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ABSTRACT

This article was an effort to predict effluent quality parameters and analyze variables
affecting mixed liquor volatile suspended solids (MLVSS) for Ekbatan wastewater treatment
plant in Tehran, Iran. These parameters were predicted and analyzed using two of the most
common classes of artificial neural networks (MLP and RBF) coupled with genetic algo-
rithm. Temperature, pH, influent concentration of the parameters, sludge volume index
(SVI), and sludge volume after 30 min of settling (V30) were inputs of the neural networks.
These inputs were used to predict biochemical oxygen demand (COD), total nitrogen (TN),
and total suspended solids (TSS) concentrations as well as MLVSS concentration in the
aeration tank. The introduced models for training and testing data sets indicated an almost
perfect match between the experimental and the predicted values of COD, TN, TSS, and
MLVSS. The models were verified by evaluating their performance in propitiously simulat-
ing the statistical features of the observed data. Furthermore, another criterion applied for
judging the validity of the models was the assessment of the goodness of fit according to
available criteria. The mean average error in prediction of all parameters for the train and
test models did not exceed 6 and 4%, respectively. The results of sensitivity analyses for the
models indicated that the variation of the MLVSS concentration in the aeration tank is
influenced by V30, influent TSS, T (˚C), SVI and pH, respectively. It was observed that the
V30 and influent TSS significantly affect the MLVSS concentration in the aeration tank.

Keywords: Artificial neural network; Genetic algorithm; Multi-layer perceptron; Radial basis
function; Wastewater treatment plant

1. Introduction

Activated sludge plant is usually difficult to oper-
ate and control because of its complex operational

behavior and usual significant process disturbances
[1]. Stringent discharge standards and time-dependent
non-uniform influent characteristics make the proper
management of treatment systems an issue [2,3]. To
increase safety and to improve operating performance
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of this biological wastewater treatment process, it is
important to develop computer operational decision
support systems. These intelligent computing systems
are able to assist ordinary operators to work at the
level of a domain expert in daily operation [1]. There
are several models for the biological wastewater treat-
ment in the literature based on the fundamental bioki-
netics such as activated sludge model No. 1 (ASM1)
[3]. These types of models integrate many of the key
biological, physical, and chemical processes within the
activated sludge process (ASP) into a form that can
predict the behavior of wastewater treatment plants
(WWTP) [4]. The ASM2 models extended the capabili-
ties of ASM1 to involve the biological phosphorus and
nitrogen removals [5], whereas, ASM3 introduced an
alternative concept to the previous ASM biokinetics
and aimed at simplifying the model application [6].
The diagnosis of the process interactions and model-
ing of ASP are still difficult due to the complex biolog-
ical reactions, as well as the highly time-varying and
multivariable aspects of operation in a real WWTP [7].
Furthermore, more advanced control methods need
models for the controller design and tuning and face
the problems with parameter identification of nonlin-
ear activated sludge models [4].

The artificial neural networks (ANNs) have been
used for monitoring, controlling, classification, and
simulation [8,9] of ASPs of WWTPs [10–14]. A sum-
mary of the applications of ANN modeling in a real
WWTP is given in Table 1. So far, different types of
neural networks have been used, and their perfor-
mances have been studied for the purpose of model-
ing in different engineering issues. The frequently
used networks include multi-layer perceptrons
(MLPs), radial basis functions (RBFs), recurrent neural
networks (RNNs), and echo-state networks (ESNs).
The MLP and RBF are two types of feed-forward
artificial neural networks (FANNs), which are most
commonly used in classification problems [15]. Moral
et al. [2] developed MLP artificial neural networks
(MLPANNs) to model ASP for two different cases.
The input and output data for the training of the
ANN models were generated using a simulation
model, which was an implementation of the ASM1.
The results showed high correlation coefficient
between the observed and predicted output variables.
Mjalli et al. [16] introduced an MLPANN modeling
approach to acquire the knowledge base of a real
wastewater plant, and then used it as a process model.
They showed that the MLPANNs are capable of cap-
turing the plant operation characteristics with a good
degree of accuracy. The model provided accurate pre-
dictions of the effluent stream, in terms of biological
oxygen demand (BOD), chemical oxygen demand

(COD), and total suspended solids (TSS) when using
COD as an input in the crude supply stream. Han
et al. [17] applied RBF artificial neural networks
(RBFANNs) in order to model and control dissolved
oxygen (DO) concentration in activated sludge
wastewater treatment processes. The results indicated
that RBFANN effectively provides process control.
The performance comparison also showed that the
proposed model’s predictive control strategy yields
the most accurate for DO concentration. The main
advantage of ANN models [18–21] is due to nonlinear
mapping of ANN from input to output sets as well as
complexity of interaction between neurons. Zilouchian
and Jafar [12] mentioned that the utilization of an
RBFANN model to predict the product quality of
reverse osmosis process is a key factor to decrease the
membrane degradation and to increase the overall effi-
ciency of the system.

Utilizing an appropriate optimization approach in
combination with the ANN models is useful and leads
to the determination of optimal input parameters in
maximization or minimization purposes [22]. Genetic
algorithm (GA) is a search heuristic that mimics the
process of natural evolution and applies the natural
selection processes, where selection results in better
fitted species [23]. This method can find optimal solu-
tions in a large solution space by evaluating only a
relatively small number of potential solutions. It
works directly with the fitness of each solution instead
of derivatives or other auxiliary characteristics used
with traditional deterministic approaches [24]. The
number of solutions is one of the important parame-
ters that influence optimization by GA. By increasing
the population size, more solutions will be investi-
gated, covering a wider area of the solution space,
thus increasing the probability of finding the optimal
solution in each generation [25]. GA can be used to
optimize the weights and thresholds of ANN for mini-
mizing the error between the actual and target outputs
[26]. The GA-based ANN models have not been
reported in the prediction of effluent quality parame-
ters and analysis of mixed liquor volatile suspended
solids (MLVSS) in a real WWTP.

