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ABSTRACT

First flush analysis entails the comparison of pollutographs and hydrographs. The difficulty
of this type of analysis also lies in the fact that it runs up against a wide array of
experimental uncertainties associated with the collection of temporal data. The present
paper proposes a methodology that accounts for the aforementioned factors in the
calculation of occurrence probability for first flush as measured at a storm drain inlet.
Considering concepts such as standard uncertainty (for first flush uncertainties), the Monte
Carlo method, the Spearman correlation rank test and Partial Least Squares Regressions (for
analysis of the relationship between precipitation characteristics and first flush). This
methodology has been coined “Occurrence probability of First Flush In Storm drain inlets”
(OFFIS). Developed in R, OFFIS detected first flush in a specific case study.
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1. Introduction

Runoff passing through urbanized areas exhibits
higher levels of pollution, a situation best understood
in light of the fact that it washes over the surface,
picking up accumulated pollutants (e.g. urban roads
TSS varied between 11 and 5,400 mg/L—Event Mean
Concentrations [1]) [2]. First flush, the greatest mass of
pollutants contained in a small fraction of volume, is a
phenomenon that stems from initial precipitation.
Rain-event pollutant loads associated with this phe-
nomenon may be higher than ones associated with
dry weather period wastewater [3,4].

It is recommended to consider five factors when
discussing the relationship between total suspended
solids (TSS) and first flush. Bertrand-Krajewski [5] and
Li et al. [6] found that TSS concentrations correlate to
event intensities. Li et al. [7] show that the Antecedent
Dry Weather Period (ADWP) also affects (R2 = 0.95,
p-value < 0.01) pollutant fluctuations in urban runoff.
Moreover, maximum rainfall intensity, time to peak
[8], and impervious area percentage [9,10] play a role
in the TSS load present in first flush.

Seeing as first flush is a site-specific phenomenon
[8,10–13] with strong variations from one storm event
to another [14], a universal set of climate, rainfall, and
runoff characteristics or universal types of regression
curve cannot be applied [8]. It then becomes necessary*Corresponding author.
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to frame the issue in terms of the occurrence probabil-
ity of first flush. Owing to two distinct obstacles that
go hand-in-hand with the study of the first flush phe-
nomenon as observed during a rain event: (i) it is
cumbersome to obtain pollutographs corresponding to
hydrographs in temporal terms; (ii) myriad experi-
mental uncertainties accompany the acquisition of
temporal data.

Hence, the present study establishes a methodol-
ogy to determine the occurrence probability of first
flush in a storm drain inlet and not just first flush
itself. We define the occurrence probability of first
flush in a storm drain inlet as the probability that has
a rainfall event of falling within first flush zones in
line with Bertrand-Krajewski et al. [14]. To assess the
probability and importance of the first flush effect for
each storm event, we determine the uncertainties
related to first flush measurement.

In order to apply the proposed methodology, we
observed during rainfall events a storm drain inlet.
The inlet is located on a highly transited Avenue in
Bogota. As well, the methodology employs basic data-
acquisition tools (e.g. ruler and chronometer). In the
same vein, first flush is analyzed through the lens of a
rainfall event’s specificities in order to identify pat-
terns between pollutant loads and precipitation char-
acteristics.

2. Materials and methods

A five-stage procedure is put forth to assess first
flush occurrence probability during rainfall events in a
storm drain inlet (see Fig. 1). We developed a script in

R coding [15] called “OFFIS,” which stands for the
Occurrence probability of First Flush In Storm drain
inlets.

First, is necessary to measure the inflows (Q) and
the water quality (e.g. TSS, turbidity) in the drain inlet
chosen (Step 1 Fig. 1). For the above, we define the
quality parameters to measure and the maximum
number of water samples per event (X). To measure

Q, we employed basic data acquisition tools (e.g. ruler
and chronometer).

