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ABSTRACT

In this paper, copper oxide nanoparticle was synthesized and its surface was functionalized to
remove dyes from single systems. The characteristics of the adsorbent were studied using
Fourier transform infrared, X-ray diffraction, and scanning electron microscopy. Direct Red 31
(DR31) and Direct Red 80 (DR80) were used as model dyes. Least-squares support vector
machine was used to predict dye removal. The model shows better performance in predicting
dye removal compared to the kinetic models with average absolute percent relative error of
3.278 and 3.787% for DR31 and DR80, respectively, and correlation coefficients close to unity.
Therefore, the used model could be reliable for prediction of the dye removal efficiency.

Keywords: Synthesis; Functionalized nanoparticle; Characterization; Dye removal modeling;
Single system

1. Introduction

It is necessary to investigate pollutants in aquatic
samples, because many of these compounds can pose
threats to human health and the ecosystem. Dye
removal from colored wastewater has been a major
concern of different industries, especially for textile
industry. Therefore, their removals from industrial
effluents before discharge into the environment require
extreme and great attention. Several methods such as
physical, biological, photocatalysis, electrochemical,
etc. have been used to remove organic pollutants from
wastewater [1–6]. Each method has its advantages and
disadvantages. For example, ozonation suffers from
high operating costs. Biological treatment methods are

ineffective for degradation due to the large degree of
aromatics present in dye molecules and the stability of
modern dyes [3]. Organic compounds such as dyes,
sericin, etc. can be degraded by enzymes [7,8]. Filtra-
tion potentially provides pure water but low molar
mass dyes can pass through the filter system [3].

Adsorption process is one of the physical wastewa-
ter treatment processes. It is considered to be rela-
tively superior to other techniques due to low cost,
simplicity of design, availability and ability to treat
dyes in more concentrated form [9,10].

A literature review showed that the functionalized
copper oxide nanoparticle (CuO-NH2) was not
investigated to adsorb anionic dyes from wastewater.
In this paper, copper oxide nanoparticle (CuO) was
synthesized and functionalized using (3-aminopropyl)
trimethoxy silane. The characteristics of CuO-NH2*Corresponding author.
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were investigated using Fourier transform infrared
(FTIR), X-ray diffraction (XRD), and scanning electron
microscopy (SEM). Direct Red 31 (DR31) and Direct
Red 80 (DR80) were used as model dyes. The depen-
dency of adsorption performances to effective vari-
ables such as contact time, adsorbent dosage, initial
dye concentration, and pH was systematically studied.
To obtain the best control and management, new con-
cepts including effective operation and design should
be improved and comprehended. Hence, a high qual-
ity representative model can supply a desirable solu-
tion in the process control and helps to illustrate the
real process performance and to develop a continual
control strategy for this kind of technologies. The
models such as least square supported vector machine
(LSSVM) have many adjustable parameters containing
of weights and biases [11]. In this work, LSSVM was
used to predict the dye removal efficiency of single
system based on the obtained laboratory data under
different experimental conditions. To improve this
model, 220 data-sets have been utilized from dye
removal experimental tests. In addition, dye adsorp-
tion isotherm and kinetics was studied.

2. Experimental

2.1. Materials

Direct Red 31 (DR31) and Direct Red 80 (DR80)
were used. The dye solutions were prepared by dis-
solving a defined quantity of the dye in distillated
water. The characteristics of the dyes are shown in
Table 1. All other chemicals were of analytical grade
and purchased from Merck (Germany).

2.2. Synthesis of CuO-NH2

2.2.1. Synthesis of CuO

0.25 g of CuSO4·5H2O and 0.4 g of NaOH were dis-
solved under stirring in 30 mL of distilled water. The
mixed solution was sealed in a glass bottle and kept
static at 120˚C for 24 h, and then cooled to room tem-
perature naturally. The final precipitate was washed
with distilled water several times to remove the possi-
ble residues and then dried at 120˚C for 12 h [12].