This study describes the development of two GA-
based ANN models to accurately predict effluent
COD, TSS and total nitrogen (TN), and MLVSS for
Ekbatan WWTP under various operating parameters.
The operating parameters include pH, temperature
(T), influent TSS, sludge volume index (SVI), and
sludge volume after 30 min of settling (V30). The
influent COD or TN was used instead of influent TSS
in order to predict effluent COD or TN in the model-
ing process. Due to the dependence of SVI upon
sludge concentration, the V30 was measured in the
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Ekbatan WWTP for an objective comparison of the
effect of additives on sludge settling. The variables
affecting the MLVSS concentration in the aeration
tanks were also analyzed in order to determine their
importance order and their effect in the results of
introduced models.

2. Materials and methods

2.1. Features and operating conditions of Ekbatan WWTP

Ekbatan WWTP is located in Tehran, Iran. The
WWTP covers a population of about 100,000 people.
The WWTP treats wastewater with an average capac-
ity of about 4,500 m3/d. The influent wastewater is
treated in the WWTP using anaerobic-anoxic-oxic
(A2O) method. Fig. 1 shows that the Ekbatan WWTP
comprises fine and coarse screens, grid removal, pre-
treatment unit, anaerobic tanks, anoxic tanks, activated
sludge aeration tanks, secondary sedimentation tanks,
and disinfection unit. The influent wastewater initially
passes through the fine and coarse screens and then

enters to the grit removal phase. When wastewater
enters to the grit chamber, the particles slow down
and crash due to their collision with chamber wall.
The inorganic matters settle in the grit chamber with a
hydraulic retention time (HRT) of 2–3 min, and the
HRT sometimes changes from 15 to 20 min to function
like a primary clarifier. After pretreatment processes,
the wastewater enters to anaerobic tanks with a HRT
of 0.5 h and then enters to anoxic tank. The anoxic
phase is finished with a HRT of 2 h, and then wastew-
ater enters to the aeration tank. The subsurface aera-
tion is performed in the aeration tank with a HRT of
8 h, and then the wastewater enters to secondary clari-
fier. The effluent is disinfected at the end of process.

2.2. Wastewater analysis

Analysis of the wastewater characteristics in
Ekbatan WWTP is carried out daily, weekly, and
monthly. BOD, COD, nitrate (NOþ

3 -N), ammonia
(NHþ

4 -N), TN, TSS, total dissolved solids (TDS), mixed

Table 1
Summary of researchers studies in ANN modeling of a WWTP

The purpose of applying ANN ANN Researcher (s)

Modeling of activated sludge process in a WWTP MLP Moral et al. [2]
Prediction of WWTPs performance in terms of COD, BOD, and TSS MLP Mjalli et al. [16]
Prediction of activated sludge bulking in a WWTP RBF Han and Qiao [10]
Forecasting effluent quality of an industry WWTP MLP Chen et al. [11]
Automation and process control of reverse osmosis plants RBF Zilouchian and Jafar [12]
A predictive control system for the coagulation process in a paper mill WWTP MLP Zeng et al. [13]
To predict the performance of WWTP in terms of COD, BOD, and TSS MLP Nasr et al. [14]
To model a municipal WWTP in terms of BOD and TSS MLP Hamoda et al. [18]
Prediction of suspended solids and COD in hospital WWTP effluent MLP Pai et al. [9]
Formal verification of WWTPs using events detected from continuous signals MLP Luccarini et al. [19]
To model predictive control of DO concentration in activated sludge WWTPs RBF Han et al. [17]
Prediction of WWTP performance in term of TSS MLP Hanbay et al. [20]
Real-time remote monitoring of small-scaled biological WWTPs MLP Lee et al. [7]
To predict the elimination of total organic carbon (TOC) in an industrial WWTP MLP Gontarski et al. [21]
For rapid WWTP performance evaluation: Methodology and case study MLP Raduly et al. [8]

Influent Anaerobic
reactor

Anoxic
reactor

Oxic
reactor

Return activated sludge Excess sludge

Secondary
clarifier

Disinfection

Effluent

Pretreatment

Fig. 1. Configuration of the process used in the Ekbatan WWTP.
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liquor suspended solids (MLSS), MLVSS, SVI, V30 as
well as pH, T (˚C), and DO are measured in Ekbatan
WWTP. The pH and T (˚C) are measured using a digi-
tal pH meter. A dissolved oxygen meter (YSI 5000) is
utilized to determine DO. COD and biodegradability,
which is determined by 5-d biochemical oxygen
demand (BOD5) test, are measured according to the
standard methods [27]. Weekly analyses are included
MLVSS and MLSS in aeration reactors. MLSS and
MLVSS are determined in Ekbatan WWTP laboratory
at the temperature of 550˚C [28]. In the WWTP labora-
tory, TN, NHþ

4 -N, and NOþ
3 -N are measured using a

spectrophotometer (the Hach DR 5000 UV–vis Labora-
tory Spectrophotometer). Based on the results of
wastewater analysis, it was observed that the wastew-
ater characteristics, including influent COD, TN, T
(˚C), and TSS as well as other parameters, including
MLVSS, V30, and SVI have significantly varied from
2011 to 2013. Table 2 shows the influent raw wastewa-
ter characteristics and other parameters related with
the operation of Ekbatan WWTP.