Second, in order to have the M(V) curve (dimen-
sionless curves of cumulative pollutant mass versus
cumulative discharged volume [14]) per event (Step 2
Fig. 1) we calculate the inflow (Q) and the quality
parameters concentrations. The latter are determined
in accordance with procedures established by the
Standard Methods [16]. Then, to tackle the uncertain-
ties associated with first flush we appraise the stan-
dard uncertainty (e.g. ISO [17]; ISO [18]) of M(V)
curves and field measurements (TSS and Q). The
uncertainty u(y) of a value y depends on other values
with a function y = f(x1, x2, …, xN), known as “com-
posed standard uncertainty” [17]. This value results
from the law of uncertainty propagation, whereby if
estimated covariance between xi and xj is zero, the
law can be simplified such that Eq. (1) [19]:

u2ðyÞ ¼
XN
i¼1

@f

@xi

� �2

u2ðxiÞ (1)

The composed standard uncertainty of TSS concentra-
tion, flow rate Q, normalized total mass M, and vol-
ume V (u(TSS), u(Q), u(M), u(V)) are computed
following Eq. (1). Therefore, Equations Eqs. (2)–(5) are
proposed:
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q
(5)

For u(TSS), mo is the dry filter weight (TSS labora-
tory test), mf the sum of mo, and TSS weight
retained by the filter paper, v the sample water vol-
ume used for TSS concentration. For u(Q), w is the

uðQÞ ¼ 1
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24914 A. Torres et al. / Desalination and Water Treatment 57 (2016) 24913–24924



average width of the storm drain inlet, l the average
length of the storm drain inlet, Δh the water level
variation, Δt the temporal variation between consec-
utive water level measurements, and Q the flow
rate. The standard uncertainties u(mf or mo) and u
(v), associated with the measurement of mass and

volume, are equal to the half of instruments preci-
sion used for measurements with 95% confidence.
This assumption can be done considering that the
measurements of mass and volume with respective
devices (e.g. mass balance, ruler) follow a normal
distribution.

Fig. 1. OFFIS methodology procedure.

Fig. 2. Case study site location: storm drain inlet in the 39th Street (4˚37´37.66´´N–74˚4´0.50´´O). (Adapted: Map data ©
2015 Google [27]).
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Third, using the Monte Carlo method we produce
a large number of possible M(V) curves for each
storm event (Step 3 Fig. 1)—e.g. 10,000 total runs—.
Monte Carlo is a numeric method used for uncertainty
evaluation [20–22]. As an example, in 2011, Sharifi
et al. [23] developed a model based on traditional first
flush formulations and Monte Carlo method. They
evaluated the impact of incorporate first flush uncer-
tainties in the first flush design concept for Best Man-
agement Practices Systems (BMPs). This methodology
allows optimizing the BMP design using the probabil-
ity of exceeding load-based criteria instead of a con-
centration based criteria.

For all simulations/events, parameters a and b
were fitted using equation M = aVb proposed accord-
ing to Bertrand-Krajewski et al. [14] (based on 197
rainfall events for six catchments). With these possible
M(V) curves we estimate the uncertainties associated
with first flush parameters (Step 4 Fig. 1) reached via
equations Eqs. (2)–(5).

Finally, we computed the occurrence probability of
first flush in a storm drain inlet (Step 5 Fig. 1) classify-
ing the rainfall event probabilities of being within speci-

fic first flush zones. We used the typology of M(V)
curves proposed by Bertrand-Krajewski et al. [14].

Additionally to the proposed methodology, the
relation between both a and b parameters with rainfall
characteristics are explored. We use Spearman rank
correlation test and linear and PLS (Partial Least
Squares Regressions) models for both a and b . The lin-
ear and PLS models can be constructed for both a and
b (each a dependent variable Y) given rainfall charac-
teristics (explanatory variables) that form the X matrix.

Fig. 3. Inlet structure geometry (centimeters).

