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ABSTRACT

The present study employs artificial neural network (ANN) models to forecast the total
organic carbon (TOC) removal efficiency in biological aerated filter in a laboratory-scale
reactor. This model is based on the measured values of TOC at inlet and outlet under differ-
ent organic loading rates. One layer radial basis function (RBF) neural network and one
layer multilayer perceptron (MLP) algorithm of ANN models were used to predict the TOC
removal concentrations in the effluent. Data from experimental study (187 records) were
employed for training and confirming the models. The best error on test samples was 0.032
for RBF and 0.026 and 0.027 for two methods of MLP (goal set and validation set), respec-
tively. The ANN-based simulation model demonstrated accurate results for TOC removal
and provided an efficient tool for estimating parameters in wastewater treatment processes.

Keywords: Biological aerated filter; Total carbon removal; Multilayer perceptron (MLP);
Radial basis function neural network (RBFNN)

1. Introduction

The most important purpose of applying biological
wastewater treatment is to remove the biodegradable
pollutants (i.e. total organic carbon (TOC), phosphorus
and nitrogen) before being discharged to the environ-
ment. From the environmental point of view, the

release of untreated and/or inappropriately treated
wastewater effluents contained with previously men-
tioned pollutants could damage the quality of water
bodies, rivers in particular, and also harms aquatic
organisms and human beings [1–5]. Because of the
organic structure of most constituents of wastewater,
carbon removal is the main aim of approximately all
wastewater treatment processes. Therefore, to properly
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determine an effective wastewater process, examining
the quantity of the organic compounds in the
wastewater is of high importance.

The complexity of biological treatment mechanism
in reducing biodegradable organic compounds (i.e.
TOC, BOD, and COD) in traditional models demon-
strates that there are limitations and difficulties in con-
trolling the non-linear connections between
influencing variables and optimal operating situations
[6–8]. The current laboratory procedures used to deter-
mine the maximum capacity of the system for remov-
ing the pollutants are tedious, time-consuming,
challenging, and costly; besides, to conduct such pro-
cedures, related experts and linear tools are required
[8–12]. Comparing with the current methods, a more
appropriate way of evaluating organic matter so as to
increase plant performance is needed. In other words,
developing robust, manageable, easier to use, and
time-efficient models for predicting organic removal
fluctuations and plant implementation under different
situations could be very essential [8].

Over the last decades, artificial intelligence tools,
particularly neural networks, have been paid more
attention by the researchers. Based on the previously
conducted studies in this regard, neural networks is a
promising tool which is capable of learning from the
available data to both facilitate and also enhance a
particular process. About the advantages of artificial
neural networks (ANNs), fewer time requirements, no
mathematical descriptions, ease of simulating the
models, ability to forecast with few experiments which
allow the investigators to employ this method to
obtain accurate and quick access to results can be
mentioned [8,9]. By applying such tools, we are able
to overcome the difficulties of predicting empirical
techniques in water and wastewater sciences and offer
a tighter fit to the variables than conventional models
[10–14]. For instance, modeling a full-scale industrial
wastewater treatment plant [15], predicting a refinery
wastewater parameters [16], modeling of adsorption
process of phenolic compounds [17], estimating the
permeate flux during polyamide nanofiltration [18],
using (ANN) for testing the efficiency of an assembled
wetland [19]. Although many researches have demon-
strated the benefits of the ANN system in water and
wastewater treatment processes, few studies have
applied ANNs in predicting TOC removal particularly
from hybrid BAF (i.e. as one of the high-ranking
approaches in carbonaceous).

The aim of the study is to explore the ability of
two different ANN methods (radial basis function
(RBF), multilayer perceptron (MLP)) for estimating
TOC removal efficiency (as output quality parameter)
of hybrid BAF reactor, illustrating the effect of specific

parameters on the network implementation, and select-
ing out noisy data, which are measured during the labo-
ratory process. The best network model was revealed
by indicating the proper network structure according to
the number of radial basis points (centers) for RBF, the
number of hidden neurons for MLPNN, the least error
in comparison with real outputs (RMSE), the best type
of transfer function. To prove the validity of this
method, MLP NN was employed on goal and valida-
tion set, and was compared to RBFNN according to
RMSE. In the present work, different linear and nonlin-
ear transfer functions were tested for the hidden and
output layers, also training data were fixed through
construction of the best model. The results proposed
here will be possible to be used in predicting the behav-
ior of the essential factors of wastewater treatment, and
determining the best amount of loadings and input
and output parameters, which have a fundamental
influence on the efficiency of WWT.