2.2.2. Synthesis of CuO-NH2

One gram of CuO and 1 g of (3-aminopropyl) tri-
methoxy silane were poured into mixture of water
and ethanol and mixed for 24 h at 25˚C. The precipi-
tate was filtered, washed with deionized water, and
dried.

2.3. Adsorption procedure

The dye adsorption measurements were done by
mixing various adsorbent dosages (0.05–0.4 g) of dyes
in jars containing 250 mL of a dye solution (50 mg/L).
Dye solutions were prepared using distilled water to
prevent and minimize possible interferences. Experi-
ments were carried out at 25˚C for 60 min to attain
equilibrium conditions. After experiments, the adsor-
bent was separated from solution samples and then
the dye concentration was determined. The changes of
absorbance were determined at certain time intervals
(2.5, 5, 7.5, 10, 15, 20, 30, 40, 50, and 60 min) during
the adsorption process using UV–vis Perkin-Elmer
Lambda 25 spectrophotometer. The maximum wave-
length (λmax) of DR31 and DR80 to determine residual
dye concentration in solution was 523 and 543 nm,
respectively.

The effect of adsorbent dosage (0.0125–0.1000 g) on
dye removal was investigated by contacting 250 mL of
dye solution with initial dye concentration of 50 mg/L
at room temperature (25˚C) for 60 min and pH 2.1.

The effect of initial dye concentration (50, 100, 150,
and 200 mg/L) on dye removal was investigated by
contacting 250 mL of dye solution with adsorbent at
room temperature (25˚C) for 60 min and pH 2.1.

The effect of pH (2.1, 5, 8, and 10) on dye removal
was investigated by contacting 250 mL of dye solution
with adsorbent and initial dye concentration
(50 mg/L) at room temperature (25˚C) for 60 min.

2.4. Adsorbent characterization

The functional groups of the material were studied
using FTIR spectroscopy (Perkin-Elmer Spectropho-
tometer Spectrum One) in the range of 4,000–
450 cm−1. Crystallization behavior was identified by
XRD model Siemens D-5000 diffractometer with Cu
Kα radiation (λ = 1.5406 Å) at room temperature. The
morphological structure of the material was examined
by SEM using a LEO 1455VP scanning microscope.

3. Modeling theory

3.1. Data-set and software

To improve the LSSVM model, 220 data-sets have
been used from dye removal experimental tests for
single system. Parameters of adsorbate type, adsorbent
dosage, dye concentration, pH, and contact time were
used as inputs to LSSVM model to predict equilibrium
adsorption (i.e. output). Table 2 summarizes the
input/output variables of the model as well as their
domains. As it can be seen, employed data bank
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covers a wide range of experimental conditions. The
free LSSVM toolbox (LSSVM V-1.8, Suykens, Leuven,
Belgium) was applied with MATLAB Version R2010b
to gather all the LSSVM models.

3.2. Model development

The aim of this study is to develop nonlinear rela-
tionships between the available experimental data
regarded as inputs of the model (adsorbent dosage,
dye concentration, pH, and contact time), and the
desired output (Equilibrium adsorption). For this pur-
pose, an appropriate mathematical tool is required.
The support vector machine (SVM) has been consid-
ered as a powerful strategy improved from the

machine-learning community [11,13,14]. The SVM has
been studied widely for both classification and regres-
sion analysis and it is regarded as a non-probabilistic
binary linear classifier [15–17]. It plans the input pat-
terns into a higher dimensional feature space through
non-linear mapping function i.e. kernel function. A
linear decision surface is then built to relate the origi-
nal input space to output variables [17]. Some advan-
tages of the SVM-based methods over the traditional
methods based on the ANNs are as follows [11]:

(1) The possibility of model convergence is higher
in the SVM-based methods.

(2) Normally, SVM-based methods apply standard
and straightforward algorithms.

(3) The topology of the network in the SVM-based
methods is appointed after completion of the
training stage.

(4) There is no need to select the number of hid-
den nodes- hidden layers.

(5) Generalization performance is satisfactory in
SVM-based methods.

(6) There are usually two adjustable parameters
required. This is generally less than that
required for other ANN methods.