Table 1
Summary of pollutograph, hydrograph, hydrological characteristics, and a and b parameters for each event. TSSmax and
TSSm in mg/l, Qmax in l/min, Vtot in liters, Mtot in kg, ADWP and D in h, P in mm, Im, and Imax in mm/h. In italics are
the events that are in Fig. 4

Event Date TSSmax TSSm Qmax Vtot Mtot ADWP P Im Imax D a b

1 4/10 1,140 439 334 1,932.3 0.7 251.50 0.80 1.20 3.60 0.67 21.79 0.33
2 4/10 2,150 1,044 1,053 68,891.6 49.0 0.83 18.80 16.11 34.80 1.42 4.09 0.70
3 6/10 525 254 32 926.1 0.2 4.50 3.50 1.75 5.40 1.80 4.99 0.65
4 11/10 905 441 32 744.1 0.4 7.83 3.50 2.63 6.60 1.17 1.31 0.96
5 12/10 3,150 1,500 1,053 28,775.7 45.3 6.60 6.60 4.40 16.20 1.33 1.98 0.86
6 8/11 330 110 18 158.5 0.0 40.12 2.55 5.08 7.62 0.50 1.59 0.92
7 10/11 1,760 555 155 1,932.6 1.1 21.00 7.00 10.50 25.80 0.67 4.95 0.65
8 10/11 820 4,157 1,053 7,073.4 4.6 2.00 18.00 13.50 46.80 1.17 0.68 1.09

Table 2
Uncertainties of instruments and storm drain inlet dimen-
sions

Source Notation Magnitude Unit

Beaker u(v) 0.25 ml
Chronometer u(Δt) 0.50 s
Mass balance u(m) 0.05 mg
Drain inlet—width u(w) 0.58 cm
Drain inlet—length u(l) 0.50 cm
Ruler u(Δh) 0.50 cm
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This last step is carried out using the PLS library [24].
Linear and PLS regression models with β coefficients
for each variable can be obtained, allowing for the pre-
diction Ysim of further Y values (Eq. (6)). Each of the
10,000 fitted linear models—along with adjustment

quality, residual normality, and β coefficients per
Eq. (6)—can be assessed [25]. The coefficients laid out
in facilitate the establishment of relevance for every X
variable (X1, X2, …, Xn) compared to the dependent
variable Y (a or b in this case) [26].

Fig. 4. Hydrographs (left) and pollutographs (right) for events of 11 October and 10 November (see Table 2) (P: precipita-
tion, D: event duration and ADWP: Antecedent Dry Weather Period).
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Ysim ¼ b0 þ b1 X1 þ b2 X2 þ . . . þ bn Xn (6)

In order to know which are the hydrological variables
most relevant to a and b parameters, we compute the
absolute values of the weighting factors (β1–βn, Eq. (6))
of the PLS models for both parameters. This
procedure quantifies the effect of each hydrological
variable on first flush, from Position 1 (most impor-
tant) to 5 (least important). Undertaken for each of the

10,000 PLS models fitted, this step is combined with a
recurrence indicator (RI) to reveal the number of times
(1–10,000) that a certain hydrological variable occupies
the same position; subsequently, this number is
divided by the total number of simulations (10,000).

For illustrative purposes, we applied OFFIS to a
case study as spelled out below. A storm drain inlet at
the intersection of 39th Street and 7th Avenue (Bogota,
Colombia), on the northeastern side of the street

Fig. 5. 10,000 Monte Carlo simulated M(V) curves (left) for events 1 (4 October, P: 0.8 mm, D: 0.67 h and ADWP: 251 h)
and 8 (10 November, P: 18 mm, D: 1.17 h and ADWP: 2 h); most probable M(V) curves with upper and lower uncertainty
boundaries (right).
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(coordinates 4˚37´37.66´´N 74˚4´0.50´´W; see Fig. 2),
serves as the case study site. The storm inlet is located
in a commercial/residential area, with a drainage area
of 230 m2 (100% impervious) and a slope of 2.8%.

Flow measurements done at the storm drain inlet
used relied on a tank with entrance and exit flows
(Fig. 3). We estimate the incoming water volume by
closing the outgoing pipe with a custom-made water-
proof cap; the temporal variation of storage volume is
figured using water surface-level variations (Δh) (Step
1 Fig. 1).

In order to characterize rainwater runoff we col-
lected 15 samples per event. The turbidity and TSS
concentrations were determined at the Pontificia
Universidad Javeriana’s (PUJ) water quality laboratory
in accordance with procedures established by the

Standard Methods (2540D—TSS dried at 103–105˚C
and 2130B—Nephelometric method) [16].

