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ABSTRACT

The present investigation was undertaken to increase the efficiency of sludge solubilization
using bacterial pretreatment with a thermophilic protease secreting bacteria, Bacillus licheni-
formis and deflocculation through ethylene diamine tetra acetic acid (EDTA). About 0.4% of
EDTA was used to remove the flocs from the sludge. Then, the deflocculated and bacterially
pretreated sludge was subsequently followed by aerobic and anaerobic digestion. In com-
parison with the control, the aerobic digestion showed 43% increase in the reduction of sus-
pended solids (SS) and 13% increase in the solubilization of chemical oxygen demand.
Pretreatment of deflocculated sludge along with anaerobic digestion prompt to 34% of SS
and 38% of volatile solids reduction, with an enhancement of 65% biogas production.
Pretreatment of deflocculated sludge with B. licheniformis elevates less energy, which was
environmentally sound when compared to other pretreatment techniques.

Keywords: EPS removal; Bacterial pretreatment; Anaerobic digestion; Biochemical methane
potential test; Anaerobic digestion; Suspended solids

1. Introduction

One of the most important problem that municipal
wastewater treatment plants (WWTPs) has been facing
during the last decades is the production of excess
sludge, which is to be treated and disposed. Prior to
the ultimate disposal, the waste-activated sludge
(WAS) needs to be treated for its enormous organic
and pathogen microorganism content. Therefore, the
management of sludge is one of the most serious and
integral problems in the treatment plants. The treat-
ment and discarding cost of leftover biological sludge

is as high as 40–50% of the total cost of the operating
cost of the WWTPs [1,2]. Sludge decrement has been
recognized as an impressive method to alleviate this
problem. WAS mainly consists of microbes, and cell
walls that act as physical barricade that do not pass
intracellular organics to be efficiently biodegraded
through digestion. Therefore, to upgrade digestion
efficacy, the most sensible approach is to crack the
cells by mechanical [3], advanced oxidation process
[4], thermal [5], electric alakali [6], microwave [7],
combined [8] and biological [9] methods before
digestion of sludge. The primary goal of the pretreat-
ment technologies is to agitate sludge flocs.
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A major part of WAS is predominant by extracellu-
lar polymeric substances (EPSs), which is secreted by
microorganisms. Many polymeric substances, such as
polysaccharides, protein, nucleic acid, uronic acid, and
humic substances [10,11], are found in EPS. The major
components of EPS are carbohydrates and proteins
[12]. EPS is considered as the house of microorgan-
isms due to its protective layer for the cells against
harsh condition [13]. Thus, EPS plays a major role in
biofilm formation and also in physiochemical proper-
ties of sludge [14].

Hydrolysis is the primary agent of deflocculation,
hydrolysis, and oxidation of sludge flocs. Protease can
catalyze and hydrolyze proteins to enhance the lysis
efficiency of total sludge, thereby significantly enhanc-
ing sludge reduction [15]. For rapid degradation of
sludge, a thermophilic aerobic bacteria have been
employed [16] due to its fast action. About 40% of
sludge solubilization rate was obtained by ther-
mostable enzymes [17]. Thus, degradation of sludge
by thermophilic bacteria that secrete protease extracel-
lular enzymes can be fully subjugated in a pretreat-
ment approach [18,19]. A thermophilic bacterial strain
identified as Bacillus licheniformis, which produces
extracellular protease, was isolated from a municipal
wastewater treatment plant. Solubilization of sludge
was carried out using this bacteria. EPS is removed
before the sludge is subjected to solubilization, using
EDTA [20]. Removal of EPS enhances the efficiency of
bacterial enzymatic pretreatment [21]. The core objec-
tives of the study are (1) to investigate the efficiency
of deflocculation and bacterial pretreatment on aerobic
degradation of WAS, (2) to evaluate the efficiency of
bacterial pretreatment on biochemical methane poten-
tial (BMP) assay through kinetic analysis, and (3) to
assess the potential of bacterial disintegration on
laboratory-scale anaerobic digestion on comparing
control and experimental reactors.

2. Materials and methods

2.1. Sludge sampling

From local wastewater treatment plant located in
Trivandrum, Kerala, WAS was collected. The initial
characteristics of the sludge were measured as per the
standard methods mentioned in American public
Health Association [22]. The pH of the raw sludge
was 6.5, the soluble chemical oxygen demand (COD)
was 0.2 g L−1, the total COD was 12 g L−1, the total
solids content was 13 g L−1, the volatile solids (VS)
content was 8 g L−1, and the suspended solids (SS)
content was 10 g L−1.