In this study, concerning the motivation and justifi-
cation, there are some considerable issues which are
focused on, including the importance of influent and
effluent of TOC in wastewater treatment, how to
develop the model accuracy according to the number
of hidden neurons and the transfer function applied,
and which method would probably perform better
and why.

2. Materials and Methods

2.1. Experimental setup

The data used in this report were gathered from
the hybrid BAF (partially packed reactor). The reactor
was operated for 250 d in a controlled situation [20].
PVC biofilter, 100 cm in height and 14 cm in diameter,
was separated into attached growth part (0.55 m) and
suspended growth part by using a polypropylene
mesh. The attached growth part (upper zone) was
filled by plastic media cascade mini rings (Glitsch,
UK). The schematic of the reactor and experimental
equipment is shown in Fig. 1.

The synthetic wastewater consists of Whey Powder
16 g L−1, Glucose 13.5 g L−1, NH4H2PO4 1.915 g L−1,
NiSO4·6H2O 0.006 g L−1, MoO3 0.0035 g L−1, Meat
extract 30 ml/at 200 g L−1, and FeCl3 0.0225 g L−1 was
applied with respect to providing the main food
resources containing carbon sources for microbial
growth for all loadings [21,23]. Feeding was per-
formed after 7 d of full internal recycling, with a very
low organic loading rate (OLR) of 0.5-kg COD m�3 d�1

to allow adaption of biomass to the new environment
along with OLR and hydraulic loading rates stresses
throughout the start-up stage [22]. COD tests were
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performed to support the TOC removal rate in influ-
ent and effluent for each loading step. Increased COD
loading rates were achieved by enhancing the influ-
ent’s flow rate of 3.30–43.20 L d�1. The reactor was
run until a stable condition performance (mean carbon
removal) was attained. The reactor was backwashed
with a regularity of once in every two or three days
within the cycle of air scour, combination of air scour
and water wash, rest and water wash with its own
effluent to avoid the unusual organisms into the speci-
fic bacteria community [23].

Each effluent sample was gathered at the end of a
sustained period of each loading of the BAF reactor
and 1–4 h before the backwashing process. The efflu-
ent carbon removal (ETOC) was calculated based on
TOC analyzer and according to related OLRs and the
TOC removal efficiencies (TOC = TC − IC).

2.2. Development of the (ANN) model

2.2.1. Description of the input and output parameters

The most important factor to specifically determine
and control the carbon concentrations in influent and
effluent of the reactor is TOC. Since the computation
of TOC in effluent depends on a variety of parameters
such as pH, influent total organic carbon (ITOC), DO,
and OLRs, an acceptable analysis of this substrate was
determined by two specific factors, different ITOC and
OLRs applied, which play an essential role in the
wastewater treatment process. ITOC and OLR were
employed to the model to simulate the ETOC using
ANN.

2.2.2. Topology of ANN

An ANN is a mathematical modeling tool consist-
ing of three layers of simulated neurons, input, out-
put, and hidden layer, which are connected together
by strength interconnections namely, weighted links
in a variety of structures [24–26]. It provides the
potential to model any nonlinear procedures by means
of weighted connection sets [25]. The perception of
utilizing ANN came from the human brain’s structure,
since the elements are known to perform as brain
informational processing [27]. The best neural net-
works architectures can be considered as mapping
from the most related input/output spaces and has a
fundamental and essential concern to recognize appro-
priate predictors of the output and in detecting the
optimal models, which is basically related to under-
standing the relationships between existing data [28].

Training data are conducted by training algorithms
to fix the weights by reducing the error through cases
in the training data-set [29,30]. During training pro-
cess, input data are fed into the model from left to
right to produce the simulated outputs. Each neuron
in each layer is connected to every neuron in contigu-
ous layers by multiplying by the connection weights
[31]. The weights and biases are adapted and then
computation is performed from input layer into out-
put layer. The error values are then propagated to pre-
vious layers [32]. The sum of weighted inputs
wmn � xnð Þ plus hidden layer bias bm result in model
outputs ym and then activation function in the hidden
layer allows the network to learn nonlinear relation-
ships and predict an output. According to the mathe-
matical model of network, the inputs are
demonstrated by x1, x2, and xn and the output by ym.
The weight factors associated with each neuron are
represented by wm1, wm2, and wmn [31,33]. A diagram
of a neuron of MLPNN [34] is given in Fig. 2.

ym ¼ tan
Xn
m

wmn � xnð Þ � bm

 !
(1)

The data including inputs and output were normal-
ized before the start of training, which can be
described by Eq. (2):

X nð Þ ¼ ððx�minðxÞ=maxðxÞ �minðxÞÞ (2)

To control and optimize the performance of the neural
network architecture, the RMSE value (root mean
square error) was investigated [35,36]. The following
equation illustrates RMSE for different number of

Fig. 1. The schematic of partially packed biological aerated
filter.
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neurons in hidden layer. RMSE (Eq. (3)) is defined
based on ti and yi which shows the desired and pre-
dicted outputs for ith sample, respectively.

