
Cu-doped ZnO nanoparticle for removal of reactive black 5: application of
artificial neural networks and multiple linear regression for modeling and
optimization

Kamal Salehia, Hiua Daraeib, Pari Teymourib, Behzad Shahmoradib, Afshin Malekib,*
aFaculty of Health, Department of Environmental Health Engineering, Kurdistan University of Medical Sciences, Sanandaj, Iran,
Tel. +988731827492
bEnvironmental Health Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran, Tel. +988731827466,
+988731827475, +988731827426, +988731827507; Fax: +988733625131; email: maleki43@yahoo.com (A. Maleki)

Received 27 July 2015; Accepted 1 December 2015

ABSTRACT

The purpose of this study was to use copper oxide-doped zinc oxide (Cu:ZnO) nanoparti-
cles as a catalyst for the degradation of reactive black 5 (RB5) dye in the presence of sun-
light. Cu:ZnO nanoparticles were synthesized through mild hydrothermal technique and
their characteristics were determined using powder X-ray diffraction, ultraviolet–visible
(UV–vis) spectroscopy, Fourier transform infrared spectroscopy, and scanning electron
microscopy. Taguchi method was used to design RB5 removal experiments. Artificial neural
networks (ANNs) and multiple linear regression (MLR) were used to model the process.
The coefficient of determination (R2) and root mean square error (RMSE) of ANNs were
compared with MLR model. The results showed that the ANNs model with a higher R2

(0.925, 0.9) and lower RMSE (0.03, 0.04) had a better predictability. The sensitivity analysis
was performed to determine more important significant parameters influencing the
photocatalysis process. The results showed that the concentration of RB5, intensity of UV
radiation, and pH values were more important parameters rather than other parameters.

Keywords: Cu:ZnO nanoparticles; Reactive black 5; Photocatalytic; Artificial neural networks;
Multiple linear regression

1. Introduction

Advanced oxidation processes (AOPs) refer to use
strong oxidants, such as hydrogen peroxide and
ozone. It includes photo- and ultrasonic-assisted cat-
alytic process, too. Generally in such process, highly
oxidative free radicals of hydroxyl (OH�) generated
during AOPs mineralize organic pollutants. The use of
semiconductors has attracted lots of attention in recent

years. Although titanium dioxide photocatalyst is
more well known among semiconductors [1], zinc
oxide (ZnO), due to easier preparation, lower cost,
and higher bandgap energy (3.37) [2,3], is more appli-
cable. There are some reports of higher efficiency of
ZnO than TiO2 in organic compounds degradation [4].

Photocatalytic processes are generally performed
in the presence of nonnatural ultraviolet or visible
light. Photocatalytic processes using reagent grade
ZnO are energy consumer, not active under sunlight
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irradiation. Several studies have been done to modify
the ZnO semiconductor structure to make it active
under natural sunlight [1,5]. It is applicable in some
tropical areas, where sunlight is available almost
throughout the year. It is feasible to use sunlight as a
green and an almost free energy source for the photo-
catalytic purposes, i.e. photocatalysts that can get acti-
vated by sunlight irradiation [1].

It has been reported that ZnO, compared to other
semiconductors such as TiO2, can be more efficient in
absorbing visible light wavelength [5,6]. Semiconduc-
tors doped with metal and nonmetal oxides have an
increased sunlight photocatalytic activity [7].

Doping nanoparticles with metals can affect their
performance in degradation of various organic con-
taminants. In addition, it can reduce the bandgap
energy and shift the activation energy from UV to the
visible light [8–11]. Various parameters can affect the
removal efficiency of dyes by nanoparticles. Modeling
and optimization of such parameters can make the
AOPs more efficient. Nowadays, artificial neural net-
works (ANNs) are widely used in many scientific
fields, especially engineering, for optimization, simula-
tion, prediction, and modeling purposes [12,13]. In the
present study, ZnO was doped with CuO in order to
alter its bandgap energy and increase its photocat-
alytic activity. Surface modifier was used to control
particle size, prevent their aggregation, and distribute
them in an appropriate way. Finally, synthesized
nanoparticles were used for reactive black 5 (RB5)
removal and ANNs and multiple linear regression
(MLR) were used to design, model, and optimize the
experiments.