2.2. Removal of EPS

EDTA concentration was optimized to 0.4%, which
is used before pretreatment of sludge for EPS removal.
The dosage of EDTA used is indicated as the g equiv-
alent, i.e. 0.4 g of EDTA is added to 100 ml of sludge.
At 4˚C, the mixture was kept for 3 h with continuous
agitation to confirm good blending. Through EPS
removal, the sludge was dispersed and deflocculated,
which increases the surface area for bacterial activity.
This deflocculated sludge is further subjected to bacte-
rial pretreatment.

2.3. Bacterial pretreatment

Bacillus licheniformis, a thermophilic protease
producing bacterium, was used to pretreat the defloc-
culated sludge. This bacterium was mass cultivated in
a nutrient broth at a temperature of 55˚C in a 5 l fer-
menter, and the cells were harvested after 20 h (early
stationary phase). These cells functioned as the inocu-
lum. Bacterial cells at a concentration of 77 × 106 cells
mg−1 of SS were inoculated. The inoculated sludge
was pretreated for 24 h as per the steps followed by
Merrylin et al [20], and this pretreated sludge was
used for further studies.

2.4. Aerobic digestion

Two 5 l PVC cylinders labeled as experimental
reactor (ER) and control reactor (CR) were used for
aerobic digestion. ER consists of bacterially pretreated
deflocculated sludge and WAS in the ratio of 1:1 [23],
whereas CR consists of only WAS. Maximum of
3 mg/l of dissolved oxygen was sustained for good
aerobic digestion [24]. Following Kavitha et al. [25],
the subsequent experimentation was performed.

2.5. Biochemical methane potential

For samples such as deflocculated, flocculated and
control the BMP test was done. The inoculum used in
this assay was cow rumen. The inoculum substrate
ratio was maintained in the ratio of 3:1, which was
selected based on the study of Luna-del Risco et al.
[26]. The methodology for BMP assay was followed
according to the procedure followed by Uma et al.
[27]. The modified kinetics of biogas production was
observed using Gompertz equation shown in Eq. (1).

Bt ¼ B� exp½�exp½Rb=B� expðk� tÞ þ 1�� (1)

where B is the biogas production potential (L/g VS),
Rb is the maximum biogas production rate (L/g VS d),
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and λ is the lag phase (days). Most of the researchers
have employed kinetics models for assessing the
potential of BMP. Among them, modified Gompertz
model is the most widely used model [28]. Gompertz
model was known for its simplicity and reliability
[29]. The constants B, Rb, and λ were determined using
the nonlinear Polymath software.

2.6. Semicontinuous anaerobic digestion

Two identical semicontinuous reactors labeled as
CR and ER were run. CR consists of raw sludge, and
ER consists of pretreated sludge, and the working vol-
ume of 3 l was used from the total volume of 5 l. The
reactors were inoculated with the activated slurry col-
lected from a local biogas plant in India. Organic load-
ing rate (OLR) of 0.16, 0.26, 0.34, 0.4, 0.5, 0.58, 0.66,
and 0.84 kg SS/m3 d with the solids retention time
(SRT) ranging from 30 to 12 d were serially used to
examine the act of anaerobic digestion of the pre-
treated sludge. The first three loadings were carried
out with different mixed liquor SS (MLSS) of 5,000,
7,500, and 10,000 mg/L at the constant SRT of 30 d.
The rest of the loadings were carried out with differ-
ent SRT of 25, 20, 17, 15, and 12 d with a constant
MLSS of 10,000 mg/L. The CR was also run under the
same conditions as that of the ER. Using peristaltic
pumps, feeding and removal were done every day in
a semi-continuous mode. Liquid displacement method
was used to evaluate biogas production, in which the
difference in water level in a cylinder related to the
reactors was observed. The evacuated liquid is there-
fore considered to have the same volume as the pro-
duced biogas.

2.7. Analytical parameters

The parameters such as SS, VS, and alkalinity were
analyzed according to the standard methods [22]. The
pH was measured using a digital pH meter. Using
distillation–titration method, volatile fatty acid(VFAs)
was examined, and the result was stated in acetic acid.
Using Eq. (1), SS reduction was calculated. Baroda gas
chromatograph was used to analyze methane present
in biogas.

