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ABSTRACT

Heavy metal pollution has become one of the most urgent environmental issues, which also
poses a potential threat to the human health. This article is suggested to review the advance
on the performance of chemical coagulation process in removing heavy metal from water.
Chemical coagulation process is considered to be a valid method which is determined by the
hydrolyzed species of the inorganic coagulants under different raw water and coagulation
conditions. And the main mechanisms of the removal of heavy metals are adsorption, com-
plexation, and coprecipitation. Compared with the aluminum-based coagulants, the iron-
based coagulants have better performance due to the use of wide pH range and large surface
area of the resulting flocs. During the chemical coagulation process, the valence state of
arsenic and antimony could affect the removal efficiency. Thus, the oxidants and reductants
are often combined with inorganic coagulants used in this process. It is found that pH is an
important factor greatly influencing the performance directly or indirectly. The complex
resulting from the interaction between the inorganic/organic pollutant and inorganic coagu-
lant may contribute to the removal of heavy metals. Overall, chemical coagulation is an effec-
tive way to control heavy metal pollution with/without other water treatment technologies.

Keywords: Heavy metal; Coagulation; Adsorption; Inorganic coagulant; Organic substance;
Water treatment technology

1. Introduction

The industrialization and urbanization, even the
growth of population as well as other drivers of
human activities, make the heavy metal pollution
become a serious worldwide problem, especially in

developing countries [1,2]. Although the concentration
of heavy metal is low in water, they can reach to a
higher level with the biological accumulation and bio-
logical magnification. More attention has been paid to
it over the past several years, because of this potential
threat to human beings [3,4].

Some technologies are available to purify water/
wastewater containing heavy metals, such as*Corresponding author.
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coagulation/flocculation [5], ion-exchange [6,7], mem-
brane filtration [8,9], sand filtration [10,11], advanced
oxidation [12], activated carbon adsorption [13,14], etc.
The activated sludge is rarely applicable to treat the
high concentration of heavy metals for the biotoxicity
[15]. These water treatment technologies have their
own advantages and disadvantages. And their range
of application should be considered before they are
used in different types of water/wastewater treatment
[16]. Coagulation is the traditional water treatment
technology which is widely applied in the drinking
water treatment [17]. It is interesting to study the fea-
sibility of coagulation/flocculation technology to treat
the heavy metal in water for the pollution control. In
the coagulation/flocculation process, the chemicals,
namely coagulants or flocculants, are added into water
to play a major role in the removal of heavy metals[5].
These chemicals could be roughly classified into three
categories, inorganic-based coagulant, and organic-
based flocculant and hybrid materials, according to
their chemical composition [18]. Among them, the
inorganic coagulant owning the cost-efficiency has
aroused extensive concern [19].

The present review article attempts to provide an
overview of recent information concerning the research
advance about the removal of heavy metals in the
coagulation process. Before that, the feature of heavy
metal and inorganic coagulants are considered. And, a
particular emphasis is given on the removal mecha-
nism of coagulation process under different conditions,
and the factors governing removal efficiency are dis-
cussed in terms of different inorganic coagulants with
different hydrolysis species, coagulation condition and
other inorganic/organic pollutants. Furthermore, the
hybrid water treatment technology and the control of
residual melt salt are also represented.

2. Sources and feature of heavy metals in water

Heavy metals are often found in agriculture as com-
ponents of pesticides, herbicides, and raticides as well as
applied in industrial manufacture as raw materials or
auxiliary materials [20,21]. Heavy metal is introduced
into the natural water system through rock weathering,
mining, fossil-fuel consumptions, metal electroplating,
and other industrial activities [22]. The pollution level is
determined by the rainfall capacity, run-off, permeabil-
ity, level of industrialization, and water treatment capac-
ity [16,22,23]. Heavy metal ions are almost positively
charged in the aqueous solution. They could react with
hydroxide, sulfide, and other anions to yield the precipi-
tation or complex, which may contribute to the removal
of heavy metals from water [16].

