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ABSTRACT

Recent advances in environmental monitoring improve data quality and availability in
space and time, but questions about their beneficial use in water resources analysis and
modeling still remain. This study assesses the dependency of the parameterization and per-
formance of a watershed-scale simulation model, the Soil and Water Assessment Tool
(SWAT), on high-quality (rainfall) data at different spatial resolutions. The SWAT model
was applied to the upstream of the Yeongsan River in Korea which remained relatively
unexploited, and was calibrated and validated with the observed daily flow and monthly
sediment data for the periods of 2012–2013 and 2014, respectively. Results showed that the
radar rainfall estimates, derived using bias adjustment factors A1 and A2 which allowed the
number and magnitude of storm events to be corrected, respectively, fitted excellently with
the standard gauging data (R2 = 0.97–0.98). Interestingly, the recommended parameter sets
for steam flow were significantly different among the rainfall data-sets at different resolu-
tions, but not for sediment concentration. The prediction accuracy of the model was, on
average, higher not only during the calibration period than for the short-term validation
period, but also using all the radar data-sets than using the standard gauging data. These
results demonstrate that although we cannot recommend the best input among the new
rainfall products in this preliminary study, the optimal parameter sets developed from
many local and regional studies using the SWAT model need to be revisited fundamentally.

Keywords: Rainfall radar image; Digital image processing; Soil and Water Assessment Tool;
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1. Introduction

Environmental monitoring data in surface waters
support scientific analysis and modeling of water
resources impairment at different spatial and temporal
scales, assisting in developing sustainable watershed
management plans [1,2]. Climate and land use changes
were found to regulate watershed processes such as

stream flow regime, soil erosion, and chemical
transport, along with a mix of other human activities
[3]. The watershed response, however, significantly dif-
fered depending on the intensity, frequency, and dura-
tion of these factors as well as environmental settings
that had different interactions among physical, chemi-
cal, and biological processes [4]. Simulation models for
watershed management have been a cornerstone for
integrating these complex relationships, no matter how
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the watershed dynamics in terms of the landscape
delineation and temporal scheme were handled well in
individual models [5,6]. Defining the temporal and spa-
tial boundaries adequately in the simulation models is,
therefore, crucial in understanding the chronic and
cumulative effects of the environmental factors on sur-
face water resources [1,7]. Further discussion of differ-
ent representations of the temporal and spatial
variability in the watershed simulation models is avail-
able elsewhere [1,6,8].

Advanced sensors and computing technologies
enhance the simulation models which are adequate for
predicting extreme storms and floods, and even debris
flow and landslides, as long as fine scale hydrological
processes are fully accounted for in those models
[9,10]. This is mainly because explaining the variability
of the input data (i.e. reducing their uncertainty) con-
tributes to increasing the accuracy and reliability of
the simulation model outputs [11,12]. Due to this rea-
son, radar observations, which played an important
role in reducing the rainfall heterogeneity (i.e. as high
as 1 km for 5 min in the spatial and temporal scales)
along with satellite data (i.e. 1–4 km for 5 min), have
become favored and acceptable as the input data for
common hydrologic studies [13]. The radar-derived
rainfall estimates were examined for an inter-model
comparison between the lumped and distributed mod-
els [14], flash flood prediction through an uncalibrated
hydrological model [10], and multiple watersheds of
different watershed characteristics and contamination
activities using the watershed model [4], just to name
a few. The conditional bias of the radar data and their
efficient correction remained a major hurdle for opera-
tional applications, even though the simulation models
accommodated the inherent uncertainty of the input
data using calibration in a sophisticated manner
[13,15,16]. More information on recent developments
and future directions for use of the radar data-sets
in hydrologic research is also documented well in
literature [13,17].