In spite of these advantages, SVM-based methods
have some disadvantages [18]:

Table 1
Chemical structure and characteristics of dyes

Chemical
name Chemical structure

Color index
number

λmax

(nm)
Mw

(g/mol)

Direct Red 31 13,390 523 713.6

C32H21N5Na2O8S2

Direct Red 80 35,780 543 1373.1

C45H26N10Na6O21S6

Table 2
Ranges of the data were used for developed models

Variable Range/Type

Input Adsorbate type DR31, DR80
Adsorbent dosage 0.05–0.4 g/L
Dye Concentration 0.05–0.2 g/L
Initial pH 2.1–10
Contact time 0–60 min

Output Equilibrium adsorption 0–6.2 (mg/g)
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(1) Perhaps the biggest limitation of the support
vector approach lies in choice of the kernel.

(2) A second limitation is speed and size, both in
training and testing.

(3) Discrete data presents another problem.
(4) The optimal design for multiclass SVM classi-

fiers is a further area for research.

A modified version of SVM, namely; Least Squares
SVM was suggested by Suykens and Vandewalle [11]
to decline the SVM complexity. The LSSVM method
takes useful advantages of SVM. Besides, it needs
solving a set of linear (relative to nonlinear) equations,
resulting in a swifter and more feasible alternative to
the traditional SVM method.

The regression error of the LSSVM approach is
defined as the difference between the represented and
predicted property values and experimental ones,
which is regarded as an addition to the constraint of
the optimization problem [11,19]. In most prevalently
used SVM method, the value of the regression error is
normally optimized during the calculations while in
the LSSVM it is mathematically defined [11,19,20]. The
penalized cost function of the applied LSSVM model
is determined as below [11,21,22]:

QLSSVM ¼ 1

2
wT w þ c

XN
i¼1

e2i (1)

yi ¼ wTuðxiÞ þ b þ ei i ¼ 1; 2; . . . ;N (2)

where w shows the regression weight (slope of the lin-
ear regression), ei displays the regression error for N
training objects, and γ hints the relative weight of total
regression errors compared to the regression weight.
Moreover, φ represents the feature map, in which the
experimental data can be linearly separated by a
hyper plane specified by the pair (w ∈ Rm, b ∈ R)
[19,21,22]. The weight coefficient (w) is usually written
as follows [17,19]:

w ¼
XN
i¼1

ai xi (3)

In which:

ai ¼ 2c ei (4)

By applying the fundamentals of the LSSVM algo-
rithm, Eq. (2) is re-written as follows [17,19]:

y ¼
XN
i¼1

ai x
T
i x þ b (5)

Therefore, the Lagrange multipliers (αi) are calculated
as [17,19]:

ai ¼ ðyi � bÞ
xTi x þ ð2cÞ�1

(6)

The above-mentioned linear regression equation could
be retreated as nonlinear one by using the Kernel
function as follows [17,19]:

fðxÞ ¼
XN
i¼1

ai Kðx; xiÞ þ b (7)

where K(x, xi) is the Kernel function calculated from
the inner product of the two vectors x and xi in the
feasible region built by the inner product of the vec-
tors Ф(x) and Ф(xi) as follows [21,22]:

Kðx; xiÞ ¼ UðxÞT � UðxiÞ (8)

The radial basis function (RBF) Kernel is the most
common function that has been utilized as below
[21,22]:

Kðx; xiÞ ¼ exp
� xi � xk k2

r2

 !
(9)

where σ is regarded to be a decision variable, which is
optimized by an external optimization algorithm dur-
ing the calculations [19,22]. The mean square error
(MSE) of the results of the LSSVM [14] algorithm has
been defined by the following equation:

MSE ¼
Pn
i¼1

ðEpred;i � Eexp;iÞ2

n
(10)

where Epred,i is the predicted value by presented
model, Eexp,i is the experimental value, and n is the
number of samples from the initial population. The
LSSVM algorithm was applied in this study to train
the dye removal efficiency data as carried out by other
researchers [11].