3. Results and discussion

3.1. Aerobic digestion

3.1.1. Effect of aerobic digestion on SS reduction

The effect of aerobic digestion on SS reduction
was portrayed in Fig. 1a. From the figure, it is

observed that biological pretreatment of deflocculated
sludge enhances the sludge solubilization during aer-
obic digestion. One of the most important directly
measurable parameters in assessing digester perfor-
mance or efficiency is the reduction in sludge mass
over a specified period of time [30]. Therefore, SS
reduction increases with the increase in sludge reten-
tion time (SRT) until it reaches its optimum point. SS
reduction of ER was about 59% and in the CR was
about 15.3%. Compared to the control, there was a
43% increase of SS reduction in ER. The SS reduction
in ER was high due to converting carbonaceous sub-
strates to gaseous end products. Diminution of the
SS occurred drastically for the first 6 d and later on
when the SRT was increased, the reduction was sta-
bilized. Thus, for an efficient aerobic digestion, 8 d of
SRT is sufficient.
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Fig. 1b. Effect of pretreatment on COD solubilization
during aerobic digestion.
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Fig. 1a. Effect of pretreatment on SS reduction during
aerobic digestion.
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3.1.2. Effect of aerobic digestion on COD solubilization

The effect of aerobic digestion on COD solubiliza-
tion was portrayed in Fig. 1b. With the increase in
SRT, there was a steady increase in soluble COD
reaches a maximum (1.8 g/L) at 6 d and further
increase in SRT (after 6 d), there was a reduction in
soluble COD release. This may be due to the utiliza-
tion of the lysed materials as exogenous substrates by
the aerobic microbes. When compared with the CR,
there was a 13% increase in COD solubilization. Aero-
bic digester follows first-order kinetics for the sub-
strate removal with a correlation coefficient (R2) value
of less than 90%. The rate constant in the CR was
0.0122 d−1 and ER was 0.0443 d−1 when time (t) is
plotted against the difference in the natural logarithm
of the substrate concentration (lnC) and the natural
logarithm of the initial substrate concentration (lnCo).
From calculation, the rate constants of ER were four
times faster than that of CR. A linear trend shows that
substrate concentration is directly proportional to SRT.
It is probable that all kinds of aerobic digestion would
have exhibited some form of cell lysis (defined as the
inability of the organisms to maintain cellular integ-
rity, as a result of extreme environmental conditions,
with the subsequent rupture of the cell membrane and
release of cellular materials into the bulk liquid of the
digester), and hence, the soluble COD concentrations
in the ER were always higher than in CR [31].

3.2. Biochemical methane potential test

Biogas production was gentle at the initial stage
due to the specific growth rate of methanogenic bacte-
ria, which has been reported in many studies [32,33].
This could be explained using the concepts of lag time
and food to micro-organism (F/M) ratio. At the initial
stages, the F/M ratio was high as there was more food
(i.e. substrates) and less active bacteria. Hence, micro-
bial consortia had to acclimatize to this new environ-
ment for their optimal function [34]. Biogas
production in deflocculated and flocculated reached
its optimum rate from 7 to 9 d as soon as it has
elapsed its acclimatization (Fig. 2). After this, a grad-
ual decrease in biogas generation was noted. How-
ever, it took more time to acclimatize in control and
for the digestion of substrates and release biogas.

Individual cumulative biogas production data were
employed to calculate the three parameters of the
modified Gompertz equation, namely maximum bio-
gas production rates (Rb), biogas production potential
(B) and lag phase time (λ) for all reactors and are tabu-
lated in Table 1. The cumulative biogas generated
from all the reactors studied fitted very well to the

modified Gompertz equation with R2 values ranging
from 0.992 to 0.996. At the end of the digestion, it was
observed that deflocculated has a high biogas produc-
tion rate (Rb) of 0.03 L/g VS d with the highest cumu-
lative biogas production potential (B) of 0.26 L/g VS,
with a lag phase (λ) of 3.4 d. The currently achieved
biogas potential was relatively comparable with the
outcomes obtained by Zhen et al. [28], Kavitha et al.
[35] and Sowmya et al. [36]. Flocculated have biogas
production rate of 0.02 L/g VS d with a biogas pro-
duction potential of 0.12 L/g VS at a lag phase of
3.5 d. While in control, maximum biogas production
rate of 0.009 L/g VS d with the biogas production
potential of 0.04 L/g VS.

With reference to the data for Rb and λ (Table 1,
Fig. 2), it was observed that after crossing the maxi-
mum biogas generation phase, the rate of biogas gen-
eration becomes stabilized. This could be due to the
slowdown in the biodegradation of complex materials
and depletion of remaining readily biodegradable
materials. Besides, the remaining readily biodegrad-
able materials of the substrates would have been
trapped within cells by cell walls of the organisms.
Therefore, they were not easily accessible for microbial
degradation [37].