Besides, heavy metals are harmful to mammal
on account of the biological toxicity, genotoxicity,
carcinogenicity, and accumulative toxicity [24–26].
The toxicity of heavy metals is extensively linked to
the generation of reactive oxygen species, the inhibi-
tory effect on electron transport, and the reduction
of enzyme activity for binding with biotic ligands
[27,28]. The concentrations of heavy metals might be
far beyond the acceptable level in aquatic animal,
even though the actual concentration of them in
natural water is low (shown in Table 1). And, it
has been detected that the concentrations of zinc,
copper, lead, cadmium, mercury, chromium, and
arsenic in the eriocheir sinensis can reach to 18.76,
50.8, 0.142, 0.262, 0.054, 0.06, and 0.024 mg/kg,
respectively, with heavy metals existing in water
and sediment [29]. When people take these aquatic
animals as food, they are exposed to the risk of
heavy metals. Consequently, the concentration of
heavy metals in food products is a very important
factor which should be considered in the assessment
of the health risk [30]. Moreover, geoaccumulation
index recommended by US Environmental Protection
Agency is used as a reference to estimate the extent
of heavy metals pollution in aquatic system and to
assess the potential risk rank of heavy metals to
human [31].

Since heavy metals with other pollutants influence
the physic-chemical characteristic of the aqueous solu-
tion, and determine the choice of inorganic coagulants,
dosage, and coagulation condition. It is, therefore,
important to investigate the characteristics of raw water
before the coagulation process is carried out. Many
methods, including chemical titration, atomic absorp-
tion spectroscopy, inductively coupled plasma mass
spectrometry, ultraviolet-visible spectrophotometry, are
being used to detect heavy metal ions in the aqueous
solution [32,33]. Nowadays, some online detection
technologies are also applied to monitor the concentra-
tion of heavy metals in effluent from wastewater plant.
And, other water quality parameters which can be
easily detected should also be used to indirectly present
the pollution level of heavy metals in water [34].

3. Heavy metal removal in coagulation process

There are some factors that have been found to
seriously influence heavy metals removal from water
in coagulation process. And the removal efficiency of
heavy metals is often different in diverse raw water
and coagulation condition [35–40]. A few such exam-
ples and mechanisms are given below.
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3.1. Characterization of conventional coagulants

Metal salts, such as alum, aluminum chloride, ferric
sulfate, and ferric chloride, are traditional coagulants.
Adding these metal salts into the aqueous solution, will
set off a series of complex chemical reactions which are
known as dissolution, hydrolysis and polymerization
[41]. And polymerized species that are generally
acknowledged the active ingredients for the removal of
turbidity and contaminants are gradually formed dur-
ing these processes [42]. Along with the development
of the research, prehydrolyzed coagulants, such as
polyaluminum chloride and polymeric ferric sulfate,
produced by the forced hydrolysis are believed to have
an excellent performance in water treatment [17,43].
The prehydrolysis degree of them could be represented
as basicity, namely, the OH/Al ratio or OH/Fe ratio.
And the polynuclear species are different with various
basicities [44,45]. For instance, the main aluminum spe-
cies are Al3+ and monomeric species Al(OH)2+,
AlðOHÞþ2 and Al(OH)3

0(aq) at low basicity. The small/
middle polymeric Al and higher polymeric Al are
formed following the increase in basicity. And in this
process, the transient polymeric Al species form
the stable Al13 (AlO4Al12(OH)24(H2O)12

7+) and Al30

(Al30O8(OH)56(H2O)2,4
18+) which are believed to be the

key part to achieve outstanding performance [46,47].
Although these polynuclear species are also generated
in the hydrolysis of traditional coagulants, the mono-
meric and middle polymeric species are dominant.
And the character of polymeric species is not always
the same between traditional coagulants and prehydro-
lyzed coagulants, which will be described later [48].
Additionally, when the basicity is near 3.0, the amor-
phous sol/gel Al(OH)3 is observable [46]. The adsorp-
tion property of polymeric species may relate to the
removal of heavy metals.

3.2. Removal efficiency of heavy metals

The efficiency of coagulation in removing heavy
metals from water solution has been studied in a
number of different forms ranging from batch experi-
ment to field trial. The performance of inorganic coag-
ulant is represented under different conditions (shown
in the Table 2). The removal rate of heavy metals
mostly depends on the hydrolyzed species of these
inorganic coagulants in raw water [35]. It is not like
the way of removing colloid particles in which the

Table 1
The adverse effects and actual concentration of heavy metals in natural water

Heavy
metal Adverse effect (From WHO)

MCL (From
WHO)

Actual concentration
(mg/L) Reference

Arsenic Carcinogenicity 0.01 mg/L 0.098 (Manchar Lake) [114]
Toxicity (Provisional) 0.0069 (Gombak) [115]