2.3. Artificial neural network modeling approach

ANN is a nonparametric model which utilizes
interconnected mathematical nodes or neurons to form
a network that can model complex functional relation-
ships [8]. Such models permit to study the relationship
between the input variables and the target(s) or out-
put(s) of the process using a limited number of experi-
mental runs. ANNs have been proved to be able to
model nonlinear systems and successfully applied for
modeling various nonlinear processes [19].

The ANNs operating in parallel being composed of
neurons. An artificial neuron is a single computational
processor, which has two operators (1) summing junc-
tion and (2) transfer function [15,29]. The connections
consist of weights and biases with neurons addressing
information. Considering the model of a single neu-
ron, any scalar input xi is transmitted via a connection
that multiplies its strength by the scalar weight wi to
form the product wi × xi. The bias b is much like a
weight, except that it has a constant input of unity
and it is simply added to the product wi × xi by sum-
ming junction [29]. The transfer function determines
the input/output behavior and adds nonlinearity and
stability to the network [13]. It takes the argument z
and produces the scalar output of a single neuron
[18]. The linear function (purelin) and hyperbolic tan-
gent sigmoid function (tansig) are the most used trans-
fer functions to solve linear and nonlinear problems,
and can be described by Eqs. (1) and (2), respectively.

purlin zð Þ ¼ z (1)

tansig zð Þ ¼ 2=ð1þ e�2zÞ � 1 (2)

2.4. Architecture of RBFANN and MLPANN

Recently, the use of ANNs is also gaining
popularity in modeling biological wastewater treat-
ment processes [14,17]. MLP and RBF are two types of
feed-forward ANNs, which are most commonly used
in the simulation of biological wastewater treatment
processes, namely prediction of a WWTP performance.
In these feed-forward networks, the data are only
transmitted in the forward direction from the input
layer to the hidden layer and to the output layer. The
structure of the basic RBFANN used in this study con-
sists of one input layer, one output layer, and one hid-
den layer (Fig. 2(b)). The RBFANNs have a very strong
mathematical foundation rooted in regularization the-
ory for solving ill-conditioned problems. An RBFANN
has a simple neural network structure in terms of the
direction of information flow, and the performance of
an RBFANN is heavily dependent on its architecture
[4]. A single-output RBFANN with N hidden layer
nodes can be described by Eqs. (3) and (4):

Y ¼
XN
n¼1

wnhnðXÞ (3)

where X and Y are the input and output of the net-
work, X = (x1, x2, . . ., xm)

T, wn is the connecting weights
between nth hidden node and the output layer, θn is
the output value of the nth hidden node, and

Table 2
Daily influent wastewater characteristics and other param-
eters of Ekbatan WWTP

Parameter (unit) Average Standard deviation

Tinf (˚C) 23 2.8
pHinf (˚C) 8.2 0.4
BODinf (mg/L) 153 27
CODinf (mg/L) 211 35
TNinf (mg/L) 29 4
NHþ

4 -Ninf (mg/L) 18 3
NOþ

3 -Ninf (mg/L) 0.8 0.2
TDSinf (mg/L) 460 61
TSSinf (mg/L) 191 32
V30 (ml/L) 301 112
SVI (ml/g) 171 49
MLVSS (mg/L) 1,562 281
TSSout (mg/L) 10 4
CODout (mg/L) 15 3
TNout (mg/L) 2 0.2
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hnðXÞ ¼ eð�jjx�lnjj=r2nÞ (4)

where μn is the center vector of nth hidden node,
||x − μn|| is the Euclidean distance between x and
μn, and σn is the radius of the nth hidden node.

The MLPANN is formed by simple neurons called
perceptron. The structure of the basic MLPANN con-
sisted of one input layer, one output layer, and one
hidden layer (Fig. 2(a)). The input neurons receive the
data values and pass them on to the first hidden layer
neurons. Each one collects the input from all input
neurons after multiplying each input value by a
weight, attaches a bias to this sum, and passes on the
results through a nonlinear transfer function. This
forms the input either for the second hidden layer or
the output layer that operates identically to the hidden
layer. The resulting transformed output from each out-
put neuron is the network output [30]. A single-output
MLPANN with N hidden layer nodes can be
described by Eq. (5):

Y ¼ f
XN
n¼1

wnXn þ b

 !
(5)

where wn is the weight vector, Xn is the input vector
(n = 1, 2, . . ., N), b is the bias, ƒ is the transfer function,
and Y is the output.

The performances of the ANN models were
measured by coefficient of determination (R2) and
root-mean-squared error (RMSE) between the
predicted values of the network and the experimental
values, which were calculated by Eqs. (6) and (7),
respectively [31]:

R2 ¼ 1�
Xn
i¼1

ðy�i � yðiÞp Þ2=
Xn
i¼1

ðy�i � �yÞ2 (6)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

ðy ið Þ
p � y�i Þ2

s
(7)

where �y is the average of y over the n data, and
y�i and y

ðiÞ
p are the ith target and predicted

responses, respectively.

