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ABSTRACT

A novel diagnosing faults method is presented using a Bayesian network (BNT) model to opti-
mize system diagnosis for a wastewater treatment plant (WTP) in northern China. The BNT
model is established according to the expert knowledge based on local conditions. The histori-
cal data of the WTP are employed to implement the parameter learning of the BNT model.
Some practical cases are carried out by the BNT model based on the Bayesian inference. The
diagnostic results are compared with the monitoring data of that day to verify accuracy of the
BNT model. Meanwhile, several fault diagnosis results and improvement measures are given
in this study. The results show that the proposed method is robust enough to diagnose the
faults quickly and accurately so as to optimize the operation of the WTP.

Keywords: Bayesian network model; Fault diagnosis; Wastewater treatment plant; A2/O
process; Bayesian inference

1. Introduction

With the rapid development of industrial and pop-
ulation growth and urbanization of China in the last
decades, the wastewater is greatly increasing, resulting
in high frequency of river pollutions and tremendous
pressure for wastewater treatment plant (WTP) [1].
The effective wastewater treatment becomes a key fac-
tor to ensure the security of water environment [2].
Therefore, all the treatment processes of WTP should
be properly operated and the faults should be reduced
to improve purifying capacity.

The water quality of raw wastewater always
changes with the time, so that the processes parameters

of WTP should be adjusted according to the changes.
Otherwise, the process parameters will be unmatched
resulting in the purifying capacity dropping and fault
appearing. Meanwhile, the equipment failures and
human errors usually happen in the complex systems
in WTP, including many processes and according to
multitudinous parameters. Such faults can lead to
unqualified effluent water quality of WTP. The quick
fault diagnosis of WTP is necessary as it is capable of
finding out the source of fault and keeping the purify-
ing capacity stable. The fault diagnosis technology is a
way to find out the source and reason for the fault
through some key visible and measurable indexes, and
several solutions can be given by the technology [3].
Several methods, including Artificial Neural Network
(ANN) [4,5], Support Vector Machine (SVM) [6,7], and*Corresponding authors.
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Rough Sets Theory (RS) [8,9] are used in fault diagnosis
by scholars from different countries. These fault
diagnosis methods have been applied previously in
power systems.

In recent years, Bayesian method has been increas-
ingly applied to study uncertainty in many fields. The
prominent advantage of Bayesian statistics is their
capability of transforming the uncertainty problem
into estimated model parameters in terms of a joint
posterior distribution [10–15]. Bayesian networks
(BNT) based on Bayesian statistics have been applied
increasingly to study fault diagnosis using more intu-
itive graphics and an exact probabilistic inference
method, which is excellent to point out the complex
and uncertainty problem [16–18]. In order to increase
the diagnostic accuracy of ground-source heat pump
(GSHP) system, especially for multiple-simultaneous
faults, Yonghong Liu proposed a multi-source infor-
mation fusion-based fault diagnosis methodology
using BNT. BNTs are considered as one of the most
useful models in the field of probabilistic knowledge
representation and reasoning, as the capability of deal-
ing with the uncertainty problem of fault diagnosis.
The cases show that the multi-source information
fusion-based fault diagnosis model using Bayesian
network is effectual for GSHP system [19]. A Bayesian
network is used to address the fault diagnosis of
motor bearing. The results also show the proposed
Bayesian model can diagnose faults effectively [20].
Ferat Sahin has successfully implemented a fault diag-
nosis technique for airplane engines using the particle
swarm optimization (PSO) algorithm for learning the
structure of a BN from a large data-set. The results
show that a Bayesian network can be learned from
engine data and successful inference can be performed
to detect the anomalies or faults in the sensor readings
of an airplane engine [21]. The studies indicate that
the BNT is a robust tool for fault diagnosis, which can
significantly increase the diagnostic accuracy. How-
ever, the BNTs are seldom used in the fault diagnosis
of WTP systems.

In this paper, a BNT model is employed to address
the fault diagnosis of a WTP in northern China. All
parameters of the WTP are analyzed by the expert
knowledge based on local conditions, including the
raw water quality, effluent water quality, and the con-
trolled parameters. Some key parameters are used as
nodes to set up the BNT model. The historical data of
the WTP are used to implement the parameter learn-
ing of the BNT. Some practical cases are carried out
by the BNT model based on the Bayesian inference.
Meanwhile, several fault diagnosis results and
improvement measures are given in this study. The
BNTs is supposed to be a useful tool for improving

purifying ability of wastewater and finding out the
faults quickly and accurately so as to optimize the
operation of the WTP.