Accordingly, this study is motivated by an interest
in assessing the requirements of the spatial rainfall
resolution for the water resources modeling. By apply-
ing a semi-distributed watershed model, the SWAT,
into a small drainage basin, we specifically (1) investi-
gated the accuracy of the radar rainfall products
derived from local bias adjustment factors, (2) identi-
fied sensitive parameters and their optimal values for
estimates of stream flow and sediment concentration
against the rainfall data-sets at different coverage area,
and (3) compared the model performance during cali-
bration and validation periods using the parameter
sets recommended from each rainfall data-set. It is our
hope that the proposed methodology encourages end

users to achieve more realistic parameter values that
best reflect the watershed response or characteristics
in question.

2. Materials and methods

2.1. Study area

Fig. 1 shows the geographical location of study
area, the upper section of the Yeongsan (YS) River in
Korea. We specifically selected the YS River as an
example case study of the SWAT model run because
this river had homogeneous land use characteristics
while retaining its near-pristine condition in terms of
the hydrological regime. Note also that the YS River
holds the record for the shortest river in Korea as
compared to other principal river systems such as
Han, Geum, and Nakdong Rivers, and thus, is much
simpler to accurately represent and simulate through
the model (see Fig. 1). All these ideal conditions will
reduce additional complexity involved in the model
parameterization and performance assessment. The
selected basin mainly consisted of agricultural and for-
est lands with a drainage area of 498.6 km2. The rain-
fall and other weather variables in the selected basin
were regularly monitored by two standard gauges,
Damyang and Gwangju Institute of Science and Tech-
nology (GIST), which were located in the cities of

Fig. 1. Map of the study area located in the upper section
of the Yeongsan River (Basin), Korea. Solid circles shown
in green color indicate two rain gauges installed at the
Damyang City and the Gwangju Institute of Science and
Technology (GIST) which is located in the Gwangju City.
The Gwangju station represents the final outlet of the basin
which is used for calibration.
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Damyang and Gwangju, respectively. The Gwangju
station was one of the monitoring locations along the
river measuring stream discharge and sediment con-
centration, which was used later as a calibration point
that compared observed with predicted ones. The
weather, discharge, and sediment data were obtained
through online information websites which were
supervised by the Korea Meteorological Administra-
tion (KMA, http://www.kma.go.kr/), Ministry of
Land, Infrastructure, and Transport (http://www.
wamis.go.kr/), and Ministry of Environment (http://
water.nier.go.kr/), respectively.

2.2. SWAT simulation

We used the SWAT model as a prototype to inves-
tigate the effect of spatial rainfall resolution on the
water resources modeling. The SWAT model is a pop-
ular simulation tool that allows watershed-scale analy-
sis for water quantity and quality regimes, supporting
water management activities at various spatial (for
field to continental analysis) and temporal scales (on
daily to decadal basis). The input data for the model
are divided into two categories: mandatory (e.g. digi-
tal elevation, land cover/land use, and soil data) and
optional data-sets (e.g. external point discharge and
reservoir outflow data) [9]. Specifically, the weather
data (e.g. rainfall, solar radiation, relative humidity,
etc.), which are also classified as the necessary inputs,
are used to account for the spatial variability of hydro-
logical processes in different drainage units (i.e. sub-
basins) based on changes in atmospheric boundary
conditions [16]. After all digital data-sets required
were submitted to the model, the entire basin was ini-
tially divided into a series of sub-basins, which were
then discretized further into multiple hydrological
response units (HRUs). The number of sub-basins and
HRUs delineated finally varied depending on the
threshold size (in units of km2, hectares, or number of
cells) and definition of land use, soil, and slope (in
units of percentage or area), respectively. As will be
discussed in more detail later, we increased the num-
ber of (virtual) weather stations derived from the
radar images correspondingly with increasing num-
bers of sub-basins, from the default 3 to 34 sub-basins
(see Table 1), to assess the relationship between the
spatial rainfall resolution and model parameterization
or accuracy. A total of four different sets of sub-basins
(i.e. 3, 11, 21, and 34) were prepared for this purpose.
In each set of sub-basins, the parameters that were
highly sensitive to the model outputs were determined
using the Latin Hypercube One-factor-At-a-Time (LH-
OAT), which was found to more efficiently retrieve

samples (or values) within the full parameter ranges
than random or full factorial sampling [18]. The
SWAT model was calibrated to the (observed) daily
flow and monthly sediment data for two years
(2012–2013), and run for validation in the following
one year (2014). More detailed information is available
elsewhere, specifically for the model operation [19]
and the LH-OAT [18].

