
Modeling of activated sludge process using artificial neuro-fuzzy-inference
system (ANFIS)

R. Maachoua, A. Lefkirb,*, A. Khouidera, A. Bermadc

aLaboratory of Faculty of Chemistry, Electrochemistry-Corrosion, Metallurgy and Mineral Chemistry, USTHB, BP 32 El-Allia,
PC 16111 Algiers, Algeria
bENSTP, Laboratory of TPiTE, Algiers, Algeria, Tel. +213 21511261; email: a_lefkir06@yahoo.fr
cENP, Ecole Nationale Polytechnique, URIE, B.P. 182-16200, El Harrach, Algiers, Algeria

Received 4 June 2015; Accepted 18 October 2015

ABSTRACT

The paper describes the application of a neuro-fuzzy system in order to minimize the
energy consumption on controlling the nitrate production in the wastewater treatment plant
by activated sludge process. Neuro-fuzzy models are based on the extraction of knowledge
from data collected upstream and downstream of a treatment plant. The historical values of
the observed yields associated with the energy consumed during the study period enable
the prediction of the energy needed for a validation period. The energy is controlled by the
excess nitrates produced, which can be a symptom of over aeration. However, the simula-
tion data are divided into two samples (data filtered and data unfiltered of nitrate). The
input parameters used in this study includes the removal yields of organic pollutants
parameters and energy consumption as a decision parameter with respect to the discharge
standards. The predictive power of energy shows the feasibility and robustness of the
simulation approach with a filtered data.
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1. Introduction

Information and knowledge extraction techniques
have rapidly evolved due to the development of com-
puter tools, which help reducing the complexity of
phenomena such as biological treatment [1,2]. The bio-
logical processes during wastewater treatment are
complex and non-linear [3,4]. The randomness of the
parameters surrounding the entrance of the reactor,
specifically the inflow and polluted load, further exac-
erbate the difficulty of controlling these processes

[5,6]. The models developed by biologists are empiri-
cal, often involving too many parameters for practical
use [2]. Although deterministic models give a good
insight into the mechanism, they require a lot of hard
work before applying to a specific wastewater
treatment plant. Because kinetic parameters and
wastewater characteristics can show some fluctuations
in different periods of time when the operating
conditions are applied on a regional scale, calibration
of these models are extremely time consuming, labori-
ous, and needs extensive laboratory and computer
work [7].
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Therefore, we propose using a “neuro-fuzzy” tech-
nique based on artificial intelligence to control these
processes more effectively [8] by accounting for the
data available upstream and the downstream from the
treatment station. Developing tools based on fuzzy
logic should ameliorate the difficulties posed by math-
ematical models and translate the behavior of a com-
plex physical system [9].

The decision parameters of to the cleanup process
permit the evaluation of the performance of the treat-
ment plant by using fuzzy logic models, which have
been the subject of intense research activity. These
models include the following: (i) the amount of sludge
to be recycled in the aeration tanks [10], (ii) the dose
of oxygen to be injected in the aeration basins
[5,6,10,11], and (iii) the energy needed to reach the
treatment targets [12,13].

Therefore, this work focuses on diagnosing the
operation of an activated sludge treatment plant to
detect any problems and improve performance by
reducing the energy consumption. However, a neuro-
fuzzy model was constructed by accounting for the
elimination of the pollution parameters and the energy
consumed.

To select the parameters that dominate the model,
a statistical analysis was performed to inventory the
operation of the plant, surfacing in the output states,
and the rate of elimination. The activated sludge pro-
cess primarily enables the removal of organic matter
with a high excess of nitrate [14,15]. This analysis
allowed us to filter the training data for the neuro-
fuzzy model related to the allowable nitrate thresholds
downstream from the station. The satisfactory results
obtained with this filter were compared to those
without the filter to justify the adopted procedures
describing the energy in a wastewater treatment plant.

2. Statistical study of the station

The Boumerdes treatment plant (located in
Algeria) is within the “extended aeration activated
sludge” category. This station has a processing capac-
ity of 75,000 inhabitant equivalents with a low mass
loading (of the order of 0.076 kg DBO/kg MVS/d). It
is designed to treat domestic sewage, and the daily
nominal flow is 15,000 m3/d.

