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ABSTRACT

Statistical models play an important role in elucidating the dynamic behaviors of surface
water quality, given limited data on a large scale. In this study, we examine alternative
approaches to develop regression models that predict fecal coliform (FC) concentrations in a
river using different methods for selecting important variables provided by a self-organizing
map (SOM). The raw data used as input to the SOM included 11 water quality, 6 meteoro-
logical, and 7 land use parameters that were monitored along the Yeongsan River in Korea
on various time scales (from daily to half a decade) during 1996–2008. In both test and vali-
dation data sets, (multiple) regressions using backward elimination were compared against
regression models via forced entry, which included a set of ranked variables simultaneously
based on four indices in the SOM (i.e. structuring index, relative importance, cluster
description, and Spearman’s rank correlation). Results showed that the SOM effectively
illustrated the complex relationship between FC and the remaining variables in the entire
data set. This relationship was seen more clearly in homogeneous clusters, indicating that
the regression models became more robust in each subdivided group. While the original
backward elimination model (R2 = 0.66) had much better performance than the models with
four indices (R2 = 0.40–0.45) in the test data set, its performance (R2 = 0.42) was quite com-
parable to the relative importance model (R2 = 0.38) in the validation data set. Based on this
preliminary study, we recommend further investigation of these indices for a reliable
regression analysis, as the t values currently used for the variable selection in regressions
provide only a locally optimal solution for the final model. The proposed methodology, if
verified successfully, would be useful in developing early warning models that control
mortality or disease rates of fishes in high-density aquafarms via water quality.
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1. Introduction

The protection of surface water quality is essential
for promoting the benefits of a healthy watershed, i.e.
both human and ecosystem health and associated ser-
vices required for economic growth [1]. Among the
multiple pollutants (e.g. nutrients, toxic metals, pesti-
cides, and pathogens) detected in surface waters, fecal
contamination has increasingly become a global con-
cern due to its threat in causing disease and restric-
tions on water use for recreation and irrigation [1–6].
Potential sources of fecal contamination are storm
water run-off, untreated sewage, failing septic sys-
tems, and landfill leachate, which enter surface waters
through overland flow and groundwater discharge
[1,3,4]. Multiple sources of fecal contamination have
then amplified its cumulative impact at several hot-
spots in the watershed, including nearby coastal areas
[3–6]. Thus, correctly assessing such locations in terms
of the level of fecal pollution is important for develop-
ing effective microbial pollution reduction scenarios,
specifically for increasing the beneficial uses of surface
waters.

Statistical tools are effectively used to address
the spatial and temporal characteristics of surface
water quality, when the data for calibrating a set of
parameters in complex simulation models are not
completely available [1,5–8]. Previous studies have
shown that various types of environmental data con-
sisting of physical, chemical, and biological parame-
ters were successfully analyzed using both linear
and nonlinear statistical approaches [5–10]. In partic-
ular, multiple linear regression (MLR) has been
widely used as a fundamental tool for exploring the
relationship between variables in a linear fashion,
because of its simple formula and straightforward
computation [5,6]. In contrast, a self-organizing map
(SOM) enabled a more robust analysis of complex,
nonlinear data patterns in an unsupervised manner
without requiring the complete understanding of a
given data structure, such as the number of clusters
[7–13]. More precisely, SOM have been preferred
over linear data reduction methods (e.g. principal
component and discriminant analyses) due to its
strong capabilities for classification and discrimina-
tion, even in the presence of noise and outliers [11–
14]. Therefore, both tools can be applied to describe
water quality degradation and its interactions with
environmental variables, if used properly [6–10].
However, the (prediction) performance of SOM
tends to be more reliable than the MLR as the data
sets violate the underlying assumptions of paramet-
ric methods, such as normality, linearity, and inde-
pendence (of residuals).

As compared to previous studies, this study aims
to develop regression models that predict fecal col-
iform (FC) concentrations in a river by combining the
advantages of SOM (to characterize data patterns and
variable importance) and MLR (to generate a simple
prediction equation). Note that a series of variables
are sequentially selected or removed in the current
MLR based on the t-test values that represent the con-
tribution of each variable to the model without sound
theoretical reasons [15]. A raw data set consisting of
the water quality, climate, and land use parameters
from the Yeongsan River (Basin) in Korea was used
for illustrative purposes. From the data set, this study
specifically: (1) describes the relationship between FC
and all other variables (using SOM), (2) identifies sig-
nificant variables in organizing or classifying data in a
map structure (using SOM), and (3) assesses the pre-
diction performance of a reference regression and the
models constructed from recommended variables (us-
ing both MLR and SOM). It is our hope that the pro-
posed methodology offers not only a rationale for
determining physically meaningful variables when
developing statistical models, but also can provide
new insights into fingerprinting microbial pollution
(hotspots) in surface waters.