2.5. Genetic algorithm optimization approach

GA is a search heuristic and is a type of evolution-
ary algorithm. Many applications have been devel-
oped using genetic algorithms [22]. Basically, a GA is
categorized into four main steps: (1) creating popula-
tion: the numbers of the initial populations are gener-
ated in this step, (2) selection: the solution for creating
the offspring is chosen in this step, (3) crossover: this
section is dedicated to creating new solutions by con-
sidering the solutions from the selection step, (4)
mutation: a sudden change in a step of the solution’s
feature is called mutation [23]. The GA is started with
a set of random solutions called population [4]. Solu-
tions from one population are used to form a new
population [32]. This is motivated by a hope that the
new population will be better than old population. In
order to form a new population, GAs use genetic
operators and selection process [4]. Genetic operators
are used to generate the new solutions (offspring)
from the current solutions (parents).

pH

T (°C)

TSSin

SVI

V30

Input layer

Hidden layer

Output layer

MLVSS
or

Effluent

pH

T (°C)

TSSin

SVI

V30

Input layer

Hidden layer

Output layer

Weights

Weights
(a) (b)

MLVSS
or

Effluent

Fig. 2. Topological architectures of the neural networks used in this study: MLP (a) and RBF (b).
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Selection is the process of keeping and deleting
some solutions from both parents and off-spring for
the same number of next population [33]. There are
different selection methods as stochastic uniform,
remainder, uniform, shift linear, roulette wheel and
tournament [34]. The tournament method is preferred
and can be described by Eq. (8):

si ¼ Fi=
XNk

j¼1

Fj (8)

where τi is the weight of ith individual within
population. Moreover, the sum of the elective proba-
bilities of all the individuals within population is 1 as
is determined by Eq. (9):

XNk

i¼1

si ¼ 1 (9)

Crossover is a key genetic operator for GA conver-
gence. It is applied on two individuals, called parents,
and originates two new individuals called sons, which
contain the combined traits of the parents [4]. Parents
are taken from the mating pool, which is filled with
individuals of the original population, using the selec-
tion process. The number of parents selected for cross-
over is dictated by the crossover rate [35]. The value
of 1 and 0 as gen number of an individual is ran-
domly produced. If the value is 1, then gen is taken
from mother, and if the value is 0, then gen is taken
from father and thus the child is produced [34].

In mutation stage, new individuals are produced
to be changed all or some gens of the selected individ-
uals within population [36,37]. Even though genetic
algorithms have less chance of getting trapped in local
minima, sometimes a premature convergence can
occur. To prevent it, genetic variability has to be main-
tained. The mutation operator is one of the strategies
used to ensure variability within the population and
design space exploration [38]. Mutation is applied in
the offspring generated by the crossover with a muta-
tion probability pm to which low values are usually
assigned. For each layer of the chromosome, a random
number between 0 and 1 (r) is generated. If such num-
ber is lower than the mutation probability, a feasible
random integer replaces the original gene value [35].

In this study, the roulette wheel and tournament
selection methods, a transformation-based mutation,
and single point, double point and uniform crossover
methods were used as genetic operators. The selection,
mutation, and crossover probabilities were 0.5, 0.15,
and 0.35, respectively. In addition, the number of

variables, population size, and generation gap were 6,
20, and 1, respectively.

2.6. Data scaling in the modeling process

In order to obtain convergence within a reasonable
number of cycles, the input and output data should be
normalized and scaled to the range of 0–1 by Eq. (10)
[39]:

xni ¼ ðxi � xminÞ=ðxmax � xminÞ (10)

where xi is the initial value, xmax and xmin are the
maximum and minimum of the initial values, and xni
is the scaled value. After the training and testing of
the ANN, the output data were scaled to the real-
world values through Eq. (11):

xi ¼ xni xmax � xminð Þ þ xmin (11)

Simulation models of operational parameters were
established based on the theory of FANN using the
mathematical software program, MATLAB. Experi-
mental data obtained over three years (2011–2013)
were used in ANN modeling. The statistical character-
istics of the measured variables are presented in
Table 3. The hybrid MLPANN-GA and RBFANN-GA
models were developed to accurately predict effluent
COD, TSS, and TN, and simulate MLVSS for Ekbatan
WWTP.

3. Results and discussion

3.1. Parameter adjustment and preliminary findings

In order to simulate the MLVSS concentration in
the aeration tank by RBFANN-GA and MLPANN-GA,
pH, T (˚C), influent TSS, SVI, and V30 were consid-
ered as inputs of the networks. Each ANN structure
was selected after running a number of preliminary
experiments to explore the training speed and
response time of different architectures. To keep the
ANN structure as simple as possible, three layers
were used in all networks. The RBFANN applied dif-
ferent network functions such as newrbe and newrb
to the input data. The newrb function designs a radial
basis neural network, and the newrbe function designs
an exact radial basis ANN. The MLPANN applied dif-
ferent network functions such as newff to the input
data. The newff function designs a feed-forward
back-propagation neural network. The MLPANN was
trained by different learning algorithms (including
incremental back propagation, gradient descent
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back-propagation (GDB), Levenberg–Marquardt (LM)
algorithm, and batch back-propagation). The transfer
function of the hidden and output layers is iteratively
determined by developing several networks. The opti-
mal architectures insure training with reasonable
speed and short simulation time for a specific network
performance. The RBFANN regularization network
employs the same number of neurons as the input
data points. The number of neurons of MLPANNs
was kept equal to the number of training exemplars
for better comparison of both ANN performances [30].
A two-stage training process was applied for the
RBFANNs. The K-means to assign the radial centers
in the data set and K-nearest neighbors to compute
the deviation of each center were used in the first
stage. The output layer was optimized with pseudo-
inverse method in the second stage. To determine the
best network function, various algorithms were stud-
ied. The RBFANN-GA applied network function of
newrbe to the input data as optimal function, and the
spread of radial basis function was considered equal
to its default value, 1 [17]. A large spread value results
in a smooth function approximation, but by contrast, a
small spread value can results in numerical problems.
The network function of newrbe chose 65% of normal-
ized data to train and 35% to test the RBFANN-GA
models. The RBFANN-GA was designed in a loop that
applied network function of newrbe to the data for
less than 100 times in order to minimize error. Opti-
mal network was chosen on the basis of the minimum
average error.