2. Materials and Methods

2.1. Study WTP and data source

The multiple-influent improved A2/O process is
applied in this study instead of the traditional process,
which can denitrify the nitrates in returned activated
sludge by the addition of pre-anoxic zone in front of an
anaerobic tank. Meanwhile, the improved process can
reduce the impact of nitrates on phosphorus release in
the anaerobic zone and ensure the stable operation of
anaerobic phrase [22]. In addition, the multiple-influent
wastewater flows down the pre-anoxic and anoxic
zones according to a certain proportion which can solve
the problem of poor carbon source for denitrification to
improve the nitrogen removal efficiency. The diagram
of the detailed process is shown in Fig. 1.

First, the denitrification of the returned activated
sludge is completed in the pre-anoxic zone which can
reduce the competition between denitrifying bacteria
and PAOS for carbon sources. Wastewater together
with the returned sludge from clarifier flowed into the
anaerobic phrase, completed the ammoniation reaction
and removed a part of BOD5. The major function of
anoxic zone is to accomplish the nitrate–nitrogen deni-
trification flowing from the aerobic zone by the inner
loop. The ammoniation of organic nitrogen and nitrifi-
cation of NH3–N can be completed in the aeration
zone with further removal of BOD5 and COD. The
wastewater is then separated into sludge and water in
a secondary clarifier and a proportion of sludge is
pumped into the pre-anoxic zone with a small part
discharged as excess sludge. Finally, the supernate is
discharged as treated water.

The data of water quality and process parameters
are considered in this study including raw water qual-
ity, effluent water quality, and key control parameters
of the process. Daily, data are collected for two years
in a WTP of northern China. The data are used to
train the BNT model. Considering the local conditions
and wastewater discharge standard [23], the raw
water quality and effluent water quality are designed
in Table 1. Some key control parameters of the process
are designed in Table 2.

2.2. Bayesian approach

2.2.1. Bayesian network

A Bayesian network is a probabilistic graphical
model (a type of statistical model) that represents a
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set of random variables and their conditional depen-
dencies via a directed acyclic graph (DAG). For exam-
ple, a Bayesian network could represent the
probabilistic relationships between diseases and symp-
toms. Given the symptoms, the network can be used
to compute the probabilities of the presence of various
diseases. Formally, Bayesian networks are DAGs
whose nodes represent random variables in the Baye-
sian sense: they may be observable quantities, latent
variables, unknown parameters, or hypotheses. Edges
represent conditional dependencies; nodes that are not
connected represent variables that are conditionally

independent of each other. Each node is associated
with a probability function that takes, as input, a par-
ticular set of values for the node’s parent variables,
and gives (as output) the probability (or probability
distribution, if applicable) of the variable represented
by the node. For example, if m parent nodes represent
m Boolean variables then the probability function
could be represented by a table of 2m entries, one
entry for each of the 2m possible combinations of its
parents being true or false. Efficient algorithms exist
that perform inference and learning in Bayesian
networks [24].

Fig. 1. Improved A2/O process of a WTP in north China.

Table 1
Design of raw water quality and effluent water quality of the WTP

Parameter pH CODcr (mg/L) BOD5 (mg/L) SS (mg/L) NH3-N (mg/L) TN (mg/L) TP (mg/L)

Raw water quality 6.5–9.0 500 220 250 40 50 5.0
Effluent water quality 6.0–9.0 60 20 20 8(15a) 20 1.0

aIt is the control value when water temperature is under 12˚.

Table 2
Some key control parameters of the A2/O process of the WTP

Parameters of the process Values

Mixed liquor suspended solids (MLSS)/(mg/L) 3,000–4,000
TN loading (LTN)/kg TN/(kg MLSS d) <0.05
TP loading (LTP)/kg TN/(kg MLSS d) <0.06
Sludge return ratio (R/%) 50–70
Nitrification liquid reflux ratio (Rinterior /%) 100–150
Dissolved oxygen of aerobic tank (DO)/(mg/L) 2.0–3.5
Hydraulic retention time (HRT)/h 19.5
Oxido-reduction potential of anoxic tank (ORP)/(mv) ≤–100
Sludge loading (F/M ratio)/kg BOD/(kg MLSS·d) 0.1–0.2
Sludge volume index (SVI) 70–150
Carbon nitrogen ratio (COD/TN) >8
BOD5/TP >17
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2.2.2. Learning and Inference