Activated sludge systems have been widely used
during the treatment of municipal wastewater [8].
These systems are composed primarily of hetero-
trophic microorganisms that degrade organic matter
[5,8]. The activated sludge treatment method is a bio-
logical treatment in a suspended culture; the necessary
equipment includes a biological reactor where the

wastewater is mixed with an aerated biomass and
maintained in suspension. The substrate in the
wastewater feeds the propagation and development of
microorganisms contained in the biomass. Portions of
the biomass are recycled in the reactor, while the other
portions are separated by decantation. Excess biomass
is extracted from the system and is called secondary
sludge.

Database collection of the downstream and
upstream from the station was conducted. The series
of data was collected daily from January 2006 until
March 2012. In addition, 185 daily data yields describ-
ing the pollution control were collected during a
weekly measurement.

The magnitude of the organic pollutants parame-
ters was more important than the nutrient pollutants,
which influences the impact of the latter. Therefore,
the raw variables were transformed such that the
dimensionless variables representing percentages of
excess were related to the standards.

Energy was treated as the maximal energy, and
the flow is reported at the nominal rate (15,000 m3/d);
the removal efficiencies were selected to represent the
pollution. The resulting values are normalized
(between 0 and 1).

A graphical representation is illustrated in Fig. 1
showing the average drawdown of the organic (SS,
BOD5, and COD), nitrogenous (NHþ

4 -N; NO�
3 -N;

NO�
2 -N, ðPO3�

4 -PÞ and TKN) and phosphorus pollu-
tants in percentages of the requirements set by the
discharge standards (AFNOR Standards).

The concentrations of PO3�
4 -P and TKN are insuffi-

ciently reduced. The activated sludge process is not
sufficient, and an additional combination treatment is
essential. The concentrations of NHþ

4 -N and NO�
2 -N

increased, but the values are below the standard.
An excess drawdown of organic pollutants (SS,

BOD, COD) was also present against an increased
concentration of nitrate (NO�

3 -N), which fell above the

Fig. 1. Representation of the pollution parameters
(input–output) relative to the AFNOR standard.
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required standards. This behavior can be explained by
over-aeration. Over aeration decreases the anaerobic
zones and consumes energy. The energy consumption
is primarily related to the amount of oxygen supplied
to the aeration basins and the sequencing aeration
periods; the latter is due to the variable NO�

3 -N con-
tent, which represents the degree of de-nitrification
that can occur at the aerators.

The performance of the purification process
relative to energy consumption is related to the
decrease in organic pollutants. However, this con-
sumption can be controlled by the excess nitrates,
which can be a symptom of over ventilation. To
account for this relationship, the filtered database was
reduced to 154 data points out of 185 relative to the
required discharge standards downstream from the
station.

3. Results and interpretations

3.1. Neuro-fuzzy modeling

In 1965, the concept of a fuzzy set was proposed
by Zadeh [16], who has contributed to the shapes of
fuzzy models; this research aimed to overcome the
limitations posed by the uncertainties in the conven-
tional models using differential equations. In 1973,
Zadeh [16] proposed the application of fuzzy logic to
control setting problems. In 1974, Mamdani [17] tested
the theory proposed by Zadeh using a steam boiler;
this equipment had a known complexity, enabling the
introduction of a fuzzy controller during the control of
an industrial process. In 1985, Sugneo [18] introduced
fuzzy logic in Japan, leading to the first industrial
products utilizing the principle of fuzzy logic to over-
come regulation and control problems [3].

The key advantage of fuzzy logic methods is how
they reflect the human mind in its remarkable ability
to store and to process information that is consistently
imprecise, uncertain, and resistant to classification
[19]. The objective of the fuzzy modeling is to obtain a
formal model that describes a natural, human, or
industrial process to gain understanding based on the
fuzzy rule. A fuzzy approach is more intuitive than
traditional modeling approaches, both probabilistic
(uncertain) or analytical (certain). The fuzzy approach
can also represent a process studied using a natural
language (imprecise) through the introduction of
descriptors such as “low,” “high,” and “very high,”
partially modeling the human approach to introduce
an interpretable system.

During our work, we focused only on the model
proposed by Sugeno (Takagi-Sugeno-Kang). In this
context, we note that several methods have been

developed to identify the parameters of these models.
Sugeno’s model established a relationship that con-
nects the analytical inputs to the output of the mod-
eled system. The model parameters are estimated by
introducing optimization methods that minimize a
specific criterion.