The MLPANN-GA applied network function of
newff to the input data as optimal function; therefore,
it created a feed-forward back-propagation neural net-
work (FBNN). The network function of newff chose
60% of normalized data to train, 20% to test, and 20%
to validate the MLPANN-GA models. The MLPANN-
GA was trained by different learning algorithms for
maximum 400 epochs. Nevertheless, the LM algorithm

resulted in the optimal models for training and testing
data after less than 20 iterations. In the ANN models,
the predictive accuracy of networks depends on the
number of hidden neurons, learning functions, and
learning rate [29]; so these variables were chosen to
optimize the ANN structure by GA program. Based
on our research, the optimal models were obtained
with the hidden layer consisting of 10 neurons com-
pared with previous researches, which varied from 10
to 80 neurons [2,16,22]. The best transfer function for
the hidden layer was found to be hyperbolic tangent
sigmoid (tansig) function while the best transfer func-
tion for the output layer was a linear one (purelin).
The results of two training algorithms, including LM
and GDB, and two transfer functions, including hyper-
bolic tangent sigmoid (tansig) function and pure linear
function, were compared in order to determine the
effect of GA on the MLPANN-GA models. The RMSE
of hyperbolic tangent sigmoid (tansig) transfer func-
tion and ten neurons with LM learning algorithm was
the lowest value. Moreover, coefficient of determina-
tion value of this structure was low. Because gradient
descent usually slows down near minima, so the LM
method can be used to obtain faster convergence. LM
is a blend of simple gradient descent and the Gauss–
Newton method [31]. LM has found to be the fastest
method for training moderate-sized feed-forward neu-
ral networks, where the training rate is 10–100 times
faster than the usual GDB method [36]. The hyperbolic
tangent sigmoid (tansig) function was selected for hid-
den neurons due to its better prediction performance
than other transfer functions among different transfer
functions available in MATLAB.

3.2. Prediction and analysis of MLVSS

Fig. 3 shows that the results of the MLVSS model-
ing using the RBFANN-GA and MLPANNGA for
training and testing data were highly collaborated

Table 3
Characteristics of measured variables used for modeling by MLPANN-GA and RBFANN-GA

Input variable no. Input variable Range Avg. Std. Output variable Range Avg. Std.

1 pH 6.7–8.9 8.2 0.4 MLVSS (mg/L) 120–3,280 1,562 281
2 T (˚C) 16.9–28.5 23 2.8 Effluent
3 Influent TSS (mg/L) 1.5–34 10 4

TSS (mg/L) 22.5–595 191 32 COD (mg/L) 2–42 15 3
COD (mg/L) 72–400 211 35 TN (mg/L) 0.4–16.2 2 0.2
TN (mg/L) 15.5–57 29 4

4 SVI (ml/g) 44–754 171 49
5 V30 (ml/L) 30–950 301 112

Notes: Avg.: the average of data sets and Std.: the standard deviation of data sets.
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with previous studies [2,31]. The training procedures
for the simulation of MLVSS concentration in the aera-
tion tank were successful for both RBFANN-GA and
MLPANN-GA models. The train and test models by
RBFANN-GA and MLPANN-GA showed an almost
perfect match between the experimental and the simu-
lated values of MLVSS. It is obvious that an accurate
verification is required for the proper use of these
models in practical applications [19]. In this research,
the models are verified by evaluating their perfor-
mance in propitiously simulating the statistical fea-
tures of the measured data. The autocorrelation
functions of the simulated values are compared to the
measured values. Moreover, another criterion applied
for judging the validity of the models is the assess-
ment of the goodness of fit according to different
available criteria. The values of R2 for train and test
(verification) models by RBFANN-GA were 0.96126
and 0.93068, respectively. The values of R2 for train
and test models by MLPANN-GA were 0.98285 and
0.95232, respectively. The results indicate a good fit-
ting between simulated values of MLVSS by
RBFANN-GA and MLPANN-GA and experimental
values for various inputs. It has been demonstrated
that the model fit statistics are not a good guide to
how well a model will simulate and predict a time-
series phenomenon [19]. High values of R2 do not nec-
essarily result in a favorable model, although it can be
a sign of a successful model. Additionally, a way to
measure the predictive capability of a model is to test
it on a set of data not used in simulation process [3].
This has been described in literature as test set and
the data used for simulation is training set [21]. As a

result, to verify our models, a set of the MLVSS data
was used to investigate the predictive ability of the
models. The values of RMSE for train and test models
by RBFANN-GA were 92 and 120 mg/L, respectively.
The values of RMSE for train and test (verification)
models by MLPANN-GA were 85 and 104 mg/L,
respectively. The mean average error in simulation of
MLVSS by RBFANN-GA and MLPANN-GA for train
and test models did not exceed 2 and 1%,
respectively.