2. Materials and methods

2.1. Field site description

The study area is located on the Yeongsan River
(Basin) in the South Jeolla Province of Korea (Fig. 1).
The river is relatively short (at 135 km) and covers a
small drainage area (3,500 km2), when compared to
other major rivers in Korea. In total, 13 tributaries join
the mainstream of the river, which passes though the
urban residential areas of Gwangju City in its mid-
stream and then drains into the West Sea. Historically,
the river has played an important role as a waterway
transportation route due to its large range of tidal cur-
rents that reached around 73 km inland from its
mouth during a flood tide. After the construction of
an estuary dyke in the early 1980s, the river has been
used as an irrigation water source as well as for drai-
nage and flood control. However, from that time its
water quality has regularly been a primary concern in
Korea as the water degraded from both intense agri-
cultural activities and moderate urban growth [2,16].

Fig. 1 illustrates the processes used to prepare the
input data set for subsequent statistical analyses, i.e.
selecting the subbasin outlets (i.e. monitoring
locations), overlaying the land use map onto the target
region, and subdividing the entire basin into multiple
subbasins. The basin was subsequently delineated into
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19 drainage areas based on the routine water quality
monitoring stations along the river (i.e. 8 sites from
the mainstream and 11 sites from the tributaries) such
that each subbasin encompassed different combina-
tions of land use (Fig. 1(a) and (b)). Similarly, water
level gauging stations, at the closest points to
the nearby water quality monitoring stations, were
selected to obtain data for the subbasin outlets
(Fig. 1(c)). Note that some areas in the downstream

are not presented in the maps during the discretiza-
tion process (Fig. 1(a) and (b)).

Table 1 presents the historical land use patterns of
the selected drainage areas in the basin from 1975 to
2005, defined according to the classification system
used by the United States Geological Survey (USGS)
[17]. In the table, each land use class is subdivided
into three spatial sections, i.e. up, mid, and
downstream (Fig. 1(c)). From the table, the basin

Fig. 1. Study area of the Yeongsan River (Basin) in Korea: (a) 19 discretized subbasins, (b) land use distribution for 2005,
and (c) network of water quality, (water) level, and weather monitoring stations. In (c), the basin is divided into three
main zones from the headwater to the river mouth: up, mid, and downstream sectors. The following abbreviations
denote representative water quality monitoring points along the river: DY = Damyang, UC = Uchi, GJ(2) = Gwangju 2,
GS = Gwangsan, NJ = Naju, YSP = Yeongsanpo, HP = Hampyeong, and MA(1) = Muan 1.
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experienced a steady, moderate urbanization process
over the last three decades, including the period 1996–
2008 that was specifically analyzed in this study. The
dominant land use in the basin was forest land, fol-
lowed by agricultural and urban or built-up land.
Forested areas mainly decreased with increases in
other land use activities, though the most significant
change occurred in the midstream sector, regardless of
land use classes (see total amount of land use change
in the last column).

2.2. Input variables and data pre-processing

Table 2 lists the environmental variables (i.e. 11
water quality, 6 weather, and 7 land use parameters)
used in the SOM and MLR analyses. Water quality
parameters, except for water level data that were
recorded daily by the Ministry of Land, Infrastructure,
and Transport (MLIT), were measured by the Ministry
of Environment (ME) in Korea on a monthly basis. For
convenience, the water quality and water level

variables were grouped into a single category. Daily
weather data were obtained at one representative loca-
tion from the Korea Meteorological Administration,
whereas both the MLIT and ME provided time-series
land use data sets (i.e. raster maps during 1975–2000
and vector map for 2005, respectively) at 5 year
intervals.

As these variables were compiled over different
time scales, appropriate data aggregation or disaggre-
gation methods were required so that all variables
were analyzed simultaneously. In this study, three data
aggregation schemes (i.e. geometric and arithmetic
means as well as the sum total) were applied to differ-
ent water quality and weather variables to perform
data analyses on an annual basis (Table 2). For
instance, monthly FC data were averaged for each year
using the geometric mean, whereas the arithmetic
mean was used for other variables as they did not vary
considerably between months or between days. Instead
of using the mean value, the 1 year accumulated daily
rainfall depth and sunshine duration were used; land

Table 1
Historical changes of land use (and land cover) at three sections of the Yeongsan River (Basin) in Korea from 1975 to
2005 (unit: km2)