0.0024 (Kralkızı Dam) [116]
0.002 (Tap water, Mexico) [90]

Mercury Tubular necrosis/proteinuria 0.006 mg/L 0.0003 (Gombak) [115]
Genotoxicity 0.44 × 10−3 (Marano Lagoon) [117]

8.97 pmol/L(Twitchell) [118]
Antimony Genotoxicity 0.03 mg/L Not detected (Pearl River) [38]

Carcinogenicity 163 ng/L (Bulgaria) [119]
50 ng/L (Skellefte River) [120]

Lead Toxicity 0.01 mg/L 0.0101 (Gombak) [115]
Interfering calcium metabolism/nervous
system

0.0026 (Kralkızı Dam) [116]
0.001–0.004 (India) [121]

Cadmium Carcinogenicity 0.003 mg/L 0.0012 (Gombak) [115]
Genotoxicity 0.15 (Bara River) [122]

0.024 (Hindon River) [31]
0.0014 (Tigris River) [123]

Chromium Carcinogenicity 0.05 mg/L 0.0027 (Gombak) [115]
Genotoxicity (Provisional) 0.022 (Kralkızı Dam) [116]

0.332 (Hindon River) [31]
Manganese Neurological effects 0.4 mg/L 0.388 (Tigris River) [123]

0.858 (Hindon River) [31]
0.235 (Malgara groundwater) [124]

Note: MCL = maximum contamination level.
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charge neutralization plays an important role in the
process, whereas the complexation, adsorption, and
coprecipitation are dominant in the removal of heavy
metals[49]. For instance, chromium ions can react with
the hydrolyzed products of ferric chloride, and insolu-
ble complex of ferric chromate [Fe2(CrO4)3] and/or
ferric dichromate [Fe2(Cr2O7)3] are formed [50]. And,
based on the EXAFS spectrum analyses, two O atoms
from an AsO4 unit individually bond to two Al atoms
through As–O–Al, which helps in the removal of
heavy metals [51]. Additionally, the higher polynu-
clear species have larger surface areas which contrib-
ute to the adsorption of heavy metals. So when these
species are dominant in the treatment process, better
results are often obtained [35]. It also can partly
explain the controversy about whether the perfor-
mance of prehydrolyzed coagulant is better than the
traditional coagulant. It was reported that the prehy-
drolyzed coagulants had better removal efficiencies
than the conventional monomeric Al coagulants, since
more stable Al13 was produced [43,52]. But there are
opposite views. The aluminum chloride produced the
in situ Al13 is not stable, and it further hydrolyzed into
the larger polymer contributing to the removal of
heavy metals. While, the polyaluminum chloride pro-
duced the crystal hydroxide which was quite stable
throughout the coagulation-flocculation process even
in flocs. And the surface area of amorphous hydroxide
in aluminum chloride was larger than that of crystal
hydroxide in polyaluminum chloride. The larger sur-
face area was always related to the stronger adsorp-
tion ability [35,53]. Thus, the essential factor of
hydrolysis, raw water, and coagulation condition,
which affect the species of hydrolysis product should
be made clear before comparing the removal efficiency
of prehydrolyzed coagulants and traditional coagu-
lants.

Aluminum-based coagulants and iron-based coag-
ulants, as the inorganic coagulants, share a lot in com-
mon during the processes the removal of heavy
metals. However, the performance of them is not
always identical. And iron-based coagulants often per-
form slightly better than aluminum-based coagulants
for the wider pH range and the larger surface area of
resulting flocs [39,54,55]. The flocs formed by iron-
based coagulants are always open and loose, which
ensure three-dimensional lattice size and a large avail-
able surface area for complexing and adsorbing heavy
metals [56]. Furthermore, the performance varies with
different heavy metals under the same coagulation
condition [57]. It may be ascribed to different adsorp-
tion capacities by coagulants, which can be
represented as the adsorption enthalpy of heavy metal

ions for metal hydroxide [56]. Adsorption enthalpy
describes the bonding energy between the adsorbed
ion and the metal hydroxide [58] as represented in the
following equation:

H ¼ f
z2

RH

� �
(1)

where H is the adsorption enthalpy, z is the valance
charge of the adsorbed ion, and RH is hydrated radius.
The removal rate of heavy metals by coagulants is
partly determined by the adsorption enthalpy.