2. Materials and methods

2.1. Chemicals and equipment

In this study, reagent grade zinc oxide, copper
oxide, and n-butylamine were obtained from Merck,
Germany and used without further purification.
Reactive black 5 (RB5) was obtained from Alvand
Sabet Company, Iran. Chemical structure and some
other characteristics of (RB5) are shown in Table 1. To
measure the intensity of sunlight, and its UV and
infrared, luxury meter (model TES-1330- Taiwan), UV
meter (model Chy-732- Taiwan), and infrared sensing
device (model Hagner- EC1- Sweden) were used,
respectively. Scanning electron microscopy (SEM)
(JEM 2000FX II), X-ray diffraction (XRD) (Bruker D8
Advance), and the Fourier transform infrared (FTIR)
spectroscopy (Bruker-Tensor 27) were used to charac-
terize the synthesized nanoparticles.

2.2. Synthesis of copper oxide-doped zinc oxide
nanoparticles

In order to synthesize the photocatalyst nanoparti-
cles, 2 mol of zinc oxide was mixed with different
molar weights of copper oxide (0.5, 1, 1.5, 2, and 2.5)
and then 10 ml of NaOH solution was added. In the
next step, 1 ml of n-butylamine was added and the
resulting solution was stirred for three minutes. Then,
it was heated in an oven at 100˚C for 8 h. The result-
ing mixture was washed with distilled water twice to
remove the surfactant and possible contaminations.
Then, it was dried at room temperature and kept in a
desiccator for later determination of its characteristics.

2.3. Design of experiments

The Taguchi method was used for the design of
experiments. The first step was to determine the effec-
tive parameters and their levels. Four parameters,
including type of nanoparticle, dyes concentration,
dose of nanoparticles, and pH were studied. For each
parameter, 5 levels of nanoparticles (ZnO doped with
0.5, 1.0, 1.5, 2.0, and 2.5 M weight of CuO), dye con-
centrations (10, 50, 100, 200, 500), nanoparticle dosage
(0.1, 0.5, 1.0, 1.5, and 2.0), and pH (3, 5, 7, 9, 11) were
determined. The experiments were performed ran-
domly in order to minimize errors [14].

2.4. Removal experiments

A 1,000 ppm RB5 stock solution was prepared by
dissolving RB5 powder in distilled water. Different
concentrations of RB5 were prepared from this solu-
tion. The effects of different parameters including
nanoparticle type, pH, dye concentration, and
nanoparticles dose on RB5 removal were studied. All
experiments were carried out in a 150-ml batch reactor
equipped with shaker. Different concentrations of RB5
solution (10–300 ppm) after the pH adjusting (3–11)
were shaken under sunlight for 2 h after addition of a
determined amount of nanoparticles (0.1–2.0 g/l).
Samples were taken in 20 min intervals during the
photocatalytic experiments. Sunlight intensity (LUX),
and UV and IR radiations were also measured
simultaneously. Then, the samples were centrifuged
(2,000 rpm), and finally changes in RB5 concentration
were measured using a UV–vis spectrophotometer at
a wavelength of 618 nm. RB5 removal efficiency was
calculated using Eq. (1) [15]:

R% ¼ C0 � Ct

C0
� 100 (1)
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where C0 and C are the initial and final dye concentra-
tions, respectively.

2.5. Multiple linear regression

MLR can be used to analyze several variables,
simultaneously. More favorable results by this method
require many samples with correct data. Otherwise, it
may lead to large errors in the results obtained. In
fact, MLR expresses the relationship between the inde-
pendent and dependent variables. It can be defined as
follows (Eq. (2)):

Y ¼ a þ b1 X1 þ b2 X2 þ . . . þ bi Xi (2)

where a is constant coefficient, (b1, b2, …, bi) are
regression coefficients of independent variables, (X1,
X2, …, Xi) are the independent variables, and Y is the
dependent variable [16,17].

2.6. AAN modeling

In this study, Levenberg–Marquardt training algo-
rithm (LMTA) was used for training multilayer feed-
forward neural network. Trial and error method was
used to find the best architecture of the network. The
obtained optimal architecture for the network had
eight and four neurons in the input and hidden layer,
respectively.