3.3. Computational procedure

In order to make uniform the domain of variables,
each data were mapped into range (−1, 1) by the
following equation:
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xn ¼ 2 � x� xminð Þ
xmax � xminð Þ � 1 (11)

where x and xn are original and normalized values of
the desired variable, respectively. While, xmin and xmax

are extreme values of the variable. In order to calcu-
late the statistical errors of the developed models, all
of the prediction values (i.e. outputs of the network)
were performed an inverse range scaling to bring the
predicted values to their original scales. This prepro-
cessing procedure has been applied to obtain the
parameters of the LSSVM algorithm. Later, these val-
ues were changed to their original values. In the next
step, the database was divided into three sub-data sets
including the training set, validation set, and the test
set. Generally, the training set is used to generate the
model structure, and the test set is used to investigate
the prediction capability and validity of the proposed
model [14,22]. The division of database into three sub-
data sets is normally performed randomly. For this
purpose, 70, 15, and 15% of the main data-set were
randomly selected for building the LSSVM models
(i.e. training set), check the validation and test,
respectively.

4. Results and discussion

4.1. Characterization

The FT-IR spectrum of CuO nanoparticle was
shown in Fig. 1. It has two peaks at 3,450 and
600–500 cm−1 which indicate O–H stretching vibration
and metal-oxygen vibration, respectively [23]. The
peak at 1,625 cm−1 was attributed to OH bending of

molecular water [24]. The FTIR spectrum of the sur-
face functionalized nanoparticle (CuO-NH2) displays a
number of characteristic bands at 3,403, 2,920, and
600–500 cm−1 (Fig. 1). These bands are assigned to O–
H and N–H stretching vibration, –CH2– vibration, and
metal-oxygen vibration, respectively [24]. The bending
vibration of N–H (amine) and C–N (amine) display a
strong band at 1,600–1,560 cm−1 and 1,350–1,000 cm−1,
respectively [23].

Fig. 2 illustrates the XRD pattern of the CuO
nanoparticle. All diffraction peaks in Fig. 2 are in good
agreement with those of the standard pattern of mon-
oclinic CuO (JCPDS Card No. 05-0661). The Miller
indices matched well with the reflections of the CuO
nanoparticle reported in the previous published paper
[12].

SEM is used to determine the particle shape and
appropriate size distribution of the material. The SEM
micrograph of the CuO nanoparticle and the function-
alized CuO nanoparticle (Fig. 3) shows a relatively
homogeneous nanoparticle size distribution.

4.2. LSSVM modeling

Generally, there are two important parameters in
the LSSVM algorithm i.e. σ2 and γ, that must be calcu-
lated before model development. These parameters
were evaluated using Coupled Simulated Annealing
(CSA) optimization technique [25]. The optimization
procedure was repeated for several times as tries to
arrive to the most probable global optimum of the
objective function. Squared decision variable (σ2) is
computed using external optimization algorithm as
2.946 and 5.277 for DR31 and DR80, respectively.

Fig. 1. FT-IR spectrum of the synthesized particles.
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The relative weights of total regression errors com-
pared to the regression weight were also evaluated as
γ = 3.128e + 05 and γ = 1.009e + 05 for DR31 and DR80,
respectively.

A comparison between the prediction of the expert
model and the corresponding experimental equilib-
rium adsorption data for DR31 and DR80 are illus-
trated in Fig. 4. Closely distributed data points around
45˚ line for training, validation, and testing data
demonstrates the appropriateness of the developed
LSSVM model in this regard [11]. In addition, it is evi-
dent that proposed LSSVM model has the small error
range and least scatter around zero error line (Fig. 5).

Fig. 6 indicates absolute relative errors of the data-
sets. It is clear from Fig. 6 that the maximum error is
less than 15% and the average one is near 3.5%. These
values are reasonable from statistical point of view.

Furthermore, some important statistical parameters
of the proposed model including average relative
deviation, average absolute relative deviation, stan-
dard deviation error, squared correlation coefficient
(R2), and root MSE are reported in Table 3. APRE and
AAPRE error values confirm that the relative devia-
tion of the expert model from the experimental data is
negligible. Moreover, RMSE, STD, and R2 indicate
highly acceptable agreement of the developed model
with the actual data. The results indicate that an excel-
lent accordance exists between the expert model pre-
dictions and the experimental data and obviously,
confirm that LSSVM model reproduce the decoloriza-
tion efficiency in our system, within the experimental
ranges used in the model fitting.