RMSE ¼
ffiffiffi
1

n

r Xn
i¼1

ðyi � tiÞ2 (3)

2.2.3. ANN design for TOC removal prediction

In the current study, RBF and MLP architectures
with three layers of neurons were used to estimate
each constant function with an arbitrary accuracy. In
order to reach the best learning condition as the main
part of simulation, the network was trained many
times with different number of training data-sets, dif-
ferent learning algorithms and different number of
neurons in a hidden layer in order to obtain good pre-
diction results (minimum error). Identifying proper
training algorithm is a challenging and crucial issue
for mapping MLP neural network models [37,38], and
depends on such factors as complexity of the subject,
the number of data and the position of training and
test set [39]. Yetilmezsoy [40] investigated the advan-
tages of using Levenberg–Marquardt algorithm in
comparison with other algorithms, and found it partic-
ularly suitable as the best BP algorithm in accurate
training.

Regarding the number of hidden layers and the
neurons inside, many researchers suggest that one
hidden layer containing some hidden neurons is ade-
quate to obtain a reasonable result [37]. Afterwards, in
the training phase, weights are calculated to minimize

the network error function based on the chosen Leven-
berg–Marquardt learning algorithm, and root mean
square error (RMSE) as the error function, tangent-
sigmoid (tansig) as a transfer function for input and
hidden layer, a linear (purelin) as a transfer function
for output layer, and the back-propagation gradient-
descending method as the most popular learning
algorithm. RMSE for the test data is calculated after
each training set. The architecture of MLP used in this
study is shown in Fig. 3.

In the current research, Neural Network Toolbox
V4.0 of MATLAB® were employed to train 140 data
(approximately 85% of total data) and test 19 observa-
tions (around 15% of total observations) to forecast the
values of output (ETOC). In addition, EXCEL software
was used for data information processing.

3. Results and discussion

3.1. Selection of MLP back-propagation (BP) algorithm
using goal set and validation set

To predict the TOC removal using goal and valida-
tion set, a matrix of 140 samples was utilized for train-
ing and the best results were selected according to the
least RMSE. To prevent overfitting of MLP neural net-
works, a validation set (10% of the main training sam-
ples as validation set and 90% as training set) was
considered to determine the optimal number of hid-
den layer neurons and allow the model to make use
of all existing data [31]. Table 1 reports the relation-
ship between the number of hidden neurons and
RMSE when a goal and validation set are considered.

Fig. 2. Mathematical model of a neuron of MLPNN.
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The results show that the best performance
(minimum error on test set) was obtained when the

number of neurons in hidden layer is 9 and 1 for goal
set and validation set, respectively. The following fig-
ure illustrates the network’s performance regarding
goal and validation sets of MLP.

According to Fig. 4, the network shows a reliable
prediction except for the first and twelfth samples,
which could be as a result of either the operator fail-
ure to record data or the apparatus failure. In the
experimental laboratory test, the removal rate for each
loading was calculated according to the mean TOC
removal efficiencies and mean OLRs applied. Fatiha
et al. revealed that partial bed appears to have a
reasonable removal capacity at OLRs in the range of
3.0–5.0 kg COD m−3 d−1, with the percentage removal
rate almost above 90% [23]. Therefore, an amount
lower or higher than the one mentioned leads to such
weakly predicted results. However, such data are
assigned as chaotic variable (noisy data) and could be
eliminated.

Fig. 3. Architecture of the best network for hybrid BAF
reactor.

Table 1
RMSE on training and test set for goal and validation sets of MPLPNN

Train/test set

Num of hidden neurons

1 2 3 4 5 6 7 8 9 10

Training (goal) 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010
Testing (goal) 0.032 0.036 0.034 0.033 0.032 0.033 0.036 0.034 0.029 0.033
Training (validation) 0.010 0.010 0.010 0.011 0.010 0.010 0.010 0.010 0.010 0.012
Testing (validation) 0.029 0.033 0.034 0.043 0.034 0.034 0.034 0.034 0.039 0.045

Fig. 4. Prediction error on test samples for goal set and validation set from left to right respectively.
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3.2. Selection of RBF neural network for prediction of TOC
removal

RBF with three-layer neural network has been the
original method for performing specific function inter-
polation [41]. The first layer is input layer composing
of the signal basis neurons. All neurons within the
hidden layer demonstrate the value of the input
model according to its hidden unit basis vector
[25,42], which operates as a nonlinear transformation.
The last layer is the output layer that contains linear
nodes and replies to the position of imported patterns
[25]. A random selection of a series of center values,

using fixed width RBFs, and training the weights into
the linear output units is the simplest way to train
RBF networks (Eqs. (4) and (5)). The exact interpola-
tion of RBF is shown in Fig. 5.