Sublevel classesa Sections 1975 1980 1985 1990 1995 2000 2005 Total changec

(60 m)b (60 m) (30 m) (30 m) (30 m) (30 m) (30 m)

Urban or built-up land Upstream 0.8 2.6 12.1 14.2 18.3 16.3 27.6 26.8 (0.9%)
Midstream 15.9 41.5 56.0 94.9 106.6 139.0 161.1 145.1 (5.1%)
Downstream 1.9 7.5 8.3 16.1 19.2 27.5 27.0 25.0 (0.9%)

Agricultural land Upstream 186.9 182.5 184.8 189.2 198.5 183.7 185.8 −1.1 (0%)
Midstream 622.5 615.9 638.9 603.3 648.9 589.1 590.2 −32.3 (−1.1%)
Downstream 221.2 235.5 234.4 231.6 230.9 237.4 236.0 14.8 (0.5%)

Rangeland Upstream 3.5 14.0 2.0 1.9 19.7 15.0 14.2 10.7 (0.4%)
Midstream 61.9 36.3 25.5 31.7 34.3 31.1 45.6 −16.3 (−0.6%)
Downstream 13.6 6.9 10.1 15.9 19.3 2.9 7.9 −5.7 (−0.2%)

Forest land Upstream 502.9 489.9 485.1 478.5 443.5 472.7 448.0 −54.9 (−1.9%)
Midstream 874.3 866.6 873.1 860.5 805.3 811.9 776.3 −98.0 (−3.4%)
Downstream 247.0 244.4 240.9 231.2 221.7 214.9 216.3 −30.7 (−1.1%)

Water Upstream 5.4 10.7 15.3 15.7 12.7 14.3 20.6 15.2 (0.5%)
Midstream 23.8 32.5 27.6 26.7 21.2 29.7 37.7 13.9 (0.5%)
Downstream 17.8 9.2 14.0 11.5 12.9 17.6 18.9 1.2 (0%)

Wetland Upstream 0.6 1.2 0.1 0.1 0.1 0.1 2.1 1.5 (0.1%)
Midstream 3.9 2.0 0.3 0.3 0.2 0.2 7.4 3.5 (0.1%)
Downstream 3.2 0.8 0.1 0.1 0.1 0.2 1.6 −1.6 (−0.1%)

Barren land Upstream 4.1 3.5 4.9 4.6 11.6 2.2 6.0 1.9 (0.1%)
Midstream 38.5 46.1 19.4 23.6 24.4 39.7 22.7 −15.9 (−0.6%)
Downstream 6.5 6.8 3.4 5.0 7.1 10.8 3.5 −3.0 (−0.1%)

Total area 2,856.4 2,856.4 2,856.4 2,856.4 2,856.4 2,856.4 2,856.4

aSublevel classes are defined by the land use and land cover classification system (at level 1) from the United States Geological Survey

(USGS) [17].
bValues in parentheses (m) denote the spatial resolution of each digital map for different years.
cTotal change indicates the difference in area between 1975 and 2005. Percentage change in area (%) at both positive and negative

directions during this period is shown in parentheses.
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use variables, once updated, were fixed at 5-year
periods due to their regular publication schedule.

After constructing a complete matrix of input val-
ues, variables marked with an asterisk (*) were log
transformed (i.e. log[x + 1]) again to reduce the differ-
ence in their magnitudes between years or between
locations. Note, however, that this type of data pre-
processing is not required for the SOM (though neces-
sary for regression analyses) because all variables are
converted on a linear scale from 0 to 1 during the
analysis phase (Section 2.3). Again, the main purpose
of this study was to evaluate the effectiveness of alter-
native approaches for developing different statistical
models rather than an accurate analysis and interpre-
tation of the whole data set. Thus, the aggregation and
transformation processes of data should be under-
taken carefully in future studies. As a further consid-
eration, we simply used the water level parameter
rather than the river discharge because the stage-dis-
charge relationship at each site did not often capture
the dynamic flow behavior in extreme conditions, i.e.

low and high discharges. In total, 13 years of annual
data from 1996 to 2008 were used in this study.