Hydrographs and pollutographs are obtained for
eight precipitation events between October (4th, 6th,
11th, 12th) and November (8th, 10th) of 2011. To
arrive at the hydrological characteristics of each storm
event, high frequency registers (10-min time steps)
were stationed at a rain gauge 400 meters from the
experimental site. The following values were estab-
lished for each event: ADWP, rainfall depth P, average

Fig. 6. Most representative M(V) curves, which correspond
to the second quartile for each rain event (except for Event
Six).

Table 3
Distribution probabilities for M(V) curve zones defined by Bertrand-Krajewski et al. [14] (event six omitted)

b value Zone
Space between M(V) curve
and bisector EV1 EV2 EV3 EV4 EV5 EV7 EV8

b < 1 0 < b ≤ 0.185 1 Positive space High 4.8 0.0 0.0 0.0 0.0 0.0 0.0
0.185 < b ≤ 0.862 2 Medium 95.2 100 100 92.2 90.8 100 0.0
0.862 < b ≤ 1.000 3 Insignificant 0.0 0.0 0.0 7.8 9.2 0.0 0.7

b > 1 1.000 < b ≤ 1.159 4 Negative space Insignificant 0.0 0.0 0.0 0.0 0.0 0.0 78.4
1.156 < b ≤ 5.395 5 Medium 0.0 0.0 0.0 0.0 0.0 0.0 20.9
5.395 < b < ∞ 6 High 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 4
Spearman correlation (ρ) for hydrological characteristics of
hydrographs and pollutographs

TSSmax TSSm Qmax Vtot Mtot

TSSmax 1.00 0.98 0.73 0.79 0.83
TSSm 0.98 1.00 0.68 0.74 0.81
Qmax 0.73 0.68 1.00 0.93 0.95
Vtot 0.79 0.74 0.93 1.00 0.98
Mtot 0.83 0.81 0.95 0.98 1.00
ADWP −0.19 −0.26 −0.51 −0.62 −0.57
P 0.46 0.52 0.65 0.78 0.78
Im 0.21 0.26 0.44 0.55 0.57
Imax 0.29 0.33 0.59 0.64 0.67
D 0.27 0.31 0.33 0.47 0.39

Table 5
Spearman correlation test p-values (Table 4)

TSSmax TSSm Qmax Vtot Mtot

TSSmax – <0.01 0.04 0.03 0.02
TSSm <0.01 – 0.06 0.05 0.02
Qmax 0.04 0.06 – <0.01 <0.01
Vtot 0.03 0.05 <0.01 – <0.01
Mtot 0.02 0.02 <0.01 <0.01 –
ADWP 0.66 0.54 0.19 0.11 0.15
P 0.26 0.19 0.08 0.02 0.02
Im 0.62 0.54 0.28 0.17 0.15
Imax 0.50 0.43 0.13 0.10 0.08
D 0.53 0.45 0.42 0.24 0.35
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intensity Im, maximum intensity Imax, and event
duration D (Step 1 Fig. 1).

3. Results and discussion

For the case study mentioned in the previous sec-
tion, Table 1 summarizes hydrological and a and b
parameters associated with each event (Step 2 Fig. 1),
while Fig. 4 shows hydrographs and pollutographs for
three rain events. This table also displays medium and
maximum TSS concentrations for each event (TSSm
and TSSmax, respectively), with values ranging from
110 to 1,500 mg/l (TSSm) and from 330 to 3,150 mg/l
(TSSmax). These results are consistent with runoff TSS
concentrations detected by other studies: 49–498 mg/l
for the “Le Marais” catchment in Paris, France [28];
15–377 mg/l for the Villa Cambiaso catchment in

Fig. 7. Spearman correlation coefficient (ρ) between a (left) and b (right), M(V) fitting parameters and rainfall
characteristics (ADWP, rainfall depth P, average intensity Im, maximum intensity Imax and event duration D).

Fig. 8. p-values for Spearman correlation test between a (left) and b (right), M(V) fitting parameters and rainfall
characteristics (ADWP, rainfall depth P, average intensity Im, maximum intensity Imax, and event duration D).