4.3. Effect of CuO-NH2 dosage

The physical removal of direct dyes in aqueous
solution with various CuO-NH2 dosages was studied.
The experimental and LSSVM calculated values of
removal are shown in Fig. 7. The increase in dye

removal with adsorbent dosage can be attributed to
the increasing of adsorbent surface and availability of
more adsorption sites. However, if the adsorption
capacity was expressed in mg adsorbed per gram of
material, the capacity decreased with the increasing
amount of adsorbent. The comparison between
LSSVM and experimental data in Fig. 7 shows that the
results are in good agreement.

Fig. 2. XRD pattern of CuO nanoparticle.

Fig. 3. SEM images of the synthesized nanoparticles (a)
CuO and (b and c) CuO-NH2.
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4.4. Effect of initial dye concentration

The effect of initial dye concentration on the dye
removal efficiency was analyzed over a dye concentra-
tion range from 50 to 200 mg/L (Fig. 8). The results
showed that the higher the initial dye concentration,
the lower the percentage of dye adsorbed. The amount
of the dye adsorbed onto adsorbent increases with an
increase in the initial dye concentration of solution if
the amount of adsorbent is kept unchanged due to the
increase in the driving force of the concentration gra-
dient with the higher initial dye concentration. At a
fixed adsorbent dosage, the amount of dye adsorbed
increased with increasing concentration of solution,
but the percentage of adsorption decreased. In other
words, the residual dye concentration will be higher

for higher initial dye concentrations. The results con-
firm that the LSSVM model could effectively repro-
duce the experimental results for dyes.

4.5. Effect of pH

Fig. 9 shows the dye removal efficiency as a func-
tion of pH. The adsorption capacity increases when the
pH is decreased. Maximum adsorption of anionic dyes
occurs at acidic pH (pH 2.1). The electrostatic attraction
as well as the organic property and structure of dye
molecules and adsorbent could play very important
roles in dye adsorption on adsorbent. At pH 2.1, a sig-
nificantly high electrostatic attraction exists between
the positively charged surface of the adsorbent, due to
the ionization of functional groups of adsorbent and

Fig. 4. Comparison between predicted results of the
developed model and experimental data: (a) DR31 and (b)
DR80.

Fig. 5. Relative deviations of the determined equilibrium
adsorption values from experimental ones by the devel-
oped model: (a) DR31 and (b) DR80.
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negatively charged anionic dye. As the pH of the sys-
tem increases, the number of positively charged sites
decreased. It does not favor the adsorption of anionic
dyes due to the electrostatic repulsion [26]. The effec-
tive pH was 2.1 and it was used in further studies. The
comparison between prediction model of LSSVM and
experimental data in Fig. 9 shows that the results are in
superior agreement.

4.6. Adsorption isotherm

The mechanism of dye removal was investigated
by isotherm models. Several isotherms such as the
Langmuir, Freundlich, and Tempkin models were
studied in details [27–30].

The Langmuir isotherm explains the adsorption of
dye on adsorbent. A basic assumption of the Lang-
muir theory is that adsorption takes place at specific
sites on the adsorbent surface [31–34]. The Langmuir
equation is as follows:

Ce=qe ¼ ð1=KLQ0Þ þ Ce=Q0 (12)

where qe, Ce, KL, and Q0 are the amount of dye
adsorbed at equilibrium (mg/g), the equilibrium con-
centration of dye in solution (mg/L), the Langmuir
constant (L/g), and the maximum adsorption capacity
(mg/g), respectively.

The Freundlich isotherm is as [35]:

log qe ¼ log KF þ ð1=nÞ log Ce (13)

where KF is adsorption capacity at unit concentration
and 1/n is adsorption intensity.

Fig. 6. Absolute relative error percentage of the obtained
results from the corresponding experimental values: (a)
DR31 and (b) DR80.

