. The first principal component (F1) explained
24.96% of the total variance and contains most of the
information. The second principal component (F2)
explains 11.75% of the total variance.

We note a provision of parameters pollution on
two fictitious arcs, the first contains parameters of
the raw water, the second those of purified water.
The equidistant between these two fictitious arcs
define the drawdown of pollution according to the
vocation of the WWTP, in contrast to the param-
eters NO3 and NO2 which process is not
carefully controlled considering NO3 and NO2 are in
excess.

It is therefore more interesting to consider, in the
following, corresponding to the drawdown’s pollution
parameters as analysis variables instead of raw vari-
ables at input and output of the step, which will
further reduce the number of variables.
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3.2. Application of PCA on elimination yields parameters
and energy

It is appropriate to apply a PCA allowing that the
elimination yields and energy. We symbolize the raw
parameters by Yx, its expression is as following:

Yx½%� ¼ 1� Xpur=XRaw

There will therefore be:

(1) Energy [kWh/m3] = energy consumption
[kWh/d]/input flow [m3/d].

(2) Explanatory variables: Reports elimination of
pollution.

The elimination yield is presented in percentage of
removal parameters. We symbolize it by Y(X) of each
parameter (X) and the energy is symbolized by En.

We obtain two circles of correlation by applying
the PCA analysis. The first circle indicated two princi-
pal components explained 33.83% of the total variance
and contains most of the information. The second
explains 29.88% of the total variance.

By examining the correlation circle formed by the
axes (F1 and F2), we note a provision of parameters
pollution on fictitious arc that contains parameters En,
Y(BOD), Y(COD), Y(SS), and Y(PO4) show that the
energy is related to the removal of organic matter
expressed by elimination yield of BOD, COD, and SS
as well as the elimination yield of NH4 expressing the
degree of nitrification.

By examining the correlation circle formed by the
axis F1 and F3, Fig. 2(b), the same findings are made to
Fig. 2(a) on energy variables (En), Y(BOD5), Y(BOD),
Y(COD), and Y(SS). We note also that the removal
yields of the parameters (E(NO3), Y(NH4), Y(KNT), and
E(NO2) are arranged on a same fictitious arc which
expressing the degree of nitrification of NH4 to NO2

and NO3.

3.3. Application of PCA on elimination yields parameters
and RS

In the following, application of PCA on the elimi-
nation yields and the quantity of the RS.

Recycle sludge [%] = recycle flow [m3/d]/input
flow [m3/d]. We symbolize recirculated sludge by RS.

Fig. 1. Projection of the input/output variables on the first
principal axis.

Fig. 2. Projection of the removal yields and energy on the first principal axis: (a) axis F1, F2 and (b) axis F1, F3.
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We obtain two correlation circles by applying the
PCA analysis. The first circle indicated two principal
components explained 35.82%. The second circle
explains 30.45% of the total variance illustrated by
Fig. 3.

Correlation circle formed by the main axes (F2 and
F3) shows that the removal yields (Y(COD), Y(BOD),
Y(SS)), excess in nitrate E(NO3), and the RS are
arranged on a same axe, the second correlation circle
formed by the main axes (2 and 3) shows that the
removal yield (Y(NH4), Y(KNT)), E(NO3)), and the RS
are arranged on a same axe, this confirms that the
recirculation sludge is linked to the ammoniac elimi-
nation expressed by Y(NH4) with production of nitrate
expressing the degree of nitrification.

By analyzing the circle (2) formed by the main axes
(2 and 3), there is a linear arrangement of variables
R(TKN), R(NH4), R(NO2), and TRB.

Note that the cumulated explanation rate of corre-
lation circles is low (35–49%), this is due to the nonlin-
earity of the process, while the PCA is a linear
analysis approach, expressing the raw variables as a
linear combination of the principal components, what
gives a low reproductive capacity particularly the
explained parameters such as the energy consumed
and the amount of recirculated sludge. Nevertheless,
the PCA was used successfully to identify the degree
of relationship between the raw variables by project-
ing them into the new coordinate system generated by
the principal components, and thus reduce the
problem size.

4. Conclusion

Mastery of activated sludge process consists to deter-
mine the optimal values of decision parameters for
removing the pollution load contained in the wastewater

conforming to the standards discharge required by the
environment. These parameters included energy
deployed into the aeration basin.

The application of PCA allowed us to reduce the
number of variables concluded initially determinants
for the control of purification process, and conse-
quently, simplification of the problem of optimization
thus formulated.

The proposed approach constitutes the methodol-
ogy for data processing contained in different recorded
observations in the plant, in order to extract most
information tool for understanding and optimizing of
process.
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