2.3. Radar image processing

In addition to the precipitation data obtained from
(two) standard rain gauges, the rainfall estimates from
the radar images were provided as alternative weather
inputs to the SWAT model. Fig. 2(a) and (b) shows
examples of raw and processed radar data-sets,
respectively, which is initially obtained on a 10-min
basis for most parts of the Koran Peninsula from the
KMA (http://kma.go.kr/weather/images/rader_com
posite_cappi.jsp) and then converted to red, green,
and blue (RGB) color space for selected areas using
the image processing toolbox in MATLAB. Note that
the raw data-set integrated from multiple sites over
the peninsula is provided from the KMA after bias
correction due to signal attenuation by clouds, smog,
fog, etc. The processed data-set that contained the
RGB color code between 0 and 255 for each cell was
transformed to rainfall rates (in unit of mm/h) using
color indices provided along with the raw radar image
(see color legend in Fig. 2(a)). In other words, the
same image processing applied to the color indices to
match the color code of the processed data-set and
that of the color indices. The raw radar image con-
tained a total of 527 × 576 grids (see Fig. 2(a)), each of
which had a resolution of 2 km by 2 km (see Fig.
2(b)). The converted rainfall estimates were corrected
with the number (A1) and magnitude of storm events
(A2) observed in the standard rain gauges, such that:

A1 ¼ 1

n

Xn

i¼1

RISi
RIRi

(1)

A2 ¼ RISmax � RISmin

RIRmax � RIRmin
(2)

where RIS and RIR indicate the rainfall intensities of
the standard rain gauges and radar images, respec-
tively. Also, n refers to the number of the rain gauges
used in this estimation, whereas subscripts min and
max represent the minimum and maximum values for
a specific storm event, respectively. The mean of
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several estimated values for A1 and A2 in the selected
basin was finally used to adjust the rainfall estimates,
which were converted through the image processing
operation, all at once. Note that there is no difference
in the temporal resolution between the radar and rain
gauge data-sets when comparing them to each other:
in fact, both are accumulated on a daily basis.

3. Results and discussion

3.1. Coverage area and accuracy of rainfall estimates

Fig. 3 illustrates different sets of sub-basins and
their corresponding weather stations in the selected
basin. Here, the standard rain gauges and (virtual)
weather stations that are generated from the radar
images are indicated by solid circles (see Fig. 3(a)) and
squares (see Fig. 3(b)–(e)), respectively. In Fig. 3(a),
there is a sub-basin to which the rain gauge is not
assigned. In such a case, the weather data obtained
from the closest gauge are typically provided. In con-
trast, there are no sub-basins that do not include the
weather stations for the radar data-sets. This is

because we intentionally allocate them (mainly) in the
center of individual sub-basins to assess their effect on
the model parameterization and accuracy while
increasing the number of both sub-basins and weather
stations, simultaneously. Table 1 shows detailed infor-
mation of various weather data used for the SWAT
simulation and their average service area per either
rain gauge or weather station. As shown in the table,
the average coverage area decreased considerably with
increasing number of weather stations. This indicated
that we provided sufficiently high resolution rainfall
products to the model, which was around 17 times
greater than the original rain gauges. However, note
that the resolution of each grid in the radar data-set is
4 km2, so it is still lower than the highest resolution
rainfall product that is provided to the model. This
implies that we provide as much accurate information
as possible for each sub-basin rather than simply aver-
aging or interpolating the adjacent values in individ-
ual grids. Fig. 4(a) and (b) presents the accuracy of the
rainfall estimates derived from the radar data-set
against the observed ones in the GIST and Damyang,

Table 1
Characteristics of various weather data used for the SWAT simulation

Names Data sources Sub-basins Weather stations Average coverage area (km2)a

Gauge 2 Rain gauges 3 2 249.32
Radar 3 Radar images 3 3 166.21
Radar 11 Radar images 11 11 45.33
Radar 21 Radar images 21 21 23.74
Radar 34 Radar images 34 34 14.67

aThe average coverage area is estimated by dividing the total area of basin by the number of weather stations.