2.3. Data analysis tools

ArcSWAT (version 2012) and ArcGIS (version
10.0) software was used for the spatial discretization
of subbasin units (i.e. attribute tables consisting of 7
land use variables and 19 subbasins; Section 2.1), and
the visualization of the summarized output in the
digital map, respectively [18,19]. To delineate the
basin at the subbasin level, a digital elevation map
(at 30 m resolution) was introduced to the ArcSWAT,
along with the river network, followed by the super-
position of the land use (and land cover) maps (at 30
or 60 m resolutions) within the basin boundary. Ini-
tially, the land use maps published over different
years had various land use classes and subclasses,
but they were reorganized based on the classification
system suggested by the USGS (Table 1) [17]. The
land use attributes derived from this discretization

Table 2
List of input variables used for SOM and MLR analyses

Types Variable namea Units Data aggregationb

Water quality Fecal coliform (FC)* CFU/100 mL G-mean
Water temperature (WT) ˚C A-mean
pH – A-mean
Dissolved oxygen (DO) mg/L A-mean
Biochemical oxygen demand (BOD) mg/L A-mean
Chemical oxygen demand (COD) mg/L A-mean
Suspended solids (SS) mg/L A-mean
Total nitrogen (TN) mg/L A-mean
Total phosphorus (TP) mg/L A-mean
Conductivity (COND) μS/cm A-mean
Water level (WL) m A-mean

Weather Air temperature (AT) ˚C A-mean
Rainfall depth (RD) mm Sum total
Wind speed (WS) m/s A-mean
Relative humidity (RH) % A-mean
Sunshine duration (SD) hr Sum total
Cloud amount (CA) % A-mean

Land usec Water* km2 –
Rangeland* km2 –
Wetland* km2 –
Urban or built-up land (Urban)* km2 –
Barren land (Barren)* km2 –
Forest land (Forest)* km2 –
Agricultural land (Agriculture)* km2 –

aLog transformed variables (i.e. log[x + 1]) are marked with an asterisk (*).
bG-mean and A-mean indicate the geometric and arithmetic means, respectively.
cNo data aggregation is required for the land use variables as they are regularly updated every 5 years.
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process were finally combined with water quality
and weather records for subsequent data analyses.
After the main SOM analysis, the distribution of FC
values in the reduced clusters was displayed along
the river network in the basin boundary through the
ArcGIS software.

We applied the SOM (version 2.0) to provide dif-
ferent types of important variables for use in statistical
regression models as well as to explore spatial and
temporal patterns in the data set [13]. Since the initial
release of its algorithm in 1981, the SOM has been
widely applied to environmental research due to its
many benefits (e.g. noise tolerance, data abstraction,
and visualization) over conventional methods [7–14].
Topology preservation and vector quantization are
two leading features in this tool, which enable the
data input in multidimensional domains to be visual-
ized in a reduced data space [11–13]. After completing
the desired data aggregation, the raw data set was
then normalized to between zero and one, followed
by a map training phase using linear initialization and
batch training algorithms [13]. Next, the trained data
set was visualized in component planes that exhibited
the distribution of the values for each variable in two-
dimensional map units, along with a unified distance
matrix (U-matrix) that presented the Euclidean dis-
tance in the map unit itself and between adjacent map
units [13]. The theoretical background and environ-
mental applications are well documented in literature
[7–14]; the indices associated with variable selection
provided by the SOM are described in detail in
Section 2.4.

The MLR was performed using popular statistical
software (SPSS version 15.0) to construct statistical
models for predicting FC concentrations in a river
[15]. The regression model illustrates the relationship
between the dependent and independent variables,
providing a measure to assess the prediction
performance estimated from two or more predictor
variables. For this study, a regression using the
backward method (hereinafter referred to as MLR-
Backward) was selected as the reference model,
assuming that all variables were equally important in
the model. However, only variables having a p-value
less than 0.05 were retained as predictors in the
model. Different regression models were also con-
structed based on the four indices recommended by
the SOM (Section 2.4), which were compared with
MLR-Backward. When developing various regression
models, the data set was divided into two subdata
sets, the test (70% of entire data set) and validation
data (30%) sets, using a random splitting method pro-
vided by the program [15].

2.4. Various indices for variable selection

Previous studies suggested several measures to
identify significant variables that had notable effects
on the SOM structure: structuring index (SI [9]),
relative importance (RI [7,13]), and cluster descrip-
tion (CD [12]). Park et al. [9] introduced SI to detect
important variables as the number of samples in the
data set decreased. If a certain variable shows a low
SI value in the reduced data set, it is assumed to
have a small influence on the map organization. In
other words, its removal does not cause any
significant information loss from the original data
set. The SI value of variable i can be computed as
follows:

SIi ¼
XS

j¼1

Xj�1

k¼1

wij � wik

�� ��
rj � rk

�� �� (1)

where the denominator and numerator indicate the
weight and topological differences between map units
j and k in the total number of map units S,
respectively.