3.3. Semicontinuous anaerobic digestion

3.3.1. Acclimatization of the reactor

The reactor was filled with biologically pretreated
sludge at an OLR of 0.16 kg SS/m3 d at its acclimatiza-
tion phase and the set up were continuing to operate
till a stable period was achieved. Stable periods were
set when a constant pH, VFA concentration and

Fig. 2. Modified Gompertz model fit to the experimental
data.
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biogas production in the reactor were maintained [38].
With this calculation after 30 d, a steady state was
achieved with <10% fluctuations of parameters. After
normal operation has been set up, seeding of the fresh
solids into the digester and mixing them with the
digesting sludge greatly improve the pace of digestion
[39].

3.3.2. SS reduction

The effectiveness of sludge stabilization was mea-
sured by SS reduction [40]. Fig. 3a shows SS reduction,
which is directly proportional to SRT. During the first
OLR, there was a 12% SS reduction, and with the
increase in OLR to 0.26 kg SS/m3 d, there was a 18%
SS reduction. During the third loading rate, the SS
reduction was stabilized and was found to be 19%.
The first three loadings were carried out by fixing SRT
at 30 d and varying organic load in terms of MLSS.
Even though the MLSS was increased, the SS reduc-
tion was stabilized at 30 d SRT; hence, the SRT was
reduced to 25 d by increasing the OLR to 0.4 kg SS/
m3 d. At 25th, 20th, 17th, and 15th days, the SS reduc-
tion was about 22, 27, 32, and 34%, which shows a
major decrease with the rise in OLR. To further reduc-
tion in SRT, the SS reduction reduced to 33%, which
could be due to the overfilling of the reactor, whereas

11% SS reduction was observed in CR. Thus, there
was 65% increment in SS reduction in the ER com-
pared to the CR.

3.3.3. VS Reduction

The VS reduction was taken into account as well
as to evaluate the reactor performance and stability of
the digestate. The amount of stabilization is often

Table 1
Kinetic parameters calculated from the theoretical Gompertz model

S. no. Experimental condition

Modified Gompertz parameters (Model)

R2 Methane (%)Rb (L/gVS d) B (L/gVS) λ (d)

1 Non-flocculated 0.03 0.26 3.14 0.992 63–65
2 Flocculated 0.02 0.12 3.59 0.990 64–66
3 Control 0.009 0.04 4.21 0.996 58–60
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stated as the percent reduction in VS [41]. Fig. 3b
shows that the rise in OLR led to an increase in VS
reduction. VS reduction was stabilized each time
before switching to the next OLR. During 30 d SRT,
about 22% of VS reduction was observed. Further
decrease of SRT to 25 d, with the increase of OLR to
0.4 kg SS/m3 d, led to 27% of VS reduction, which
shows a major reduction with the increase in OLR.
The SRT was decreased further to 20 d, and the VS
reduction was 32%. When the OLR was shifted from
0.5 to 0.58 kg SS/m3 d, there was 36% of VS reduction.
With a further fall of SRT from 17 to 15 d, a stabilized
VS reduction was observed. Alike SS reduction, nearly
maximum of 38% of VS reduction of was found at an
OLR of 0.66 kg SS/m3 d. Above 37% of VS removal
was observed with the raise of OLR beyond 0.66 kg
SS/m3. Similarly, 38% and 40% of VS reduction was
obtained by Lin et al. and Diclehan [42,43] through
biological pretreatment of sludge during anaerobic
digestion.

The current results show that the biological pre-
treatment is beneficial as it significantly improved
anaerobic digestion with only 17% VS reduction in the
CR. Thus, the maximum performance was due to the
pretreatment, which accelerates decomposition reac-
tion and led to faster subsequent degradation. The
subtract for anaerobic bacteria is obtained from the
organic matter released during disruption of sludge
floc [44].

3.3.4. Total biogas production

Fig. 3c shows the profile of biogas yield. After
acclimatization, digestion was initiated (27th d) with a
30 d SRT and lasted up to 139 d. During that period,
biogas production was found to be 120 mL/g VSS
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added, then second SRT (25 d) was run until 167 d,
and the total biogas produced was 135 mL/g VSS
added. The reactor was run until 190 d at an SRT of
20 d, and the total biogas produced was 165 mL/g
VSS added. The SRT was decreased further to 17 d,
and the total biogas produced was 199 mL/g VSS
added. During the SRT of 15 d, the reactor was run
until 244 d, and the total biogas produced was
231 mL/g VSS added, and then finally when the SRT
was decreased to 12 d, biogas production also reduced
and the total biogas produced was 224 mL/g VSS
added. In ER, the cumulative biogas produced was
66 l for the whole reactor operation period and that in
the CR was 17 l. Compared to the control, the overall
methane production of the pretreated sludge was
increased by 64%. It was also observed that the daily
biogas production rate appreciably raises from 30 to
15 d SRT consecutively, while the rate decreased from
15 to 12 d SRT. As the SRT decreases, the OLR
spontaneously increases, which led to the over loading
phenomenon. Thereby, 15 d of SRT was considered to
be a proper retention time for effective sludge
digestion.