The fitness of the obtained ANN model was
assessed using statistical treatments. The obtained
data-set was divided to three different parts including
60% training set, 20% validation set, and 20% external
test set. The external test set had not previously been
used for training and validation of the network and
only was used to assess the model predictability. The

results of the predictability test for ANN model are
presented in Table 3. The results indicate that the
ANN model predicts the dye removal percentage
accurately.

In a study conducted by Ghaedi et al. [18], it was
found that a network with the LMTA and sigmoid
transfer function shows a better prediction of the
methylene blue and brilliant green dyes removal.
Dutta et al. [19] concluded that a network with LMTA
is a suitable tool to predict the removal rate of crystal
violet. In another study, Aber et al. [20] reported that
ANN can predict the removal of hexavalent chromium
using electrocoagulation process with a high correla-
tion coefficient of 0.98. The reason for better prediction
of RB5 by ANNs would be the existence of nonlinear
relationships among the studied parameters and their
consideration by ANNs [21]. Results reported by
Noori et al. [22] and Maleki et al. [23] showed that
ANNs has better prediction than MLR.

2.7. Model compilation

In this study, multilayer feedforward ANNs were
used to estimate the degradation rate of RB5 by the
Cu:ZnO nanoparticles. To design the structure of the
model, the numbers of neurons in the input and out-
put layers were chosen considering the numbers of
the variables in the input and output of the model,
respectively. Then, to select the adjustable parameters
and thus to determine the best structure of the neural
network, a large number of neural networks, with dif-
ferent structures, were designed and evaluated. The
neural networks were designed and implemented with
adjustable parameters (including transfer function,
learning rule, the amount of momentum, the number
of hidden layers, and the number of neurons in the
hidden layer). The accuracy of these networks was

Table 1
Characteristics of reactive black 5 [9]

Molecular structure Molecular formula Molecular weight (g/mol) λMax (nm)

C26H21N5Na4O19S6 992.82 597
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calculated by statistical criteria and evaluated in the
test phase. Finally, the network with the closest results
to the reality was selected as the main network. Coef-
ficient of determination (R2) and root mean square
error (RMSE) were used to compare the ANNs and
MLR models.

3. Results and discussions

3.1. Characterization of nanoparticles

Powder XRD was used to evaluate the crystal
forms, network parameters, and the size of the synthe-
sized nanoparticles. Reflected dispersions of synthe-
sized nanoparticles were collected and analyzed in the

angular range of 2θ = 10˚–90˚. The results of XRD were
matched with the standard card (JCPPS) data for pure
ZnO nanoparticles with hexagonal structure. It means
that synthesized ZnO nanoparticles have a hexagonal
structure. Scherrer formula was used to calculate the
average size of the nanoparticles (Eq. (3)). Results
showed that the synthesized nanoparticles have a size
of 54 nm (see Fig. 1):

DScherrer ¼ 0:9

B cos h
k (3)

Fig. 1. XRD pattern of 1.5% Cu:ZnO nanoparticles.

Fig. 2. Energy bandgap changes of 1.5% Cu:ZnO
nanoparticles.

Fig. 3. Characteristic SEM image of 1.5% Cu:ZnO nanopar-
ticles.
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where DScherrer is the size of crystal (nm); λ is the
wavelength of X-rays (1.54056 nm); B is the width of
the highest peak at half the peak height (radians); and
θ is the diffraction angle of the highest peak (degrees)
[24].

3.2. Variations in the energy gap of the synthesized
nanoparticles

Investigation of the bandgap energy of the synthe-
sized nanoparticles was performed at the wavelength
of 200–650 nm. It was found that the absorption has
shifted to higher wavelengths and the bandgap energy
decreased from 3.37 for pure ZnO to 3.1039 for Cu:
ZnO (Fig. 2). Addition of CuO can shift the absorption
to the higher wavelengths in the visible region. In a

study by Ba-Abbad et al., ZnO nanoparticles were
doped with trivalent iron, the results showed that the
iron addition might cause a shift in absorption to the
visible spectra [25].

Fig. 4. FTIR spectrum of the reagent grade and 1.5% Cu:ZnO nanoparticles.