Two types of parameters are identified: input and
output parameters. The input parameters include the
membership functions in the partitions of the input
space. Each of these membership functions can be
described by parameters (p), where p depends on the
shape of the selected function. For Gaussian functions,
p equals two parameters (mean and standard devia-
tion). The output parameters are those appearing
during the conclusions of the rules.

3.2. Artificial neuro-fuzzy-inference system (ANFIS)
approach

A general fuzzy system has basically four compo-
nents [20]: fuzzification, fuzzy rule base, fuzzy infer-
ence, and defuzzification

(1) The fuzzification transforms the modeled fuzzy
variable into a fuzzy part. The fuzzification is
used to model the inputs of a system as curves
called membership functions. These curves
define the fuzzy sets and represent the degree
of membership for a value in a given state;
they can also have different shapes (triangle,
trapezoid, etc.).

(2) Fuzzy rule base contains rules that include all
possible fuzzy relations between inputs and
outputs.

(3) The fuzzy inference produces an image of the
fuzzy part through the fuzzification con-
structed from the fuzzy rules. When each entry
is presented based on the fuzzy inference rules,
the degree of membership for a given subset is
determined. Fuzzy inference systems (FIS) are
used to model most applications as a continu-
ous n-dimensional space in (ℜ). Unlike mathe-
matical or black box models, the representation
is made in natural language as If … Then
rules, enabling an immediate interpretation
that can be exploited in two ways: a priori,
which gives a value that might be approximate
for the different parameters of the FIS, and a
posteriori, which allows the knowledge
extracted during the optimization to be exam-
ined (we also speak of learning).

(4) The defuzzification portion converts the fuzzy
inference result to a digital output value.
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3.3. Neural learning fuzzy models (models ANFIS)

To approximate the function between the input
and the output of the system, the learning (super-
vised) process must define the basis of the fuzzy rules;
their number, premises, and conclusion minimize the
gap between the desired outputs and those inferred
by the fuzzy set.

The problems with fuzzy modeling can be
observed when identifying a fuzzy system. Conceptu-
ally, a fuzzy inference system can be identified in two
phases: identifying the model structure and estimating
the model parameters from a data-set.

3.4. Simulation and discussion

Modeling is a valuable tool in both design and
operation and can be used for process optimization
and testing of control strategies in order to meet efflu-
ent quality requirements at a reasonable cost. Neuro-
fuzzy modeling is performed to simulate the energy
consumption. The data (filtered and unfiltered) were
separated into two subsamples: the learning of the
model parameters and data validation. These subsam-
ples were selected from the filtered data and the
crimping parameters that describe the organic matter,
which does not exceed the standards.

The input parameters, including the yield, SS,
BOD, COD, and flow, are reported as named and cali-
brated with the output parameter (energy). The per-
formance of the model is tested during validation to
assess its predictive abilities.

During any modeling, simulated results must be
validated relative to the observed data. Two criteria
were adopted during this study:

(1) The mean square error criterion is used to cal-
culate the difference between the simulated
and observed values. The RMSE criterion will
be low over the gap between the values and
will be limited. RMSE is expressed as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

nobs

Xnobs
i¼1

Yimod � Yiobsð Þ2
 !vuut (1)

(2) The correlation coefficient is expressed as
follows:

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 Yiobs � �Yobs

� �� Yimod � �Ymod

� �� �
Pn

i¼1 Yiobs � �Yobs

� �2�Pn
i¼1 Yimod � �Ymod

� �2
vuut (2)

The criteria used to validate the model during
the learning and validation periods are shown in
Table 1.

The best results with respect to the RMSE criterion
are obtained with filters for the learning (12.7) and
validation periods (9.7). The filters reduce the distor-
tions between the simulated and observed values. A
better measurement of the energy is obtained when
the nitrate discharge standards are met.

The correlation coefficient of the learning period
for the first variant (filtered) (67%) is slightly lower
than the second variant (unfiltered) (70%) because the
data-set was small (185 measures). However, during
validation, the correlation coefficient for the filter with
variations (88.6%) is significantly higher than that of
the second variant (52.6%).

Therefore, a larger database that measures the
standards for the nitrate discharge will improve our
knowledge and, consequently, the model results.