3.3.5. pH

During the startup of the digesters, the pH was in
the range of 6.5–7, which is the favorable pH for the
growth of methanogenic bacteria [45]. Fig. 3d shows
that the pH in both the digesters was maintained
within the range by high organic loading. High pro-
duction of volatile fatty acids was also observed in
pretreated sludge due to high pH in the CR than that
of the ER. From the results, it can be concluded that
pH did not play any major role in the decrease of
solid removal at higher loading rate.

3.3.6. Alkalinity

Vlyssides and Karlis [46] reported that the concen-
tration of bicarbonate alkalinity controls anaerobic
digestion. Methane production is inhibited due to the
production of volatile acids during digestion, which
decreases in pH. According to Metcalf and Eddy [41],
the total alkalinity of a well-established digester
ranges from 2,000 to 5,000 mg/L. Using CaCO3,the
alkalinity was measured in both the reactors that vary
within the range of 3,100–4,500 mg/L [47]. Fig. 3e
indicates that adequate alkalinity was present to main-
tain optimum conditions for methanogenesis. The
trends are similar to the trends in pH, and the causes
of the fluctuation are also similar.

3.3.7. Volatile fatty acids

Among all VFAs, acetic acid is considered most
favorable for methane production. Above 70% of
digestion are influenced by acetic acid [48], which is
considered as a good indicator of anaerobic reactor
performances. In this study, according to Fig. 3f, VFA
decreased with the decrease in SRT and was within
the range of 238–248 mg/L. It was also observed that
there is 17% increase in pretreated sludge compared
to control. A similar increase in VFA was observed by
Ghosh et al. [49] when biologically pretreated sludge
is subjected to anaerobic digestion.

3.3.8. VFA/alkalinity ratio

Hampannavar and Shivayogimath [50] reported
the need of equilibrium between alkalinity and VFA
concentrations for normal digestion. Gerardi [51] sug-
gested that the ratio should be sustained within the
range of 0.1 to increase the digestion. Therefore, VFA/
alkalinity ratio was within the range of 0.06–0.09,
which indicates the good working status of the anaer-
obic reactor as shown in Fig. 3g.

3.3.9. Assessment of the semicontinuous anaerobic
reactor

The results obtained after reactor stabilization is
summarized in Table 2. The optimal loading rates and
retention time for anaerobic digestion will depend
upon the quality of the feedstock and on the desired
efficiency of the overall process. A high VFA produc-
tion is obtained with high organic loading, which
results in pH reduction, and will have adverse effect
on methanogenic bacteria. Adequate quantity of bio-
gas will not be produced at low organic loading and
unnecessarily will create a large digester. Too short
SRT will not provide enough time for anaerobic bacte-
ria, particularly for methane-producing bacteria,
whereas too long SRT will result in an unnecessary
accumulation of assimilated materials in the digester,
and structure of a digester will be large.

A range of 10–60 d of SRT will be optimal for sus-
pended growth digesters, whereas attached growth
and high rate digesters can run at a too shorter SRT
[52]. From the results, it is distinguished that the OLR
of 0.66 kg SS/m3a d operated at 15 d SRT is the most
pertinent OLR for the effective and economic function-
ing of the digester. OLR and retention times reported
in the various studies on MSW digestion have ranged
from 0.07 to 0.35 lb VS/ft3 d and from 10 to 30 d,
respectively. Most of these studies have included co-
digestion with raw sewage sludge. Uma et al. [27]
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have reported OLRs of 3.55–5.9 g VS/L d with a reten-
tion time of 20, 15, and 12 d, and it was shown that
the operation of the reactor was safe at the SRT of
15 d while using dairy sludge.

4. Conclusion

Ultimately, it was concluded that there is 43 and
13% increase in SS reduction and COD solubilization,
respectively, compared to the control during aerobic
digestion. BMP results also indicated that there is
more gas production and organic matter stabilization
in the reactor fed with deflocculated-pretreated sludge
compared with the flocculated pretreated sludge and
CR. Thus, for a semicontinuous digester deflocculated-
pretreated sludge joining with anaerobic digestion led
to 34–38% of SS and VS reduction, respectively, with a
65% improvement in biogas production when oper-
ated at an efficient OLR of 0.66 kg SS/m3 d.
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