Fig. 9. Significance probability of coefficients from 10,000
linear models between a and b parameters and rainfall
characteristics (ADWP, rainfall depth P, average intensity
Im, maximum intensity Imax, and event duration D).
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Genoa, Italy [29]; 120–1,400 mg/l for Zhengzhou City,
China [2].

In Table 2 we summarized the precision of all
instruments used for measurements, expressed as
standard uncertainties (Step 2 Fig. 1).

M(V) curves are shown in Figs. 5 and 6 (Step 3
Fig. 1). On the left side of Fig. 4, 10,000 M(V) curve
simulations for two events are depicted. Event Six is

excluded from this analysis because data could not
be properly adjusted to the M(V) function. Fig. 5’s
upper and lower boundaries (right side) represent
the region encompassing 95% of the M(V) curves, a
calculation done with quartiles, for there is no
evidence that the data follow a normal distribution.
The quartile calculation looks like: [Q1 – 1.5 IQR,
Q3 + 1.5 IQR], where Q1 is the first quartile, Q3 the

Fig. 10. Relationship between simulated a parameter (labeled apls) and observed a parameter (labeled a), r = 0.9926;
r2 = 0.9852, RMSE = 0.8091.

Fig. 11. Relationship between simulated b parameter (labeled bpls) and observed b parameter (labeled b), r = 0.9490;
r2 = 0.9007, RMSE = 0.0649.
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third, and IQR the inter-quartile range [difference
between Q3 and Q1] [30]. From Fig. 5, high M(V)
curve variation and first flush are presented (Step 4
Fig. 1). Fig. 6 shows the most representative M(V)
curves (Step 4 Fig. 1), which correspond to the sec-
ond quartile for each rain event, with exception of
event 6.

In Table 3 we show the occurrence probability of
first flush in our case study for each event
(Step 5 Fig. 1). We classified probabilities of being
within specific first flush zones for each event, in
line with Bertrand-Krajewski et al. [14]. Six of the
eight rainfall events studied display a high
probability (>90%) of falling within the second zone,
besides the already noted exception of Event Six
(EV6)—for which an M(V) curve could not be
fitted—in addition to Event Eight (EV8), for which
the first, second and third zones have low
probabilities.

As we mentioned in previous section, we explored
the relation between both a and b parameters with
rainfall characteristics. Spearman correlation rank test
outcomes are found in Tables 4 and 5.

The natural conclusion from these results is that
the only hydrological variable significantly correlated
to the total runoff volume Vtot (ρ = 0.78 and p-
value = 0.02) and the total TSS mass Mtot (ρ = 0.78 and
p-value = 0.02) is P. That is, the relationship between
hydrographs and pollutographs (Fig. 4) confirms:
TSSmax is positively correlated with Qmax (ρ = 0.73
with p-value = 0.04) and Vtot (ρ = 0.79 with p-
value = 0.03). Likewise, there is positive correlation
between Vtot and TSSm (ρ = 0.74 with p-value = 0.05).
Moreover, Mtot is highly correlated to Qmax (ρ = 0.95
with p-value < 0.01) and Vtot (ρ = 0.98 with p-
value < 0.01), evincing that events with higher runoff
flow rates present higher TSS concentrations.

Figs. 7 and 8 summarize the Spearman coefficient
values and p-values, where the latter are expressed as
–log (p-value).

Fig. 7 evidences the low correlation coefficients
(|ρ| < 0.75) for hydrological variables and parameters
a and b, while Fig. 8 evidences that Spearman correla-
tion p-values are not significant (p-value > 0.05).

Ten thousand linear models were fitted for a and b
M(V) curve parameters and hydrological event vari-
ables. Despite adjustment (adjusted R2 > 0.998 for a
and adjusted R2 > 0.876 for b) and residual normality
(p-values > 0.125 for both a and b per the Shapiro–
Wilk normality test), most models exhibit insignificant
b parameter coefficients (Fig. 9). Thus, PLS models are
employed to assess the role of precipitation variables
by taking into account the fitted PLS models’ corre-
spondent weights (β coefficients in Eq. (6)) for 10,000
simulations).