Table 3
Statistical parameters of the developed LSSVM model to determine equilibrium adsorption

Set Na APRE (%) AAPRE (%) RMSE STD R2

DR31 Training 77 −0.120 3.169 0.100 0.152 0.994
Validation 17 −2.607 8.170 0.119 0.167 0.971
Prediction 16 −0.299 5.058 0.101 0.330 0.994
Total 110 −0.271 3.278 0.099 0.165 0.994

DR80 Training 77 0.046 2.640 0.081 0.179 0.997
Validation 17 1.036 5.982 0.084 0.325 0.996
Prediction 16 1.124 4.541 0.091 0.234 0.995
Total 110 0.166 3.787 0.082 0.153 0.997

aNumber of experimental data points.
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The Tempkin isotherm is given as [36]:

qe ¼ B1 ln KT þ B1 ln Ce (14)

where KT is the equilibrium binding constant (L/mg)
corresponding to the maximum binding energy and
the constant B1 (RT/b) is related to the heat of
adsorption.

The parameter values related to Langmuir,
Freundlich, and Tempkin isotherms were calculated

from the slope and intercept of the plots (Ce/qe vs.
Ce), (log qe vs. log Ce), and (qe vs. ln Ce), respectively.
The values of Q0, KL, KF, n, KT, B1, and R2 are shown
in Table 4.

The data show that isotherm of dye adsorption
onto Cu-NH2 does not conform the Freundlich and
Tempkin isotherms. The R2 values and the linearity
between the Ce/qe against Ce show that the dye
removal isotherm follows Langmuir model (Table 4).
This means that the adsorption of dyes takes place at
specific homogeneous sites and a one layer adsorption
onto adsorbent surface. The maximum adsorption
capacity (Q0) was 227 and 345 mg/g for DR31 and
DR80, respectively.

4.7. Kinetic study

Several models can be used to express the mecha-
nism of solute sorption onto a sorbent. In order to
investigate the mechanism of sorption, characteristic
constants of sorption were determined using pseudo-
first-order, pseudo-second-order, and intraparticle dif-
fusion models [37,38].

A linear form of pseudo-first-order model is [37]:

log ðqe � qtÞ ¼ log ðqeÞ � ðk1=2:303Þ t (15)

where qt and k1 are the amount of the adsorbed dye at
time t (mg/g) and the equilibrium rate constant of
pseudo-first-order kinetics (1/min), respectively.

Fig. 7. Comparison between LSSVM-predicted and
experimental values of equilibrium absorbance as a func-
tion of initial amount CuO-NH2 at the time of 60 min: pH
2.1, [Dye]o = 50 mg/L.

Fig. 8. Comparison between LSSVM-predicted and experi-
mental values of equilibrium absorbance as a function of
initial dye concentration at the time of 60 min: pH 2.1 and
[CuO-NH2] = 0.3 g/L for DR31 and [CuO-NH2] = 0.4 g/L
for DR80.

Fig. 9. Comparison between LSSVM-predicted and
experimental values of equilibrium absorbance as a func-
tion of pH at the time of 60 min: [Dye]o = 50 mg/l and
[CuO-NH2] = 0.3 g/L for DR31 and [CuO-NH2] = 0.4 g/L
for DR80.

N.M. Mahmoodi et al. / Desalination and Water Treatment 57 (2016) 24035–24046 24043



The pseudo-first-order dye removal kinetics was
studied by linear plotting of log (qe − qt) against t at
different adsorbent dosages and various initial dye
concentration in the range of 50–200 mg/L.

Linear form of pseudo-second-order model was
illustrated as [37]:

t=qt ¼ 1=k2 q
2
e þ ð1=qeÞt (16)

where k2 is the equilibrium rate constant of pseudo-
second-order.

The intraparticle diffusion kinetics of dye adsorp-
tion was investigated using the intraparticle diffusion
model as [37–39]:

qt ¼ kp t
1=2 þ I (17)

where kp and I are the intraparticle diffusion rate con-
stant and intercept, respectively.