The learnings include parameter and structure. In
order to fully specify the Bayesian network and thus
fully represent the joint probability distribution, it is
necessary to specify for each node X the probability dis-
tribution for X conditional upon X’s parents. The distri-
bution of X conditional upon its parents may have any
form. Often these conditional distributions include
parameters which are unknown and must be estimated
from data, often using the maximum likelihood or
Bayesian estimation approach [25]. The Bayesian esti-
mation approach is used to perform parameter learning
in this study. In the simplest case, a Bayesian network
is specified by an expert and is then used to perform
inference. In other applications the task of defining the
network is too complex for humans [26]. In this case,
the network structure and the parameters of the local
distributions must be learned from data. In the study,
the network structure is specified by known expert
because the network is not complex.

Because a Bayesian network is a complete model
for the variables and their relationships, it can be used
to answer probabilistic queries about them. For exam-
ple, the network can be used to find out updated
knowledge of the state of a subset of variables when
other variables (the evidence variables) are observed.
This process of computing the posterior distribution of
variables given evidence is called probabilistic infer-
ence. The posterior gives a universal sufficient statistic
for detection applications, when one wants to choose
values for the variable subset for minimizing some
expected loss function, for instance the probability of
decision error. A Bayesian network can thus be con-
sidered a mechanism for automatically apply-
ing Bayes’ theorem to complex problems. The
inferences include causal inference (forward inference)
and diagnostic inference (reverse inference). The two
inferences are used in this study. The forward infer-
ence is used to predict and analyze and reverse infer-
ence is used to find the cause of fault. Two inference
algorithms are usually used, including accurate infer-
ence algorithm and approximate inference algorithm
[27]. Clique tree propagation algorithm is used in
inference in this study, which is accurate inference
algorithm. Meanwhile, the software Netica 5.05 is used
to perform the inference and analysis.

2.3. The BNT model for fault diagnosis in the WTP

2.3.1. The node of BNT model

Theoretically, although all factors can be taken as
the node of BNT model, a complex BNT model is

susceptible to bad training and might harm the perfor-
mance of the network [2]. Many parameters change
slightly in all processes and can be treated as a con-
stant. The literature indicates that an appropriate BNT
model has good inferential capability [28]. Therefore,
some key parameters are selected as the nodes of the
BNT model, including raw water quality, effluent
water quality, and control parameters. Three kinds of
node are shown in Table 3.

The ORP is supposed to reflect the influence on
the life and activity of micro-organism by the DO.
And the FM can express accurately the change in
sludge age (SRT) for they are correlated closely. The
FM is used to express the SRT in this study for it can
be easily obtained. The sludge return ratio is con-
trolled in a reasonable range and can be adjusted
according to practical scenes. Other control parameters
always change slightly and are taken as constants.

2.3.2. Definition of node status of BNT model

Discretization is done for all variables, including
raw water quality, effluent water quality, and control
parameters. The statuses of all variables (nodes) are
defined by expert knowledge and practical conditions.
The effluent water quality must reach the B standard
in the first level of wastewater discharge standard
[20]. The status of the variable is defined from the
average value or designed value by the Gaussian dis-
tribution, including low value, high value, and normal
value. The statuses of all variables are shown in
Table 4.

2.3.3. Structure of BNT model

Based on the expert knowledge, literature investiga-
tion, and operation situation of the WTP, the relation-
ship of all nodes are defined to build the BNT model.
The structure of the BNT model is shown in Fig. 2,
including upper layer, inter layer, and lower layer. The
variables of raw water quality are in the upper layer,
the variables of effluent water quality are in the lower
layer, and the variables of all control parameters are in
the inter layer. The arrows express the relationship of
nodes in the BNT model. FM can be affected by
COD_in, Q, and MLSS. COD_out and NH3_out are both
affected by FM, T, and DO. Meanwhile, NH3_in can
influence NH3_out. The CN, T, and ORP are important
factors to influence denitrification. Denitrification can
be weakened under lacking carbon source. A low water
temperature will restrain the movement of denitrifying
bacteria resulting in a low biological treatment effi-
ciency. The ORP can be affected by R_interior and DO.
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Table 3
Three kinds of variables in the BNT model