Fig. 2. A snapshot for image processing operation: (a) an example radar image which is obtained from the Korea Meteo-
rological Administration (http://kma.go.kr/weather/images/rader_composite_cappi.jsp) and (b) the converted red,
green, and blue (RGB) color image.
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respectively, using the adjustment factors A1 and A2

averaged for the selected basin. As shown in both
figures, the radar-derived precipitation estimates were
in good agreement with the measured data (R2 = 0.97–
0.98), indicating that the adjustment factors developed
locally were useful for bias correction of the radar
data-sets.

3.2. Sensitivity and parameterization of the SWAT model

Table 2 presents sensitivity test results for impor-
tant input parameters that have large effects on output
variables (i.e. stream flow and sediment concentration)
at the Gwangju station, in response to different
weather data from Gauge 2 to Radar 34. In the table,
the string in columns of the input parameters

Fig. 3. The location of weather stations in the upper section of the Yeongsan River (Basin), Korea. Shown as solid circles
in (a) are the original rain gauges, whereas solid squares in (b) through (e) indicate the stations that are newly created
from the radar images according to the number of sub-basins.

Fig. 4. A comparison between the observed data and rainfall estimates which are computed from the radar images after
adjustment to the rain gauge data: (a) GIST and (b) Damyang.
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indicates the data sources of weather data, whereas
the integer refers to the total number of gauges or
weather stations provided to the model (see also
Table 1). From the table, it was found that the input
parameters related to sediment concentration were not
sensitive to both the type of weather data and the
number of weather stations. However, the ranking of
sensitive model parameters for stream flow highly
varied depending on the number of weather stations,
except for the parameters Ch_N(2) and Gwqmn. For
example, while the effective hydraulic conductivity in
main channel alluvium Ch_K(2) was ranked as the
most sensitive parameter for Radar 21 and 34, this
was ranked the third for Radar 11 and the fourth for
Gauge 2 and Radar 3. Note that there is no difference
in parameter sensitivity between Gauge 2 and Radar 3
due to a small difference in the rainfall products
between them (see Fig. 4(a) and (b)). These results
clearly implied that the number of weather stations
above certain threshold played an important role in
predicting stream flow, although this statement was
not always true for basins with other environmental
conditions. Table 3 shows the optimal parameter val-
ues obtained from calibration of stream flow and sedi-
ment concentration in the final outlet of the selected
basin for various weather data. As discussed above,
the calibrated parameters for sediment concentration
had similar values regardless of weather data-sets,
whereas there was a significant difference between the
parameter sets for stream flow. Most of the parameters

related to stream flow were still in their recommended
range, except for Cn2 and Ch_N(2), in all weather
data-sets as well as only Surlag in Gauge 2. This
revealed that not only should those parameter values
be carefully refined in future local studies, but also
there was a need for a trade-off between the number
of weather stations and multiple Pareto-optimal (or
near-optimal) solutions.