The kinetics data show that the dye removal can
be approximated as pseudo-second-order kinetics

Table 4
Linearized isotherm coefficients for dye adsorption onto CuO-NH2 at different adsorbent dosages

Dye

Langmuir Freundlich Tempkin

Q0 KL R2 RL KF n R2 KT B1 R2

DR31 227 0.1283 0.8448 0.135 9.9152 5.003 0.4986 7.0435 33.45 0.4649
DR80 345 0.0823 0.9185 0.195 71.845 2.836 0.8861 1.0589 69.63 0.8562

Table 5
Linearized kinetic coefficients for dye adsorption using 50 mg/L of dye at different adsorbent dosages

Adsorbent (g) (qe)exp

Pseudo-first-order Pseudo-second-order Intraparticle diffusion

(qe)cal k1 R2 (qe)cal k2 R2 kp I R2

DR31
0.0125 221 94 0.0539 0.8737 227 0.0018 0.9984 11 138 0.9254
0.0250 162 82 0.0675 0.9342 169 0.0020 0.9993 11 88 0.8988
0.0500 144 84 0.0544 0.8721 149 0.0016 0.9928 10 70 0.9593
0.0750 142 83 0.0716 0.9651 149 0.0002 0.9988 10 73 0.9347

DR80
0.0250 268 119 0.0468 0.7990 270 0.0005 0.9913 12 166 0.9631
0.0500 236 129 0.0560 0.9422 243 0.0007 0.9958 15 124 0.9921
0.0750 167 98 0.0576 0.9484 175 0.0020 0.9975 12 78 0.9599
0.1000 146 81 0.0532 0.9385 151 0.0038 0.9969 10 70 0.9767

Table 6
Comparison of CuO-NH2 adsorption capacity among different adsorbents

Adsorbent Dyes Adsorption capacity (mg/g) Concentration (mg/L) Contact time (h) Refs.

APTES RR 3BS 34 120 0.5 [40]
RB KE-R 38 120 0.5

MMWCNT MB 11.8 40 6 [41]
NR 9.5 40 6

MnO–Fe2O3 AR B 105.5 150 2 [42]
Pd-NPs-AC CR 76.9 45 0.5 [43]
Ag-NPs-AC CR 66.7 45 0.5
ZnO-NRs-AC CR 142.9 45 0.5
CuO-NH2 DR31 227 50 1 This study

DR80 345 50 1
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(Table 5). The R2 values for pseudo-second-order
kinetic model were found to be close to 1.0 and the
calculated qe values ((qe)cal) are also very close to that
of experimental data ((qe)exp).

4.8. Comparison with other adsorbents

The maximum adsorption capacities (Q0) were 227
and 345 mg/g for the adsorption of Direct Red 31 and
Direct Red 80 respectively. It is obvious that the
adsorption capacity of CuO-NH2 is much better than
most of the other functionalized adsorbents reported
currently (Table 6) [40–43]. The large values of Q0

could belong to the adsorption affinity of CuO-NH2

towards the two dyes, which was caused by the
unique surface and charge neutralization.

5. Conclusions

In this paper, the surface functionalized nanoparti-
cle (CuO-NH2) was synthesized and its dye removal
ability was studied. Direct Red 31 (DR31) and Direct
Red 80 (DR80) were used as anionic dyes. Dye adsorp-
tion capacity of the synthesized adsorbent (CuO-NH2)
for DR31 and DR80 was 227 and 345 mg/g. The Least-
squares support vector machine (LSSVM) was used to
predict dye removal efficiency. The submitted model
shows better performance in predicting dye removal
efficiency compared to the kinetic models. Moreover,
it was illustrated that the proposed models are cap-
able of simulating the actual physical trend of the dye
removal efficiency with variation of adsorbent dosage,
initial dye concentration, and initial pH of solution.
The results show that the developed model provides
predictions in excellent agreement with the experi-
mental data. Furthermore, it is demonstrated that the
proposed model is capable of simulating the actual
physical trend of the dye removal with alternation of
absorbent dosage, initial concentration of dyes, and
initial pH of solution.
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