Node Symbol

Type Name
Raw water quality COD COD_in

NH3-N NH3_N
TN TN_in
Quantity Q

Effluent water quality COD COD_OUT
NH3-N NH3_OUT
TN TN_OUT

Control paramaters Water temperature T
Sludge loading (FM ratio) FM_ratio
Mixed liquor suspended solids (MLSS) MLSS
Carbon nitrogen ratio (COD/TN) CN_ratio
Nitrigfication Liquid reflux ratio (Rinterior) R_interior
Dissolved oxygen of aerobic tank (DO) DO
Oxido-reduction potential of anoxic tank (ORP) ORP

Table 4
Definition of node status of BNT model

Variable
Symbol Unit

Status

Type Name Low Normal High

(a) Raw water quality
Raw water quality COD COD_in mg/L <500 500–620 >620

NH3_N NH3_N mg/L <40 40–65 >65
TN TN_in mg/L <50 50–80 >80
Quanity Q mg/L <55,000 55000–

65000
>65000

(b) Control parameters
Control parameters Sludge loading FM_ratio kg COD/

(kg MLSS d)
<0.1 0.1–0.2 >0.2

Mixed liquor suspended solids MLSS mg/L <3000 3000–4000 >4000
Water temperature T <10 10–20 >20
Carbon nitrogen ratio CN_ratio – <8 – >8
Nitrification liquid reflux ratio R_interiro % <100 100–150 >150
Dissolved oxygen of aerobic tank DO mg/L <2.0 2.0–3.5 >3.5
Oxido-reduction potential of aerobic
tank

ORP mv <–100 – >–100

(c) Effluent water quality

Variable Symbol Unit State

Type Name Normal – Abnormal
Effluent water

quality
COD COD_out mg/L <60 – >60

NH3_N NH3_N mg/L <8 – >8
TN TN_out mg/L <20 – >20
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A high R_interior or DO indicates that excess dissolved
oxygen will be taken into the pre-anoxic zone resulting
in abnormal ORP.

2.3.4. Parameter of BNT model

Besides the structure of BNT model, the parameter
of BNT model is also a key element for modeling. The
model is trained by historical data. The training data
include 630 groups monitoring data of a WTP in
northern China, such as raw water quality, effluent
water quality, and control parameters. The software
Netica 5.05 and clique tree propagation algorithm are
used to train the BNT model. The training results are
prior probabilities of all nodes in the Bayesian
network. When new failure data of the WTP are
considered, posterior probabilities of the nodes will be
computed by Bayesian estimation. The faults of the
processes can be diagnosed from the posterior
probabilities.

2.3.5. Model fitting test and application

A real fault case of the WTP is given to illustrate
the application of the proposed BNT model. The diag-
nostic result with BNT model will be compared with
the real cause of the fault, which is obtained from
many tests and adjustment of the processes. The cor-
rectness of BNT model will be verified. At the same
time, solution of the fault will be given to help man-
agers to correct and adjust the processes resulting in
improving wastewater purification ability.

3. Results and discussion

3.1. Prior probability of the BNT model

The BNT model is trained with historical data. The
more enough data can be considered for training the

model, the more accurate results will be obtained.
Usually, the enough data should include much histori-
cal data and fault information. Therefore, in this
study, 630 groups monitoring data of a WTP in north-
ern China are selected as training data, including
some fault information. And the training results are
prior probabilities of all nodes in the Bayesian net-
work. Marginal probability distribution or joint proba-
bility distribution is computed for each node of the
BNT model. Especially, the prior probability is mar-
ginal probability for the nodes with no father node,
including Q, COD_in, NH3_in, TN_in, MLSS, Do, T,
and R_interior. Meanwhile, the prior probability is a
joint probability for the nodes with a father node. The
prior probabilities of all nodes are shown in Fig. 3.

3.2. The validation and application of the BNT model in
the WTP

The developed BNT model is applied in a real
fault case of the WTP to demonstrate its validation to
diagnose fault in optimized operation of the WTP. The
effluent water quality is found abnormal at T0 (some
time) of some day in December of 2013. The real fault
case contains three points: (1) COD_out > 60 mg/L, (2)
NH3_out > 8 mg/L, and (3) TN_out is normal. In
order to make the reasoning results more precise, the
reasoning process is going stepwise. Four steps are
designed: (1) A: the prior probability with no new
information (evidence), (2) B: the posterior probability
with abnormal NH3_out, (3) C: the posterior probabil-
ity with abnormal COD_out and NH3_out, and (4) D:
the posterior probability with control parameters of
processes.