Although it is not a common procedure to use an
effluent parameter as an input in modeling, in previ-
ous studies, various combinations of variables were
used to build the ANN models [2]. The input vari-
ables were solids retention time, influent flow rate,
influent pH, influent water temperature, influent
COD, MLSS, effluent TSS, and sludge production rate
from the primary sedimentation tank. These variables,
alone or in different combinations, were used as the
ANN model inputs to predict effluent COD. It was
observed that the implementation of the modeling
started with the determination of the variable combi-
nations exhibiting better results in ANN model output
[16]. For this purpose, in the current research, the
MLVSS was modeled separately by considering vari-
ous single variables as inputs of RBFANN-GA and
MLPANN-GA in order to examine the effect of each
variable on the changes of MLVSS concentration in
the aeration tank. In a similar way, separate models
were performed in order to show the effect of joint
input variables on the changes of MLVSS concentra-
tion in the aeration tank. These inputs were used to
train the ANNs in groups of two, three, and four vari-
ables. The results showed that V30 among single input
variables, and V30 and influent TSS among groups of
two variables significantly affected the MLVSS models.
Furthermore, V30, influent TSS and T (˚C) among
groups of three variables, and V30, influent TSS, T
(˚C), and SVI between groups of four variables had
the most significant effects on the MLVSS models
(Table 4). Moreover, sensitivity analyses [40] were per-
formed to examine the sensitivity of MLVSS concen-
tration in the aeration tank to changes of input
variables. The effect of each variable on the RBFANN-
GA and MLPANN-GA models comparing to the other
variables was determined by its importance order (its
rank). Table 4 shows the importance order of each
input variable and the joint variables for the simula-
tion of MLVSS concentration in the aeration tank. The
variable with higher rank of importance indicated not
only an almost perfect match between experimental
and simulated values by both RBFANN-GA and
MLPANN-GA models but also less RMSE and more
R2 values. The results of sensitivity analyses for

Fig. 3. MLVSS models by RBFANN-GA and MLPANN-GA
based on train and test data sets.
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RBFANN-GA and MLPANN-GA models showed that
the variation of the MLVSS concentration in the aera-
tion tank is influenced by V30, influent TSS, T (˚C),
SVI, and pH. This research indicates that the V30 and
influent TSS significantly affect the MLVSS concentra-
tion in the aeration tank.

Both RBFANN-GA and MLPANN-GA showed
similar results for the models with single input vari-
ables and joint variables. It was observed that the pre-
cision of MLPANN-GA models was greater than
RBFANN-GA models due to their higher R2 and lower
RMSE values. The MLPANN-GA resulted in more
precise models than RBFANN-GA according to our
experimental data for MLVSS concentration in the aer-
ation tank. The results of MLPANN-GA did not fluc-
tuate significantly for all models with single input
variables and joint variables. The results of RBFANN-
GA models were not the same as results of MLPANN-
GA models because they fluctuated for few variables
due to the number of samples provided to the
RBFANN-GA. We concluded that with the increase in
the number of input data sets to train the ANNs, both
RBFANN-GA and MLPANN-GA will show more reli-
able and similar models. In addition, it was observed
that the precision of RBFANN-GA and MLPANN-GA
models is determined not only by the number of input
data to train the ANNs but also by the correlation of
these data sets. The high correlation of the input data
affected the MLPANN-GA models more than
RBFANN-GA models, while the number of the input

data affected the RBFANN-GA models more than
MLPANN-GA models. At the same time, the perfec-
tion and precision of data influence the applicability
of the models. As a result, the applicability of the
models allows a feasible way for on-line control of the
process [41].

The results indicated that the MLPANN-GA has
stronger approximation and generalization ability than
the RBFANN-GA with regard to our experimental
data sets for MLVSS concentration in the aeration
tank. The results of the MLVSS modeling using the
RBFANN-GA and MLPANNGA for all data were
highly collaborated with previous studies [2,31]. The
simulation of MLVSS concentration in the aeration
tank was successful for both RBFANN-GA and
MLPANN-GA models. Both models showed an almost
perfect match between the experimental and the simu-
lated values of MLVSS. Based on the results of ANN
modeling for all data sets, it was observed that the
precision of RBFANN-GA and MLPANN-GA models
is determined not only by the number of input vari-
ables of the network but also by the correlation of
these variables. The high correlation of the input data
affected the MLPANN-GA models more than
RBFANN-GA models. On the other hand, the number
of the input data affected the RBFANN-GA models
more than MLPANN-GA models. Fig. 4 shows the
regression lines for all data sets based on RBFANN-
GA and MLPANN-GA models for MLVSS concentra-
tion in the aeration tank. The values of R2 for MLVSS

Table 4
Effect of different single and joint variables on MLVSS in the aeration tank

Input variable no.

RBFANN-GA models for MLVSS MLPANN-GA models for MLVSS

Importance order

R2 RMSE (mg/L) R2 RMSE (mg/L)

Train Test Train Test Train Test Train Test

1 0.44 0.33 558 615 0.47 0.32 546 611 5
2 0.64 0.51 435 447 0.64 0.63 430 435 3
3 0.77 0.74 397 406 0.78 0.74 390 401 2
4 0.55 0.43 476 534 0.58 0.51 461 497 4
5 0.78 0.76 384 391 0.78 0.77 381 387 1
5–1 0.66 0.54 351 414 0.67 0.61 307 376 4
5–2 0.82 0.81 237 242 0.89 0.86 207 221 2
5–3 0.89 0.85 192 201 0.91 0.89 178 192 1
5–4 0.77 0.64 279 339 0.87 0.75 245 312 3
5–3–1 0.88 0.81 154 162 0.88 0.85 140 148 3
5–3–2 0.94 0.91 101 132 0.95 0.93 95 126 2
5–3–4 0.94 0.91 96 125 0.96 0.93 94 120 1
5–3–4–1 0.94 0.91 100 127 0.94 0.91 93 121 2
5–3–4–2 0.95 0.92 95 123 0.95 0.92 90 116 1
5–3–4–2–1 0.96 0.93 92 120 0.98 0.95 85 104 1

Note: The numbers 1 to 5 refers to input variables identified in Table 3.
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models by RBFANN-GA and MLPANN-GA were
0.94404 and 0.96355, respectively, compared to the
findings of Moral et al., in which R2 varied from 0.81
to 0.98 [2]. The residuals of models attained by
RBFANN-GA and MLPANN-GA for all data were
plotted out vs. the frequency of data in Fig. 4. A nor-
mal distribution of variation results in a Gaussian
curve (specific bell-shaped curve), with the highest
point in the middle and smoothly curving symmetrical
slopes on both sides of center. This figure illustrates
an approximately normal distribution of residuals pro-
duced by RBFANN-GA and MLPANN-GA models.
Gaussian curve reveals our results are symmetrical
and their axis round around zero for all data sets [42].