Enhanced coagulation, increasing the dosage of
inorganic coagulant and optimizing the coagulation
condition, makes a better performance in the coagula-
tion process [59]. An advantage of the increase in the
dosage is to enhance the amount of aluminum/iron
hydroxide flocs which provide more available surface
area to adsorb heavy metals [60]. And, it promotes the
capacity of charge neutralization that contributes to
the coprecipitation of heavy metals with colloidal par-
ticles and natural organic matter (NOM) [40]. How-
ever, the advantage is balanced by the corrosivity,
residual metal salt, cost, and large amounts of waste
sludge [61]. Beside, pH of the solution drops appar-
ently when the superfluous inorganic coagulants are
added. And, the decrease in pH will affect the
removal of heavy metals, which needs further study.

3.3. Factors governing the removal efficiency of heavy
metals

The performance is determined to a great extent
by the raw water and coagulation condition. In this
part, we will focus on the effect of initial concentration
and valence state of heavy metals and the effect of pH
and temperature in the solution. Moreover, the inter-
action between heavy metals and other inorganic/
organic substances is also discussed.

3.3.1. Effect of initial concentration and valence state of
heavy metals

Lower pollutant loading always causes lower
removal efficiency, since the formed flocs are few,
large size, and low density. For instance, compared
with high initial arsenate concentration (500 μg/L), the
high coagulant dose is required to achieve good per-
formance in the low initial arsenate concentrations
(10 μg/L) because of the difficulty in inducing colli-
sion between the colloids [36].
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The valence state of heavy metals, such as As(III)
and As(V), has considerable influence on its removal.
It has been described that As(III) is less favorably
adsorbed on inorganic coagulants than the As(V). And,
coagulant alone is not available to reduce the concen-
tration of As(III) below 10 μg/L [37,62]. It is, therefore,
advisable to pre-oxidize As(III) to As(V) by KMnO4,
MnO2, NaClO, and O3 before the coagulation process
to minimize the chemical consumption [62–65]. The
coagulants, Fe(VI) and PACC, which have oxidation
capacity can be also used in the removal of As (III). Fe
(VI) whose redox potential reaches to 2.20 V in the
acidic environment oxidizes As(III) to As(V), and it is
transformed to Fe(III). Then, arsenic is removed via
coprecipitation with the hydrolysis product of iron salt
[66]. PACC which contains the active chlorine and high
Al13 polymer has similar mechanism to remove
arsenic. The residual concentration of arsenic is below
the maximum contamination level after the oxidization
and coagulation [64]. However, the higher valence
state of heavy metals does not always perform better
than the lower one. The removal efficiency of antimony
decreases, while Sb(III) is oxidized by NaClO because
of the conversion of the less water soluble Sb(III) to the
more water soluble Sb(V). And, the removal mecha-
nism of Sb(III) and Sb(V) has some difference.
Although they are both removed by coagulants via
coprecipitation and adsorption, Sb(III) is mainly
through hydrophobic bonding, and Sb(V) is mainly
through ionic bonding [56]. It will be interesting to fur-
ther study the removal efficiency of other heavy metals
with different valence states in the coagulation process.

3.3.2. Effect of pH and temperature

The effect of pH on the removal of heavy metals is
complex. The precipitation of heavy metals is formed
under alkaline condition, which contributes to their
removal through enmeshment and adsorption by
resulting flocs [67]. But it does not mean that higher
pH results in the removal of higher heavy metals,
since the hydrolyzed species of inorganic coagulant
are different when it is beyond the optimal pH range
[68]. In the range, the dependence of removal rates on
pH is insignificant. But the removal rate decreases
sharply when pH is out of the range [38,69,70]. The
hydrolyzed species of conventional inorganic
coagulants are negatively charged at high pH values
(pH 9–10). Electrostatic repulsions between the nega-
tive heavy metal species and negatively charged
hydrolyzed species would hinder the diffusion and
sorption processes. And, the competition of OH− with
heavy metals at high pH would be also responsible

for the poor sorption of heavy metals by inorganic
coagulants [19]. Besides, pH has an effect on the
oxidation-reduction reaction. The reaction rate of oxi-
dant always decreases with an increase in pH, and it
also increases the oxidant dose and reaction time. For
that reason, the conversion efficiency of heavy metals
is low, which influences the performance of inorganic
coagulants [71]. The effect of pH is not limited in the
range of heavy metals and inorganic coagulants, and
it also affects the reaction of other inorganic
substances and organic substances to heavy metals
which will be represented in the following.