The reasoning process is shown in Table 5. And
the probability of nodes in A is similar to Fig. 4. Most
statuses are normal in the nodes of A. The new evi-
dence is inputted, where NH3_out is abnormal, the
posterior probability is estimated by the BNT model.
The change can be seen in B row:

(1) The probability of abnormal rises from 0.098 to
0.306 for COD_out.

(2) The probability of abnormal rises from 0.128 to
0.347 for TN_out.

(3) The probability of high rises from 0.046 to
0.187 for FM_ratio.

(4) The probability of low rises from 0.057 to 0.270
for DO.

(5) The probability of low rises from 0.087 to 0.186
for T.

(6) The probability of high rises from 0.057 to
0.148 for NH3_in.

FM_ratioMLSS DO

ORP

NH3_inQ COD_in

COD_out

T

NH3_out

CN_ratio

R_interior

TN_out

TN_in

Fig. 2. Model structure of diagnostic BNT.
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The main causes are analyzed according to the
above change in probability and actual conditions: (1)
FM_ratio is high, (2) DO is low, (3) T is low, and (4)
NH3_in is high. One or more causes lead to abnormal
NH3_out. Though the probability of abnormal factor
rises for TN_out, it is still in a normal range at T0

from monitoring record of that day. But the COD_out
is abnormal from the record. New evidences are

obtained from new monitoring data, including Q,
COD_in, NH3_in, and TN_in. The hydraulic retention
time (HRT) is 19.5 h. Because we can find the fault
19.5 h later than the real happened time, the new evi-
dence is the monitoring data 19.5 h before than the
time we find the fault. The posterior probability is
estimated by new evidences, which can be seen in C
row of Table 5.

Q
low
normal
high

5.21
91.4
3.43

MLSS
low
normal
high

3.68
91.6
4.75

T
low
normal
high

8.68
84.6
6.75

TN_in
low
normal
high

3.41
94.5
2.09

COD_in
low
normal
high

3.24
92.5
4.26

NH3_in
low
normal
high

3.28
91.0
5.68

CN_ratio
low
high

5.03
95.0

DO
low
normal
high

5.68
91.6
2.75

FM_ratio
low
normal
high

7.12
88.3
4.59

ORP
low
high

95.7
4.34

R_interior
low
normal
high

2.68
94.6
2.75

COD_out
normal
abnormal

90.2
9.81

NH3_out
normal
abnormal

91.6
8.43

TN_out
normal
abnormal

89.6
10.4

Fig. 3. Prior probability of all nodes in the Bayesian network.

Table 5
Reasoning process of fault diagnosis based on Bayesian network

Node Status A B C D Node Status A B C D

Q Low 0.052 0.107 0 0 FM_ratio Low 0.071 0.099 0.043 0.053
Normal 0.914 0.855 1 1 Normal 0.883 0.714 0.822 0.870
High 0.034 0.038 0 0 High 0.046 0.187 0.135 0.077

COD_in Low 0.032 0.037 0 0 DO Low 0.057 0.270 0.707 0
Normal 0.925 0.884 1 1 Normal 0.916 0.722 0.288 1
High 0.043 0.079 0 0 High 0.027 0.008 0.005 0

NH3_in Low 0.033 0.048 0 0 MLSS Low 0.037 0.090 0.042 0
Normal 0.910 0.804 1 1 Normal 0.916 0.874 0.896 1
High 0.057 0.148 0 0 High 0.047 0.036 0.062 0

TN_in Low 0.034 0.033 0 0 T Low 0.087 0.186 0.343 0.907
Normal 0.945 0.946 1 1 Normal 0.846 0.754 0.608 0.089
High 0.021 0.021 0 0 High 0.067 0.060 0.049 0.004

COD_out Normal 0.902 0.694 0 0 ORP Low 0.957 0.959 0.970 1
Abnormal 0.098 0.306 1 1 High 0.043 0.041 0.030 0

NH3_out Normal 0.916 0 0 0 CN_ratio Low 0.050 0.054 0.011 0.011
Abnormal 0.084 1 1 1 High 0.950 0.946 0.989 0.989

R_interior low 0.027 0.028 0.027 0 TN_out Normal 0.896 0.871 1 1
Normal 0.946 0.945 0.953 1 Abnormal 0.104 0.129 0 0
High 0.027 0.027 0.020 0
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The changes are obtained from B to C:

(1) The probability of normal rises from 0.714 to
0.822 for FM_ratio.