In GA-based ANNs, GA is used to optimize the
weights and thresholds of back-propagation ANN for
minimizing the error between the actual and target
outputs [37]. RBFANN and MLPANN were optimized
with GA because GA is good at efficiently searching
large and complex spaces to find nearly global optima.
GA indicates an increasingly attractive alternative to
gradient-based techniques such as RBFANN and
MLPANN as the complexity of the search space
increases. The results showed that the precision and
accuracy of all ANN models increased when GA is
applied to the ANN models. The values of R2 for all,
train, and test models by RBFANN-GA were 0.97,
0.96, and 0.93, respectively comparing with the values
of R2 for all, train and test models by RBFANN which
were 0.89, 0.84, and 0.81, respectively. The values of
RMSE for all, train, and test models by RBFANN-GA

were 88, 92, and 120 mg/L, respectively, compared
with the values of RMSE for all, train, and test models
by RBFANN which were 106, 117, and 155 mg/L,
respectively. The values of R2 for all, train, and test
models by MLPANN-GA were 0.99, 0.98, and 0.95,
respectively, compared with the values of R2 for all,
train, and test models by MLPANN which were 0.90,
0.86, and 0.85, respectively. The values of RMSE for
all, train, and test models by MLPANN-GA were 84,
85, and 105 mg/L, respectively, compared with the
values of RMSE for all, train, and test models by
MLPANN which were 99, 108, and 147 mg/L,
respectively.

3.3. Prediction and analysis of effluent COD, TN, and TSS

In order to predict the effluent COD, TN, and TSS
concentrations by RBFANN-GA and MLPANN-GA,
the pH, T (˚C), influent concentrations of COD, TN or
TSS, SVI, and V30 were considered as inputs of the
networks. The results of the effluent COD, TN, and
TSS modeling using the RBFANN-GA and
MLPANNGA for training and testing data were
highly collaborated with previous studies [9,14,16].
The training procedures for prediction of the effluent
COD, TN, and TSS concentrations were successful for
both RBFANN-GA and MLPANN-GA models. The
train and test models by RBFANN-GA and
MLPANN-GA indicated an almost perfect match
between the experimental and the predicted values of
the effluent COD, TN, and TSS. The results of ANN
modeling showed that the MLPANN-GA has stronger
approximation and generalization ability than the
RBFANN-GA according to our experimental training
and testing data sets for effluent COD, TN, and TSS.
The results of ANN modeling for the effluent COD,
TN, and TSS indicated that the precision of RBFANN-
GA and MLPANN-GA models is determined not only
by the number of input variables of the network but
also by the correlation of these variables. The high cor-
relation of the input data affected the MLPANN-GA
models more than RBFANN-GA models. On the other
hand, the number of the input data affected the
RBFANN-GA models more than MLPANN-GA
models.

The R2 values of train models by RBFANN-GA for
effluent COD, TN, and TSS were 0.98137, 0.99014, and
0.98021, respectively, and for the test (verification)
models were 0.97232, 0.98325, and 0.95217. The R2 val-
ues of train models by MLPANN-GA for effluent
COD, TN, and TSS were 0.99017, 0.99047, and 0.98486,
respectively, and for the test (verification) models
were 0.98044, 0.98479, and 0.95484. The results show a
good fitting between predicted values of effluent

Fig. 4. Regression plots and residuals of RBFANN-GA and
MLPANN-GA for MLVSS prediction based on all data
sets.
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COD, TN, and TSS by RBFANN-GA and MLPANN-
GA and experimental values for various inputs. The
coefficient of determination in this study for the efflu-
ent COD, TN, and TSS models improved results of

previous studies [9,14,16], which indicated that in the
sample data simulation, the ANN had good
generation ability, with R2 varying from 0.5 to 0.93. A
set of COD, TN, and TSS data was used to examine

Table 5
Effect of different single and joint variables on the effluent of COD, TN, and TSS

Input variable no.

RBFANN-GA models MLPANN-GA models

Importance order

R2 RMSE (mg/L) R2 RMSE (mg/L)

Train Test Train Test Train Test Train Test

Models of effluent COD concentration
1 0.33 0.44 21.34 22.14 0.39 0.71 19.72 13.92 5
2 0.47 0.46 18.65 20.52 0.59 0.86 17.34 11.28 3
3 0.77 0.86 14.81 12.28 0.88 0.91 12.73 10.23 1
4 0.43 0.44 20.64 21.97 0.49 0.78 18.75 12.97 4
5 0.69 0.61 15.38 16.15 0.67 0.91 15.14 10.44 2

Models of effluent TN concentration
1 0.21 0.19 1.12 1.25 0.21 0.21 1.05 1.14 5
2 0.42 0.47 0.91 0.81 0.45 0.49 0.87 0.71 3
3 0.87 0.86 0.49 0.49 0.87 0.88 0.49 0.42 1
4 0.32 0.35 0.99 0.93 0.33 0.38 0.96 0.87 4
5 0.61 0.55 0.78 0.76 0.69 0.88 0.67 0.62 2

Models of effluent TSS concentration
1 0.29 0.21 15.65 16.97 0.37 0.25 14.07 15.52 5
2 0.37 0.35 14.17 12.02 0.41 0.39 13.23 11.47 4
3 0.76 0.77 5.51 6.17 0.79 0.81 5.14 5.58 1
4 0.49 0.52 12.14 11.28 0.54 0.61 11.24 10.58 3
5 0.57 0.59 11.12 10.18 0.71 0.73 10.04 9.82 2

Note: The numbers 1 to 5 refers to input variables identified in Table 3.