Where xi is the network input, the output vector is
y (wp), and Qn is the RBF. The network can attain sub-
sequent mappings of the input and output to form a
linear grouping of the basic functions [43]. The output
is obtained to be a linear grouping of the basis
functions:

fðxÞ ¼
Xn
p¼1

wpQnðjjxq � xpjjÞ (4)

To make the equation simpler, we have:

Qw ¼ t; w ¼ Q�1t (5)

RBF with different levels of spread has been used for
TOC removal. Experimental data used in training and
testing phases are needed for the development of the
RBFNN model. Since constant spread considerably
affects the predictive performance of the network (the
larger the spread is, the smoother is the function

Fig. 5. The RBF structure.

Table 2
RMSE on training and test set for RBF in Partial bed

Training and test set

Spread values

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9

Train set 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010
Test set 0.042 0.038 0.036 0.038 0.039 0.039 0.039 0.039 0.039 0.039

Fig. 6. Prediction errors of test samples in RBF network.
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approximation), too large a spread means many
neurons are required to fit a fast-changing function
[42–44]. Too small a spread means many neurons are
required to fit a smooth function, and the network
might not generalize well. All the data, including
inputs and output, were normalized between 0 and 1.
Table 2 illustrates RMSE for training and test set for
different spread values. The number of RBFs obtained
for all spread values is equal to 1 and the goal was
also set to 0.05.

As Table 2 shows, the best spread is equal to 0.5
for this reactor.

According to Figs. 4 and 6, it is obvious that the
same results in twelfth sample occur while training
and testing the method, which is explained as a noisy
and impaired data. Comparing all methods was per-
formed by the percentage error (Fig. 7), RMSE (Table 3)
as well as verifying real output and predicted output
(Fig. 8). All three methods (RBFNN, goal, and valida-
tion set of MLP) demonstrate approximately equal
results for all prediction methods. In general, the pre-
sent study illustrated that feed-forward networks have
performed slightly better than RBF.

The following figure shows the percentage error to
determine the accuracy of this work. In this regard,
the experimental values are compared with the pre-
dicted values in each three methods and showed rea-
sonable and almost the same results for all methods,
but a rather better result for MLPNN.

Fig. 7. Percentage error for all 3 methods; RBF, validation set MLP, and goal set MLP from left to right respectively.

Table 3
Comparison of RMSE in different methods

Method RMSE

RBF 0.036
MLP (goal) 0.029
MLP (validation) 0.029

Fig. 8. Comparison of predicted models and real target outputs in a hybrid BAF reactor.
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4. Conclusion

Forecast models for TOC removal were developed
using and comparing three topologies, RBF, goal set
MLP and validation set MLP, containing one hidden
layer in each structure. Feed-forward back-propaga-
tion (FFBP) with TRAINLM training algorithm, 1 hid-
den layer, 9 hidden neurons for goal set and 1 for
validation set, TANSIG transfer function in hidden
layer and PURELIN in output layer, were the end con-
struct for MLP. Also three layer RBFNN with the best
value of spread (0.5), Gaussian RBF and RMSE equal
to 0.036 was obtained. The optimum networks were
selected in terms of RMSE, number of epochs, and
percentage error.

While RBFNN model performance was expected to
indicate relatively more improved forecast, the results
for the MLPNN and the RBFNN were not very far off
and showed practically the same performance of those
methods to predict accurately TOC removal concentra-
tion in the hybrid BAF reactor. In general, the present
study showed that feed-forward networks performed
slightly better than RBF.

The results revealed that the ANNs are a promis-
ing alternative to traditional linear forecasting pro-
cesses to solve difficulties of predicting empirical
techniques and will help to determine water and
wastewater treatment processes [45] and estimate the
influent annoyance to biological wastewater treatment
plants. The findings of previous research and the
opinions of other neural network experts are indica-
tive of the fact that a hybrid network could be a logi-
cal solution. However, this might require several other
control parameters as well as other soft computing
alternatives such as a fuzzy neural network or a
neural network associated with a genetic algorithm.
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