Only a handful of studies have specifically focused
on the effect of temperature in the case of the removal
of heavy metals in the coagulation process. And, less
attention has been given to the low temperature. Gen-
erally, low temperature deteriorates the coagulation
efficiency, because of inhibiting the hydrolysis of metal
salts, increasing the viscosity of water, decelerating the
Brownian movement, and reducing the collision proba-
bility [72–74] and further study should be made.

3.3.3. Effect of other inorganic substances

The other inorganic substances always coexist with
heavy metals in the solution. The reaction among
them influences the removal of heavy metals in coagu-
lation process. Some ions, such as S2−, can react with
heavy metal to generate the precipitation, which con-
tributes to high performance [16]. And, considering
the Ca2+ ion commonly existing in water, it always
enhances the removal efficiency of heavy metals. The
reasons are represented as following: (a) the Ca2+ ion
can compress the double layer thickness from 9 nm to
about 1.5 nm, which reduces the charge exclusion and
makes internal pores more accessible; (b) it can also
reduce the negative charge on flocs; (c) it increases the
amount of precipitation; (d) under the alkaline condi-
tion, the formed CaCO3 improves the removal ratio of
heavy metals due to the effects of coprecipitation,
enmeshment, and adsorption [75,76]. And a study
indicated that the promoting capacity of Mg2+ on
Mn2+ removal is stronger than the Ca2+ [39].

Some inorganic substances could form the specific
inner-sphere complexes with conventional inorganic
coagulants, and they competed with heavy metals for
the adsorption sites. In this situation, the removal rate
of heavy metals is often lower than expected [77,78].
The research confirms that the silica competes with
arsenate for the adsorption sites. And, the effect of sil-
ica is greater at pH 8.5 than at pH 6.5 for the increase
in the amount of negatively charged H3SiO

�
4 . Phos-

phate has drawn the similar conclusion. The chemical
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behavior of monovalent state (H2PO
�
4 ) and divalent

state (HPO4
2−) is close to H2AsO4

− and HAsO4
2−. All

of them can have ligand exchange with hydrolyzed
species of inorganic coagulants, which causes the com-
petition between phosphate and arsenate [49]. But the
level of competition is determined by the concentra-
tion of phosphate, pH, and other conditions. Conse-
quently, more studies should be conducted to deeply
analyze the interaction between heavy metals and
inorganic substances under different raw water.

3.3.4. Effect of organic substances

The heavy metals and organic substances can react
with each other to generate the soluble complex, colloi-
dal or insoluble substance in the solution. The domi-
nant form is determined by the characteristics of
organic substances and inorganic coagulants. And the
dominant form also affects the removal of heavy
metals[79]. It is represented that humic acid (HA)
conduces to gain the maximum removal of heavy met-
als when the optimum ratio of humic substance to
metal ratio is discovered. And, with an increase in pH,
the removal efficiency of heavy metals is improved in
the presence of humic substances [80]. Similar conclu-
sion is drawn that binding heavy metals to the HA at
high concentration leads to the higher removal rate of
heavy metals in coagulation process [40]. However, the
removal rate of antimony dramatically reduces with
the presence of HA since the HA supermolecules and
HA-originated functional groups occupy the adsorp-
tion sites on the surface of iron oxy-hydroxide. And,
part of antimony ions adsorb on the HA increases the
solubility of complex in water [78]. Specifically,
the competition is keen among the contaminants for
the adsorption sites at low dose of coagulant, which
causes the low removal rate of heavy metals. But it
was negligible at high dose for the simultaneous
removal of organic and inorganic contaminants [64].

The removal mechanism of heavy metals with
organic substances by coagulation process is compli-
cated. The colloidal particles in water absorb the
heavy metals on the surface via charge attraction and
ion exchange [81]. Then, the charge neutralization of
aluminum/iron hydroxide complexes plays an impor-
tant role in the aggregation of the colloidal particles.
And during the precipitation process, the resulting
flocs capture and adsorb some heavy metal ions, and
coprecipitation also partly contributes their removal in
this process [16,40]. However, when the heavy metal
ions aggregate with colloids to form the soluble
complex, it will increase the retention of heavy metals
in water [82]. Moreover, the capacity of charge