Table 2
Statistical values calculated by MLR

Predictor Coefficient Significancy level

Constant 78.86 0.359
Infrared 0.2187 0.196
UV 59.58 0.071
Intensity of sunlight −0.1093 0.332
Time 0.1195 0.000
pH −3.041 0.096
Concentration of nanoparticle −0.56 0.194
Concentration of dye 0.0406 0.000
Nanoparticle type 0.97 0.545

Table 3
Statistical goodness parameters of the models

Model

Training data
Validation
data Test data

RMSE R2 RMSE R2 RMSE R2

MLR 0.361 0.48 – – 1.54 0.33
ANNs 0.036a 0.94a 0.03a 0.93a 0.03a 0.92a

0.015b 0.96b 0.178b 0.94b 0.04b 0.91b

aANNs before sensitivity analysis.
bANNs after sensitivity analysis.
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3.3. Morphology of the synthesized nanoparticles

SEM was used to assess the morphology of the
synthesized nanoparticles (Fig. 3). The results showed
that the nanoparticles are homogeneous. Some of
nanoparticles transformed to four dimensional. In
SEM image, no aggregation was observed. It can be
due to the addition of n-butylamine surfactant. The
result obtained in this study was in consistent with
results obtained by Shahmoradi et al. [7].

3.4. The chemical structure of the synthesized nanoparticles

FTIR spectroscopy was used to determine the
chemical structure of the reagent grade ZnO and the
Cu:ZnO nanoparticles (Fig. 4). There are several varia-
tions in the 550 and 600 cm−1 regions, which belong to
the ZnO bond and indicates the presence of ZnO.
There is an absorption band in the region of 750 cm−1,
which could be attributed to the impurities introduced
by CuO. The other peaks were observed in the regions
of 800–850, 1,650, and 3,100 cm−1, which might be due
to the amine (NH) group, and it shows that n-buty-
lamine has modified the surface of the nanoparticles.
The peaks in the 1,100, 1,400, 1,500, and 2,950 cm−1

regions may be due to the presence of CN CH, CH3,
CH2, respectively.

3.5. MLR modeling and optimization

The MLR was used to construct the RB5 dye
removal model. The model and its statistical details
are presented in Table 2.

Table 3 shows that the use of MLR model could
not give a good estimate for the prediction of the
photocatalytic degradation of RB5. Therefore, for more
accurate predictions, it is necessary to use more pow-
erful models, such as ANNs.

3.6. Sensitivity analysis

The results of the sensitivity analysis are tabulated
in Table 4. The unbiased coefficient of relative sensi-
tivity showed that the dye concentration, pH, intensity
of UV radiation, and time have the higher influences
on the dye removal efficiency. The results also showed
that type of synthesized nanoparticles, intensity of
sunlight and infrared radiation, and nanoparticle have
less influence on the dye removal percentage. Since
the simpler model, the more favorable, by removing
the less effective parameters, the simpler model was
constructed. According to Hill [26], the parameters
with ratio of relative sensitivity less than 0.1 had no
significant influence on the model quality. The new
model was constructed based on four significant
parameters including dye concentration, pH, contact
time, and UV light intensity. The optimal (4:6:1) ANN
model with 4 nodes in the input layer, 6 neurons in
the hidden layer, one hidden layer, LMTA, and sig-
moid transfer function was constructed.

4. Conclusion

The Cu:ZnO nanoparticles were used for photocat-
alytic degradation of RB5 dye in the presence of sun-
light. The Cu:ZnO nanoparticles were synthesized
using hydrothermal method. Their characteristics were
determined using XRD, UV–vis spectrophotometer,
FTIR spectroscopy, and SEM. Taguchi, ANN, and
MLR methods were applied to design RB5 removal
experiments and modeling. The coefficient of determi-
nation (R2) and RMSE of ANNs and MLR were com-
pared before and after the sensitivity analysis. The
results showed that the ANNs model with a higher R2

and lower RMSE had a better prediction for RB5
removal than the MLR. The sensitivity analysis on the
input variables was performed on the ANN model.
The results showed that the concentration of RB5,

Table 4
Results of sensitivity analysis of neural networks

Input variables Coefficients of relative sensitivity Coefficients of sensitivity

Nanoparticle type 0.076 0.49
Dye concentration 1 6.63
pH 0.13 0.82
Nanoparticle dose 0.079 0.52
Contact time 0.54 3.59
Visible light intensity 0.029 0.19
UV light intensity 0.18 0.21
IR light intensity 0.090 0.59
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intensity of UV radiation, and pH values had higher
influences on the dye removal.
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