Figs. 10 and 11 include the PLS for hydrological
variables, as well as a and b fitting parameters. These
regressions help distinguish the relevance of hydrolog-
ical variables for first flush—in other words, they han-
dle uncertainties in M(V) relations. The variability of
models obtained from PLS (10,000 total) is countered
with Eqs. (7) and (8) to determine the confidence
intervals associated with weight factors for a and b
equations, respectively.

a ¼ 0:86; 4:37½ � þ �0:05; 0:20½ �ADWP þ �0:14; 0:51½ �P
þ 0:18; 0:64½ �Im þ �0:30; �0:19½ �Imax

þ �0:09; 0:29½ �D
(7)

b ¼ 0:6679; 0:7759½ � þ �0:0029; �0:0003½ �ADWP
þ �0:0135; 0:0175½ �P þ �0:0767; �0:0320½ �Im
þ 0:0146; 0:0316½ �Imax þ �0:0046; 0:0028½ �D (8)

Fig. 12. Relevance indicator (RI) for a (left) and b (right) PLS models for ADWP, rainfall depth P, average intensity Im,
maximum intensity Imax, and event duration D.
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Figs. 10 and 11 allow one to infer: PLS models are
more accurately adjustable for a than for b. Similarly,
PLS models for parameter a appear to be more robust
than those for b.

PLS models for both a and b parameters measure
the importance of hydrological variables by computing
the absolute values of the weighting factors (β1–βn,
Eq. (6)). This procedure quantifies the effect of each
hydrological variable on first flush, from Position 1
(most important) to 5 (least important). Undertaken
for each of the 10,000 PLS models fitted, this step is
combined with a RI to reveals the number of times (1
to 10,000) that a certain hydrological variable occupies
the same position; subsequently, this number is
divided by the total number of simulations (10,000) to
arrive at the percentages displayed in Fig. 12. As
Fig. 12 avers, Im, and Imax are the hydrological vari-
ables most relevant to a and b.

4. Conclusions

In this paper we proposed a methodology that
assesses the occurrence probability of first flush in a
storm drain inlet. Data from a storm drain inlet
located on a highly transited avenue in Bogota,
Colombia over the course of October and November,
2011 (“rainy” months) were used to assay the method-
ology, referred to as OFFIS. OFFIS’ design does not
call for specific technological tools, which translates
into applicability across a broad spectrum.

The analysis carried out on eight rainfall events (of
which six ended with viable data) allow for the esti-
mation of first flush probabilities. TSS concentrations
reflect those reported in similar studies in terms of
magnitude and situation, i.e. urban road runoff
[2,28,29]. Significant correlations between hydrographs
and pollutographs are established, suggesting that: (i)
TSS discharge mitigation can be best achieved by way
of focusing on points with the most runoff; (ii) TSS
pollution assessment can be done in real or deferred
time (i.e. after road runoff) using only hydraulic and/
or hydrological information; (iii) rainfall-runoff model
calibration can be done by means of filling out pollu-
tographs for each event.

The Monte Carlo method resulted in high probabil-
ities (greater than 90%) observed for medium TSS first
flush—six of the eight events monitored. However, the
Spearman correlation test fails to show significant cor-
relations between the first flush phenomenon and the
hydrological variables of each precipitation event.
And although PLS analysis concludes that average
and maximum rainfall intensities are the hydrological
variables most relevant to first flush, this conclusion is
premised upon uncertainties stemming from M(V)

relations for the events. Verification of these results
would demand first flush real-time control or even the
inference of M(V) curves for non-sampled rainfall
events based on hydrological information. Both situa-
tions only become possible with the monitoring of
more rainfall events and by adjusting for uncertainties
concomitant to the collection of hydrological data.

Even though water volume data and pollutant
mass data were adjusted to the M(V) function
proposed by Bertrand-Krajewski et al. [14], these
data do not prove to be representative of the eight
events. Therefore, it is advisable to seek alternative
ways to characterize the first flush phenomenon,
such as the power and polynomial functions found
in Ma et al. [10].
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