In the tool itself, another index RI was suggested
that showed the relative importance of variables in
arranging map units [7,13]. To estimate RI values for
different variables, the distance matrix was initially
computed with respect to the map structure, which
then adjusted the size of the pie charts located in each
map unit. The borders between different clusters were
mainly determined by the size of the pie chart (if
designed to become bigger), where the composition of
important variables was higher than for the others. In
this study, we selected the five largest pie charts, nor-
malized the contributions of individual variables in
each pie chart (to obtain a total of 100%) regardless of
its size, and finally averaged their relative contribu-
tions in the selected pie charts [7]. Accordingly, the
average composition of a significant variable i should
be high.

Vesanto [12] provided an index for CD that
described the internal properties of clusters using a
statistical value of the data set. Unlike other indices,
CD assesses the variation of a variable in each cluster,
such that:

CCi ¼
XC

l¼1

SDli ¼
XC

l¼1

C� 1ð ÞSCliPC
m¼1; m 6¼l S

C
mi

(2)

where SCli ¼ rli
ri

(3)
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where σli and σi represent the standard deviations of
variable i in cluster l and the entire data set, respec-
tively. C indicates the total number of clusters parti-
tioned in the map. The variable is considered
important if the estimated index value CD is high.

Finally, a simple and intuitive approach is to use a
correlation analysis that investigates the relationship
between the dependent and independent variables
[15]. Note that although this method is not recom-
mended in the SOM tool, it provides a rough idea of
how variables interact with each other. We used the
Spearman’s rank correlation (SRC) to rank variables in
descending order based on the absolute value of the
correlation coefficient, as most variables did not
clearly follow a normal distribution even after the data
transformation process. Note also that the correlation
coefficient between variables in the trained data set
obtained from the SOM analysis is expected to be
slightly higher than from the original data set, due to
the removal of data noise and outliers.

3. Results and discussion

3.1. Relationship between FC and explanatory variables

Identifying the relationship among variables is an
essential step in understanding the structure of the
final (regression) models. Fig. 2 shows the U-matrix
and 24 component planes that illustrate the cluster
structure of the trained data set and the relationship
between FC and explanatory variables, respectively. In
the figure, the color bar displays the range of values
of the 24 variables (for component planes) as well as
the topological distance between adjacent map units
(for the U-matrix). Note that the average quantization
and topographic errors attain at a minimum (0.68 and
0.07, respectively), indicating that the original data set
is reduced successfully to the trained data set after
removing noise and/or outliers from the SOM. In the
U-matrix, large topological distances were observed in
several locations (i.e. map units), around which the
trained data set could be divided into a small number
of clusters (see red, orange, and yellow dots). In fact,
the trained data set was initially partitioned into five
different groups (i.e. clusters 1a1, 1a2, 1b1, 1b2, and 2)
based on the minimum Davies–Bouldin (DB) index
(i.e. 0.81 at 5 clusters, figure not shown) which con-
firmed the validity of these groupings. Among them,
clusters 2 and 1b1 represented the highest and the
lowest contamination levels with respect to FC,
respectively. However, no clear patterns were
observed as the variables showed a wide range of dis-
tributions in individual clusters. From the component
planes, it was found that most water quality variables,

except for a few variables such as DO and WL,
showed a good correlation with FC in both positive
and negative directions. However, a weak correlation
was generally observed between FC and either climate
or land use variables, implying that these variables are
less helpful in elucidating the variation of FC concen-
tration in the river. Only AT and RD (among climate
variables) and Urban and Barren (out of land use vari-
ables) displayed a low correlation with FC. From these
results, it can be concluded that although the SOM
well provides the nonlinear relationship between vari-
ables, there are some inherent drawbacks to the use of
this analysis: (1) in describing the distinct characteris-
tics of the partitioned clusters, and (2) in directly
selecting important variables for the FC prediction.

3.2. Cluster characterization

To better illustrate the characteristics of variables
in the clusters, we regrouped a series of clusters from
five to three groups (namely, clusters 1a, 1b, and 2).
The intent of this regrouping of small clusters was to
provide a convincing visualization in the map while
increasing the discriminating properties of the clusters.
Fig. 3 illustrates the spatial and temporal distributions
of FC concentrations for 1997, 2002, and 2007, showing
the benefit of the reduced clusters in the visualization
along with data reduction (derived from the SOM). In
the figure, the color of circles indicates different
concentration levels of FC in the river, whereas their
size represents the reduced clusters, i.e. cluster 1b
(low-pollution group), cluster 1a (intermediate
pollution group), and cluster 2 (high-pollution group).
Note that temporal changes in FC for three representa-
tive years are only shown as examples, as their
patterns for 1997, 2002, and 2007 are quite similar to
those in 1996–1999, 2000–2004, and 2005–2008,
respectively.