neutralization of inorganic coagulant could be
indicated by the value of zeta potential which can also
be used to determine the optimal dosage of coagulant
in the treatment [83]. But it has disproved that zeta
potential was only applied in predicting the optimal
dosage of coagulant when charge neutralization works
as the predominant coagulation mechanism. In other
cases, the floc size and the fractal dimension could be
taken as the substitute to determine the optimum dos-
age range [84,85]. Flocs take an effect on the removal
of heavy metals during the coagulation process. The
characteristic of flocs, such as size, strength, and sur-
face area, influences the adsorption of heavy metals
on the amorphous aluminum/iron hydroxides [54,86].
But few studies have specially drawn an attention to
this effect. It has been indicated that there is an obvi-
ous increase of the floc strength when pH is adjusted
from 5.2 to 6.0, and there is a corresponding increase
in the removal efficiency of contaminants [87]. And
flocs aggregation depends not only on the type and
dose of coagulants, but also on the characteristic of
solution and hydraulic condition [88]. The high shear
forces results in the breakage of flocs. Although the
regrowth of flocs takes place after the subsequent low
shear phase, the flocs regain about 50% of the size
compared with the initial coagulation process [89].
Thus, the effect of the character of flocs on the
removal of heavy metals should be further studied.

4. Coagulation-based combined/hybrid processes

Coagulation coupled with other water treatment
technologies, such as advanced oxidation, membrane
filtration, adsorption, and flocculation (in Table 3), is
an effective way to control the pollution caused by
heavy metals [82,90].

In water, heavy metal ions are easy to bond with
ethylenediaminetetraacetic acid (EDTA), iminodiacetic
acid (IDA), and other organic matter, which usually
decreases the removal rate of heavy metals. Thus, the
oxidants, such as Fenton reagent, lead to the oxidation
and mineralization of organic contaminant. And with
these chemical reactions, heavy metal ions are released
from the inorganic-organic compound, and the dis-
solved compound transforms to the colloid or precipi-
tation, which facilitate the simultaneous removal of
heavy metals and organic contaminants [91,92]. And
the oxidants are also been used to transform the
valence state of heavy metals, which has been men-
tioned before.

The membrane technology has also been applied
in the treatment of heavy metals with coagulation [16].
Although excellent performance could be obtained by
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the membrane filtration, and the performance is insen-
sitive to raw water, it has the disadvantage of mem-
brane fouling which decreases membrane
permeability, shortens membrane lifetime and
increases the operating cost [93,94]. The problem with
membrane fouling always puzzles people [95]. In the
coagulation-membrane filtration hybrid technology,
the inorganic coagulant has the functions of enlarging
flocs and reducing the initial transmembrane pressure,
which not only retard the membrane fouling, but also
improve the removal efficiency of heavy metals
through forming the colloid particles and precipitation
[38,96].

The role of adsorption for the removal of heavy
metals from water is beyond suspicion [97]. And the
performance is always satisfied when the adsorbents
are added in the coagulation process [98]. However,
the cost should be considered in the practical applica-
tion. The combined action mechanism of ferric sulfate
and calcite has been discussed. The calcite surfaces are
coated by small coagulants, which behave similar to
the calcite in gravitational sedimentation and filtration,
and thus heavy metals are easily removed from water.
Whether it can be used in the other treatment with dif-
ferent adsorbents should be further investigated [99].

The capacities of bridging and adsorption of con-
ventional inorganic coagulants are reinforced through
synthesizing them with other inorganic coagulants or

organic flocculants [18,100]. These novel inorganic-
inorganic and inorganic-organic hybrid coagulants
always have better performance in water treatment,
and they are more stable than the traditional inorganic
coagulants during storage [101,102]. Due to the high
molecular weight of the organic flocculants which also
possess active functional groups, flocs formed by inor-
ganic-organic hybrid coagulants are provided with
superior properties in the floc size and the floc
strength. And the growth and regrowth of flocs is less
affected by the mixing speed, shear force, and break-
age time [103]. However, these novel inorganic-inor-
ganic and inorganic-organic hybrid coagulants are
rarely studied in the treatment of heavy metals. Thus,
it is meaningful to research a new hybrid chemical
which can remove heavy metals from water perfectly.