Fig. 5. Effluent COD, TN, and TSS models by RBFANN-GA
based on all data sets.

Fig. 6. Effluent COD, TN, and TSS models by MLPANN-GA
based on all data sets.
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the predictive ability of the ANN models in order to
verify our models. The RMSE values of train models
by RBFANN-GA for effluent COD, TN, and TSS were
1.95, 0.164, and 2.56 mg/L, respectively, and for the
test (verification) models were 1.78, 0.133, and
2.27 mg/L. The RMSE values of train models by
MLPANN-GA for effluent COD, TN, and TSS were
1.54, 0.144, and 2.42 mg/L, respectively, and for the
test (verification) models were 1.42, 0.112, and
2.13 mg/L. The mean squared error (MSE) values
obtained for training and test sets with the ANNs
selected to predict the effluent COD, TN, and TSS var-
ied from 0.224 to 15 in the previous researches [14,16].
The mean average error in prediction of effluent COD,
TN, and TSS by RBFANN-GA and MLPANN-GA for
train and test models did not exceed 6 and 4%,
respectively.

The effluent COD, TN, and TSS were modeled sep-
arately by considering various single variables as
inputs of RBFANN-GA and MLPANN-GA in order to
examine the effects of each variable on the changes of
effluent COD, TN, and TSS concentrations. When the
number of process variables is high, the extraction of
relationships among process variables is not an easy
task [43]. We have indicated that analysis of variables
using ANN separate models offers a convenient way
to examine the effects of the process variables at once
and acts as a very effective tool to find the relation-
ships among high-dimensional process variables in
the activated sludge WWTPs. Table 5 shows the
importance order of each input variable for the predic-
tion of effluent COD, TN, and TSS concentrations. The
results of RBFANN-GA and MLPANN-GA models
showed that the variation of the effluent COD concen-
tration is influenced by influent COD, V30, T (˚C),
SVI, and pH. This research indicates that the influent
COD and V30 significantly affect the effluent COD
concentration. In addition, the results indicated that
the variation of the effluent TN concentration is influ-
enced by influent TN, V30, T (˚C), pH, and SVI. This
research indicates that the influent TN and V30 signifi-
cantly affect the effluent TN concentration. The results
of RBFANN-GA and MLPANN-GA models indicated
that the variation of the effluent TSS concentration is
influenced by influent TSS, SVI, V30, T (˚C), and pH.
This research indicates that the influent TSS and SVI
significantly affect the effluent TSS concentration.

The results of the effluent COD, TN, and TSS mod-
eling using the RBFANN-GA and MLPANNGA for all
data were highly collaborated with previous studies
[2,31]. Figs. 5 and 6 show that the prediction of efflu-
ent COD, TN, and TSS concentrations was successful
for both RBFANN-GA and MLPANN-GA models.
Both models showed an almost perfect match between

the experimental and the predicted values of effluent
COD, TN, and TSS. The results of this study indicated
that the MLPANN-GA has stronger approximation
and generalization ability than the RBFANN-GA with
regard to our experimental data sets for effluent COD,
TN, and TSS.

4. Conclusions

A real-time monitoring system for WWTPs has
been developed to give operators a guideline that
would allow them to arrive at the optimal operational
strategies in the early stage of a process disturbance.
The most important aspect of ANNs is the ability of
self-organization of the models, which show the
advantages of intelligent modeling; it is rapid, easy to
operate, non-invasive, and not expensive. In the cur-
rent research, Ekbatan WWTP was modeled using
RBFANN-GA and MLPANN-GA. Temperature, pH,
influent concentration of contaminants, SVI, and V30
were inputs of the neural networks. These input vari-
ables were used to predict effluent COD, TN, and TSS
concentrations as well as MLVSS concentration in the
aeration tank. The RBFANN-GA applied network
function of newrbe to the input data with the spread
of radial basis function equal to 1. The MLPANN-GA
applied network function of newff to the input data.
The MLPANN-GA was trained by different learning
algorithms for maximum 400 epochs. Nevertheless,
the LM algorithm resulted in the optimal models for
training and testing data after less than 20 iterations.
Based on our research, the optimal models were
obtained with the hidden layer consisting of 10 neu-
rons. The best transfer function for the hidden layer
was found to be hyperbolic tangent sigmoid (tansig)
function while the best transfer function for the output
layer was a linear one (purelin).

The training procedures of all contaminants were
highly collaborated for both RBFANN-GA and
MLPANN-GA models. The results of training and
testing data sets indicated an almost perfect match
between the experimental and the predicted values of
COD, TN, TSS, and MLVSS for both RBFANN-GA
and MLPANN-GA models. The results showed that
with low values of input data to train ANNs, the
MLPANN-GA models compared to RBFANN-GA
models are more precise due to their higher R2 and
lower RMSE values. The values of R2 for train and test
(verification) models by RBFANN-GA and MLPANN-
GA varied from 0.93 to 0.99. The mean average error
in simulation of all contaminants for train and test
models did not exceed 6 and 4%, respectively. It was
observed that accuracy of all ANN models increased
when GA was applied to the ANN models.
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