From the figure, the intermediate pollution group
was shown to be dominant in 1997 (or between 1996
and 1999). The water quality then deteriorated greatly
at some monitoring locations for the subsequent five
years (2000–2004), while others did not. The water
quality has improved again in recent years (2005–
2008), displaying relatively good water quality condi-
tions that were less than 250 CFU/100 mL along the
river. However, FC was routinely found in Uchi (UC,
upstream of Gwangju City) and the Gwangju Tribu-
tary monitoring stations regardless of the temporal
changes, which was consistent with our previous stud-
ies [2,16]. The results also showed that the monitoring
stations in the Hwangryong and Hampyeong Tribu-
taries were considered as potential hotspots since they
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were partially responsible for water quality degrada-
tion during 2000–2004.

To describe the overall variation of variables in
individual clusters in further detail, we employed a
new indicator, referred to as the concentration index
[10]. The concentration index is analogous to the CD
index, except that it uses the average values of the
group and whole data rather than the standard devia-
tion, and does not estimate the sum (of the discriminat-
ing property) of individual groups (Eqs. (2) and (3)).
Similar to the CD, the concentration index of a variable
can be estimated using the ratio of the mean of the
cluster to that of the whole data, which is then con-
verted to a percent after multiplying it by 100. The dis-
tribution of the concentration index for 24 variables is
illustrated in Fig. 4, where individual clusters (i.e. clus-
ters 2, 1a, and 1b) represent (a) high-, (b) medium-,
and (c) low-pollution groups, respectively. In the high-

pollution group for FC (i.e. cluster 2), some water
qualities (e.g. BOD, COD, SS, TN, TP, and COND) and
land use variables (e.g. Urban and Barren) achieved
high concentration index values (%). This finding was
very similar to the relationship shown using the com-
ponent planes (Section 3.1), indicating that these vari-
ables were mainly responsible for the increased levels
of FC. However, no distinct relationship between FC
and other variables was observed in the intermediate
pollution group (i.e. cluster 1a). In the low-pollution
group (i.e. cluster 1b), a few land use variables such as
wetland, rangeland, and water contributed, to some
extent, to decreasing FC concentrations. These results
confirm the complexity of constructing a single regres-
sion model from the entire data set, illustrating why
the models developed from more homogeneous
groups best account for the amount of variation of FC
in the river.

Fig. 2. Net output of a SOM analysis: a unified distance matrix (U-matrix) and component planes for 24 variables. The
variables under different categories are divided by solid (black) lines. Changes in individual variables are indicated by
the (jet) color bar.
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3.3. Multiple regression models

Previous studies have proposed several indices
(i.e. SI, RI, and CD) that could be employed to identify
significant variables from the data set in the SOM, in
addition to the widely used SRC index. Table 3 pre-
sents a list of significant variables and their corre-
sponding values, which are estimated based on these
indices (Section 2.4). When we considered the top 10
variables only, each index provided various types of
important variables due to the differences in the
implemented algorithms. Of these, land use variables
were considered as the most important parameters in
SI, whereas RI selected weather variables—which had
a significant effect on the map organization. Also, the
dominant parameters in CD consisted of a mixture of
water quality and climate variables; SRC was mainly
characterized by water quality variables. From these
results, there seems to be an apparent discrepancy
between these indices in determining significant vari-
ables, as their performance substantially varied
depending on data sets.

Five different regression models were constructed
to determine the best model for predicting FC concen-
trations in a river. Four different models were devel-
oped using the forced entry of the top 10 variables
from the indices recommended above. MLR-Backward
was used as the reference model to allow for a com-
parison of the prediction performance between them.
Table 4 presents the overall performance summary of
the regression models evaluated in both the test and
validation data sets (divided into a ratio for 7:3). In
the table, R indicates the correlation coefficient
between the observed and predicted values of FC,
whereas R2 denotes the total amount of variation of
FC that is explained by the different models. In gen-
eral, the R value approaches 1 as the predicted data
matches well with the observed data, and the amount
of variance accounted for (i.e. R2) increases as more
variables are included in the models. From the table,
it was found that MLR-Backward (66.1%) best
explained the variation of FC in the test data set, fol-
lowed by MLR-SRC (44.8%), MLR-RI (41.7%), MLR-SI,
(41.4%), and MLR-CD (39.7%). However, the best pre-
diction performance in MLR-Backward could partially
be attributed to the small sample size, as 16.2% of the
water level data that was included in the model was,

Fig. 3. Spatial and temporal distribution of FC concentra-
tions in the Yeongsan River in Korea for (a) 1997, (b) 2002,
and (c) 2007. The sizes and colors of the circles reveal three
main clusters and five different levels of FC concentra-
tions, respectively.