5. The control of residual metal salts

The residual metal salts are always detected in the
treated water when the conventional inorganic coagu-
lants are applied in water treatment [104]. The prob-
lems of the residual aluminum/iron salts are related
to the resource waste and health risk [105]. It has been
reported that residual aluminum in the drinking water
may be a risk factor for Alzheimer’s disease [106,107].
And, the maximum concentration level of residual alu-
minum in drinking water guided by WHO is at

Fig. 1. The recommended mechanism of the removal of heavy metals in coagulation process.
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0.2 mg/L [108]. The speciation analysis demonstrates
that monomeric aluminum is the dominant species in
the residual total aluminum, while non-labile
monomeric aluminum is the dominant species in
residual monomeric aluminum [109]. Several control
technologies have been introduced to reduce the
residual concentration of aluminum/iron salts in the
treated water. One method is maintaining the inor-
ganic coagulant dosage in the optimal range. And it is
indicated that the residual aluminum concentration
was at a low level under the optimum coagulant dos-
age. Additionally, increasing the basicity of coagulants
and optimizing the coagulation condition can achieve
the same purpose [110]. It is represented that the solu-
tion pH is a key to minimize the residual aluminum
concentration [111]. Apart from this, adding appropri-
ate organic flocculants, such as polydiallyl dimethyl
ammonium chloride (PDMDAAC), contribute to the
low residual aluminum concentration in water [112].
A composite coagulant synthesized by PAC and a
microbial flocculant confirmed this conclusion [109].

Combining coagulation with membrane filtration is an
accepted way as well [113].

6. Concluding remarks and future directions

Chemical coagulation process is an important
water treatment technology, and it has been widely
used in water purification. The hazardous heavy met-
als which are widespread in natural water threat the
human health and bring a new challenge to the
application of coagulation. This review highlights
the middle/high polymeric species formed in the raw
water mainly contribute towards the removal of heavy
metals. And, it should take full consideration of the
factors which significantly influences the performance
in the coagulation process, such as dosage, pH, tem-
perature, valence state of heavy metals, etc. The effect
of other inorganic and organic substances is different
under varying condition. When the capacity of precip-
itation, coprecipitation, adsorption, and complexation
is enhanced for the coexistence of inorganic/organic

Table 4
The feature of the novel inorganic coagulants

Function &
Composition Positivesa Negatives Toxicity Reference

Fe(VI) Supercharged iron
molecule; dual
function of oxidation
and coagulation
(ferric hydroxide);
great redox potential

Low dosage; high removal
efficiency of NOM,
phosphate, organic
contaminants, especially
micropollutants

Unstable of the Fe(VI)
solution; costly

Nontoxic [134,135]
[71,136]

Ti-based coagulant Including titanium
tetrachloride,
polytitanium
tetrachloride,
titanium dioxide
(photocatalytic
coagulant)

Low dosage; higher
removal efficiency of
organic pollutants and
turbidity; higher floc
growth rate (450 μm/min);
compact floc structure;
strong recoverability at
high B value (OH/Ti molar
ratio) of polytitanium
tetrachloride; potential for
sludge recovery to produce
valuable by-product

pH of the effluent
after TiCl4 coagulation
was much lower; at
the low B value, the
flocs were weak
recoverability

Nontoxic [137,138]
[139]

Zr-based coagulant Containing 20%
weight equivalent
ZrO2 consisting of
cationic
hydroxylated
polynuclear
zirconium species

Low dosage; better removal
rates of DOC, NOM,
turbidity; generate more
positive zeta potentials;
higher isoelectric point;
large floc size (930 μm);
moderate floc growth rates
(220 μm/min); strong,
robust flocs

Narrower optimum
pH range (pH:5–6);
low floc growth rate;
longer time to reach
the steady state size;
require careful control
dosage to avoid
charge reversal and
restabilization

Nontoxic [140]

aThe positives and negatives of the novel inorganic coagulants were compared with the aluminum/iron-based coagulants.
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substances and heavy metals, the removal efficiency is
always better than that when they are treated sepa-
rately (shown in Fig. 1). However, if these coexisting
matters compete with each other for the adsorption
sites, it will result in worse performance. Moreover,
the hybrid technology should be combined with coag-
ulation for enhancing the treatment. And, the residual
metal salt in the treated water requires more attention
to prevent the potential health risk.

Additionally, it should emphasize more fundamental
research on the mechanisms of interaction between inor-
ganic/organic substanceand inorganic coagulant in
different conditions, especially in low temperature or/
and low turbidity water, so as to facilitate the removal of
heavy metals. And, a special concern should be also paid
to the novel and green inorganic coagulants (differing
from the conventional aluminum/iron-based coagu-
lants) which possess the advantages in performance and
nontoxicity (shown in Table 4). They would be the
potential chemical for the treatment of heavy metals.
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