Straight correlations are shown in both learning
(Fig. 2) and validation periods (Fig. 3).

In Fig. 2(a), which corresponds to the filtered vari-
ant, the distortions are decreased compared to the sec-
ond variant 2b, but the correlation coefficients are
similar.

The correlation coefficient assesses the relationship,
while the RMSE criterion is used to measure the dis-
tortion between the observed and simulated values.
The two criteria must be coupled in a proper assess-
ment model. However, the filter model performs
better during the learning period compared to the
unfiltered model when accounting for the relatively
low RMSE values and the similar correlation
coefficients (approximately 70%).

Fig. 3(a) is compared to Fig. 3(b) to display the
clear improvement of both validation criteria with the
filter model. The extra observations that fall short of
the standards for nitrates discharge in the unfiltered
variant only disrupt the reasoning model during vali-
dation because the data validation meets these stan-
dards.

The differences between the observed and simu-
lated energy function during the accumulated learning
period, which is during the neuro-fuzzy model valida-
tion, are illustrated in Figs. 4 and 5, respectively.

In all of the figures showing a relatively accurate
reproduction of the energy values and peaks, a better
reproduction is obtained with the filter, as shown in
Figs. 4(a) and 5(a).

Fig. 5(b) shows that the simulated energy is higher
than when the data are not filtered. In Fig. 5(a), the
data are filtered, and the simulated energy is similar
to the observed energy.
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Table 1
Validation criteria for the learning and validation periods

Validation criterion Filtered NO�
3 -N Unfiltered NO�

3 -N

Learning period RMSE 12.7 14.0
R (%) 67.0 70.2

Validation period RMSE 9.7 22.0
R (%) 88.6 52.6

Fig. 2. Simulated energy correlations in the energy functions observed during learning (a) filtered NO�
3 -N and

(b) unfiltered NO�
3 -N.

Fig. 3. Simulated energy correlations in energy observed during validation period (a) filtered NO�
3 -N and (b) unfiltered

NO�
3 -N.
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When the nitrate concentration exceeds the
threshold limit, it disrupts the fuzzy reasoning. The
simulated energy is higher than the energy observed,
indicating that the energy consumption is overesti-
mated when the data are not filtered, but the simu-
lated energy is similar to the observed energy when
using the filtered data.

4. Conclusions

The purpose of a treatment plant is to protect and
to preserve the environment before by treating dis-
charges. We found a significant removal of organic
pollution, revealing that the plant station was running
smoothly. Indeed, a statistical analysis of the data

Fig. 4. Energy variations observed over cumulative days during the learning period (a) filtered NO�
3 -N and (b) unfiltered

NO�
3 -N.

Fig. 5. Energy variations observed over cumulative days during the validation period (a) filtered NO�
3 -N and

(b) unfiltered NO�
3 -N.
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demonstrated that the parameters for the organic
pollutants of purified water are satisfactory and meet
the objectives of the station relative to the discharge
standards. However, the parameters for the dissolved
pollution (nitrogen and phosphorus), which do not
meet the standards, constitute a major problem for all
of the activated sludge processes. The energy
consumption was detected using the excess removal
efficiencies of the organic pollutants parameters and
the excess nitrate concentration.

To determine the amount of energy necessary to
achieve treatment purposes, the most efficient
methods were modeled to describe the complex and
evolving phenomena. However, a neuro-fuzzy model
was developed that accounted for the allowable
threshold nitrate concentrations at the outlet of the fil-
ter station; this model used the learning data and the
yields of eliminated organic matter as input variables
for the model.

This model, which was based on neural learning,
must use some information from the knowledge base
to recognize specific situations and act on the process.
The historical values of the observed parameters for
organic pollution relative to energy consumption dur-
ing the learning period enable predictions of the
energy consumption during the validation yields.
Satisfactory results were obtained with the nitrate fil-
ter compared with the results without the filter; the
learning and validation periods revealed the homo-
geneity of the fuzzy reasoning in the first case com-
pared to the disruptions in the second case. Therefore,
when the nitrate concentration exceeds the permissible
threshold, the rate of organic matter removal no
longer justifies the energy consumption.

In summary, to optimize the energetic advantages,
the amount of recirculated sludge and the amount of
oxygen dissolved must be predicted as output
parameters in the model, in addition to the energy
consumption.
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