(2) The probability of low rises from 0.270 to 0.707
for DO.

(3) The probability of low rises from 0.186 to 0.343
for T.

The main causes are also analyzed for abnormal
COD_out and NH3_out. There are two causes: (1) DO
is low and (2) T is low. Meanwhile, the FM_ratio
returns to normal. Some control parameters of pro-
cesses will be inputted in the BNT model as new evi-
dences. MLSS is 3,186 mg/L (normal). R_interior is
150% (normal). ORP is −179 mv (low). DO is 2.2 mg/L
(normal). The diagnostic result is shown in Fig. 4,
which is similar to D row in Table 5.

The result indicates that FM_ratio further returns
to normal. But, the probability of low factor rises from
0.343 to 0.907 for T. Other parameters are all in nor-
mal status. So, low temperature is the main cause for
abnormal COD_out and NH3_out. The diagnostic
result is compared with the monitoring data of that
day. The water temperature of the day is only 7
degree. The movement of micro-organism can be
restrained resulting in bad aerobic degradation and
nitrification. The purifying capacity of wastewater
drops and COD_out and NH3_out are abnormal.
Previously, the real cause of fault was obtained from
many tests, so it would require much time and
persons to find and usually cost much money. Now

the cause can be reasoned quickly and accurately by
the BNT model. The diagnostic result is consistent
with the real scene. It indicates the BNT model is a
robust tool for fault diagnosis in WTPs.

The improvement measures will be given for the
diagnostic result in this paper. Return sludge ratio
should be increased and sludge emissions should be
reduced for keeping quantity of the microorganism
high and reducing the FM_ratio. At the same time,
aeration should be enhanced for good nitrification.
The WTP is located in north China and the local cli-
mate has distinct seasonal variation. The difference in
average water temperature between summer and win-
ter exceeds 30˚, so raw wastewater and other parame-
ters of the WTP have obvious seasonal characteristics.
Therefore, an air heater and an air blower should be
used in the aeration tank to enhance air temperature
in winter. The sludge is heated properly. And heat
preservation should be done for all structures of the
WTP for improving removal efficiency of micro-organ-
ism under a low temperature condition.

4. Conclusion

In this paper, a BNT model is used to address the
fault diagnosis of a WTP in northern China. All vari-
ables are analyzed in WTP by expert knowledge based
on local condition, the BNT model is established
according to some important variables, including raw
water quality, effluent water quality, and some key
control parameters. The historical data of the WTP are
used to implement the parameter learning of the BNT

Q
low
normal
high

   0
 100

   0

MLSS
low
normal
high

   0
 100

   0

T
low
normal
high

90.7
8.86
0.42

TN_in
low
normal
high

   0
 100

   0

COD_in
low
normal
high

   0
 100
   0

NH3_in
low
normal
high

   0
 100
   0

CN_ratio
low
high

1.14
98.9

DO
low
normal
high

   0
 100
   0

FM_ratio
low
normal
high

5.33
87.0
7.68

ORP
low
high

 100
   0

R_interior
low
normal
high

   0
 100
   0

COD_out
normal
abnormal

   0
 100

NH3_out
normal
abnormal

   0
 100

TN_out
normal
abnormal

 100
   0

Fig. 4. Posterior probability of all nodes in the BNT model.
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model. Some practical cases would be carried out by
the BNT model based on the Bayesian inference. The
diagnostic result is compared with the monitoring
data of that day. Previously, the real cause of fault
was obtained from many tests, so it requires much
time and persons to find and maybe cost much
money. Comparing with the traditional method, the
prominent advantage of BNT model is to reason the
fault cause quickly and accurately. The diagnostic
result is consistent with the real scene. It indicates the
BNT model is a robust tool for fault diagnosis in
WTPs.

Despite encouraging results on verification and
efficacy, the proposed model can still be improved
with more historical data, fault information, and accu-
rate expert knowledge. A more comprehensive study
on influencing factors can be done in the future study,
the fault diagnosis method will be further improved,
accordingly, the results might become even more
accurate.
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