Fig. 4. Overall variation of 24 variables in three different
clusters obtained using the concentration index: (a) cluster
2 (high-pollution group), (b) cluster 1a (intermediate pollu-
tion group), and (c) cluster 1b (low-pollution group).
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in fact, lost. In the validation data set, MLR-RI showed
a remarkable improvement of the prediction ability
(R = 0.613 and R2 = 0.376); as compared to the other
models, its performance was found to be quite compa-
rable with MLR-Backward (R = 0.645 and R2 = 0.416).
The Durbin–Watson values fell between 1 and 3 in the
test and validation data sets, indicating that no serial

correlation existed in the constructed models. Given
all of the above, RI appears to provide the best vari-
ables for predicting the FC concentration in a river
among the tested indices, although its performance is
slightly lower than MLR-Backward.

Table 5 shows important variables that should be
retained in the regression models for the test data set.

Table 3
List of significant variables that are ranked based on four indices (SI—structuring index, RI—relative importance,
CD—cluster description, and SRC—Spearman’s rank correlation) in a SOM

Rank SIa Values RI Values CD Values SRCb Values

1 Barren 337.28 RH 10.35 Wetland 8.29 TN 0.68c

2 Urban 333.43 SD 9.72 BOD 3.83 BOD 0.65
3 WS 328.12 WS 7.82 SS 3.76 TP 0.63
4 SD 308.44 Barren 7.66 SD 3.75 SS 0.62
5 CA 290.62 AT 6.28 DO 3.54 COD 0.61
6 Rangeland 287.03 Agriculture 5.58 COD 3.37 pH −0.59
7 Forest 284.82 CA 5.45 TP 3.34 AT −0.56
8 RH 280.64 Water 5.44 CA 3.30 COND 0.56
9 Agriculture 274.19 RD 5.35 RD 3.23 Water −0.54
10 Water 273.73 Urban 5.25 AT 3.22 DO −0.54
11 RD 263.41 Forest 3.56 TN 3.19 Forest −0.51
12 AT 254.68 Rangeland 3.18 WT 3.18 WT 0.49
13 Wetland 240.21 FC 3.17 Rangeland 3.12 WS 0.47
14 TN 224.90 TN 3.10 FC 3.12 Wetland −0.47
15 FC 196.40 SS 3.05 WS 3.10 Barren 0.45
16 COND 182.00 TP 2.21 Urban 3.09 Urban 0.31
17 TP 164.80 WT 2.19 COND 3.08 WL 0.30
18 SS 162.98 DO 2.14 RH 3.08 CA −0.23
19 WT 157.16 COND 1.86 Barren 3.07 Rangeland −0.20
20 pH 131.73 pH 1.82 pH 3.05 RD 0.13
21 WL 119.25 COD 1.70 Forest 3.05 Agriculture −0.05
22 BOD 105.01 WL 1.49 WL 3.04 SD 0.04
23 COD 96.73 BOD 1.41 Water 3.03 RH −0.02
24 DO 89.38 Wetland 0.22 Agriculture 3.01 – –c

aFor explanation of variable abbreviations, refer to Table 2.
bSRC omits one variable in the list since the correlation between FC and itself is always 1.
cBold letter indicates p-value is less than 0.05.

Table 4
Evaluation of the predictive ability of different regression models for the test and validation data sets

Modela
R

R2 Adjusted R2 Durbin–Watson

Test Validation Test Validation

MLR-Backward 0.813 0.645 0.661 0.633 1.933 1.740
MLR-SI 0.643 0.591 0.414 0.379 1.471 1.810
MLR-RI 0.645 0.613 0.417 0.382 1.337 1.832
MLR-CD 0.630 0.473 0.397 0.361 1.669 2.037
MLR-SRC 0.669 0.491 0.448 0.414 1.861 2.093

aAbbreviations: MLR = multiple linear regression, SI = structuring index, RI = relative importance, CD = cluster description, and

SRC = Spearman’s rank correlation.
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Table 5
Important variables from five regression models for the test data set

Modela Variableb

Unstandardized
coefficient

Standardized coefficient
B SEc β

MLR-Backward (Constant) −6.65 3.12
CA −3.88 0.96 −1.14*d

SD −0.01 0.00 −1.08*

RH 0.33 0.06 0.76*

TN 0.16 0.03 0.51*

WS 2.18 0.33 0.45*

COND 0.00 0.00 0.38*

AT 0.82 0.19 0.37*

COD −0.16 0.05 −0.31*

WL −0.41 0.13 −0.21*

Urban 0.60 0.26 0.21*

Agriculture −0.56 0.20 −0.21*

MLR-SI (Constant) −1.52 3.55
Urban 1.33 0.27 0.48*

CA −1.59 0.78 −0.45*

RH 0.18 0.06 0.39*

WS 1.83 0.38 0.36*

Forest −0.40 0.19 −0.18*

MLR-RI (Constant) −3.77 3.60
CA −2.77 1.03 −0.79*

SD 0.00 0.00 −0.75*

RH 0.27 0.09 0.59*

Urban 1.28 0.27 0.47*

WS 1.85 0.38 0.36*

Agriculture −0.55 0.26 −0.22*

AT 0.37 0.17 0.18*

Water −0.57 0.28 −0.17*

MLR-CD (Constant) 5.06 3.66
TP 1.61 0.41 0.48*

CA −0.78 0.50 −0.22*

Wetland −1.56 0.58 −0.19*

SD 0.00 0.00 −0.19*

MLR-SRC (Constant) 3.13 2.20
BOD 0.12 0.05 0.45*

COD −0.10 0.05 −0.29*

COND 0.00 0.00 0.28*

pH −0.66 0.23 −0.20*

Water −0.62 0.21 −0.18*

DO 0.14 0.06 0.18*

aAbbreviations: MLR = multiple linear regression, SI = structuring index, RI = relative importance, CD = cluster description, and

SRC = Spearman’s rank correlation.
bFor abbreviation and transformation of variables, refer to Table 2.
cSE denotes the standard error of the unstandardized coefficient B.
dAsterisk (*) indicates p-value is less than 0.05.
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In the table, the unstandardized coefficient B explains
the degree of influence of a variable on the predicted
values when other variables remain constant. In
contrast, the standardized coefficient β represents the
relative importance of each variable in the model.
From the table, though MLR-Backward included as
many variables as possible in the model, only a small
number of variables (among the 10 variables entered
intentionally from the 4 indices) were retained in the
remaining models. Interestingly, both MLR-Backward
and MLR-RI selected the same climate variables
(i.e. CA, SD, RH, WS, and AT) as important predic-
tors, although the number and types of variables var-
ied across the models. In addition, their relative
importance was found to be similar between the two
models when we compared the ranking of those
variables in order of significance. In other words, not
only were the variables CA and SD identified as the
most significant variables in MLR-Backward and
MLR-RI, but they were almost equally important in
each model (i.e. see β coefficient values). However, the
variance inflation factor that assessed the degree of
multicollinearity increased significantly when these
variables were simultaneously involved in any of the
models under consideration (i.e. MLR-Backward,
MLR-RI, and MLR-CD). Therefore, one of the two
should be carefully removed in further regression
models. The standardized coefficients of all important
variables considerably decreased in the remaining
models, indicating that these variables played a minor
role in the FC prediction.

4. Conclusions

In this present study, we describe a new method
for constructing reliable regression models using
important variables recommended by four different
indices (SI, RI, CD, and SRC) from the SOM. Overall,
13 years of water quality, climate, and land use data
were compiled from various monitoring locations
along the Yeongsan River in Korea, which were used
as inputs for the SOM and MLR analyses. The perfor-
mance of the reference model MLR was compared to
the models developed from the four indices in the
SOM. The main conclusions of this study are as
follows.

(1) The nonlinear relationship between FC and
other variables was fairly well addressed by the
SOM. However, the tool itself did not directly
describe the properties of individual clusters
and influence of variables on the FC prediction,
unless specifically modified to do so.

(2) Reducing the number of clusters obtained from
the SOM by default increased the discriminat-
ing ability of the partitioned clusters, from
which various water pollution hotspots could
then be readily identified. The concentration
index effectively described variable patterns in
the clusters, implying the necessity of regres-
sion models at the cluster level (rather than the
entire data set) to increase its performance.

(3) The contributions of variables in the four
indices were assessed differently due to the
various algorithms implemented in the SOM.
On average, a model combining MLR and RI
(i.e. MLR-RI) displayed a good prediction per-
formance compared to the original model (i.e.
MLR-Backward). Although both models
included the same climate variables as predic-
tors, however, there was a need to carefully
remove highly correlated variables to avoid the
multicollinearity issue.

It should be noted that the regression analysis
results described above are provisional and may be sub-
ject to change in rivers having different environmental
settings. Therefore, further research is required to verify
the effectiveness of these indices for the development of
a more robust model using updated or new data sets.
As an excellent example of the proposed methodology,
statistical models including real-time data provide
timely information to control mortality or disease rates
of fishes in high-density aquafarms via water quality.
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