3.3. Model performance during calibration and validation

Based on the optimum parameter sets for each
weather data-set, the simulated data appeared to cor-
respond well with the observed ones in terms of R2

and ENS (see Table 4). The SWAT model achieved
higher prediction accuracy for stream flow and sedi-
ment concentration during the calibration period than
for the validation period probably due to the best cali-
bration setup and short length of the one-year valida-
tion period. Although the prediction accuracy of
stream flow in Gauge 2 was higher than in other radar
data-sets for the calibration period, the model
appeared to make more accurate prediction in Radar 3
and 11 than in the remaining data-sets with respect to
both R2 and ENS during both calibration and valida-
tion phases. In contrast, the best model prediction for
sediment concentration was made when increasing the
number of weather stations, such as Radar 21 and 34
during both periods. This implied that the optimum
parameter solution should be carefully evaluated and

Table 2
Sensitivity analysis of flow and sediment parameters in the SWAT model using the weather inputs with different
coverage areas

Output variables Rank

Input parametersa

Gauge 2 Radar 3 Radar 11 Radar 21 Radar 34

Flow 1 Surlag Surlag Cn2 Ch_K(2) Ch_K(2)
2 Cn2 Cn2 Surlag Surlag Cn2
3 Alpha_Bf Alpha_Bf Ch_K(2) Cn2 Surlag
4 Ch_K(2) Ch_K(2) Alpha_Bf Alpha_Bf Alpha_Bf
5 Ch_N(2) Ch_N(2) Ch_N(2) Ch_N(2) Ch_N(2)
6 Gwqmn Gwqmn Gwqmn Gwqmn Gwqmn

Sediment 1 Spcon Spcon Spcon Spcon Spcon
2 Prf Prf Prf Prf Prf
3 Spexp Spexp Spexp Spexp Spexp

aDefinitions: Surlag = the surface runoff lag coefficient, Cn2 = the moisture condition II curve number, Alpha_Bf = the baseflow alpha

factor, Ch_K(2) = the effective hydraulic conductivity in main channel alluvium, Ch_N(2) = the Manning’s n value for the main chan-

nel, Gwqmn = the threshold water level in shallow aquifer for baseflow, Spcon = the linear parameter for channel sediment routing,

Prf = the peak rate adjustment factor for sediment routing, and Spexp = the exponent parameter for channel sediment routing. For

more detailed information on the parameters, refer to the SWAT input/output file documentation for version 2012 (http://swat.tamu.

edu/documentation/).
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determined with the input data-sets of different spatial
resolutions to improve the prediction accuracy of
more than two output variables simultaneously.
Considering all these points together, the performance
of SWAT model using all radar data-sets was at least
equivalent or superior to that of the rain gauge data,
even though we did not recommend the best one out
of them at this moment. However, the radar data-sets
with smaller number of (virtual) weather stations may
be preferred as too fine discretization of sub-basins

neither ensure the improvement of prediction accuracy
in the simulation model nor reduce the data
complexity.

4. Conclusions

In this study, we attempt to identify the high
resolution rainfall data will be helpful in improving
the parameterization and performance of a semi-
distributed river basin model, the SWAT. The upper

Table 3
The final values of flow and sediment parameters in the SWAT model calibrated for the weather inputs with different
coverage areas

Output variables Input parametersa Units Range

Calibrated values

Gauge 2 Radar 3 Radar 11 Radar 21 Radar 34

Flow Surlag d 1–24 0.827 1.213 1.227 1.479 1.457
Cn2 – 35–98 13.216 15.136 14.158 3.884 3.838
Alpha_Bf d 0–1 0.039 0.042 0.059 0,983 0.993
Ch_K(2) mm/h −0.01 to 500 19.556 18.772 17.105 95.596 108.79
Ch_N(2) – −0.01 to 0.3 0.983 0.879 0.939 0.881 0.908
Gwqmn mm 0–5,000 1,000.000 994.790 14.158 330.300 347.920

Sediment Spcon – 0.0001–0.01 0.001 0.001 0.001 0.001 0.001
Prf – 0–2.0 (or N/A)b 0.273 0.303 0.316 0.236 0.315
Spexp – 1.0–2.0 1.000 1.000 1.006 1.000 1.082

aRefer to Table 2 for definitions of individual input parameters.
bThere is a difference in the recommended values between the reference source [9] and SWAT user manual for version 2000

(http://swat.tamu.edu/documentation/). N/A is short for not available.

Table 4
The performance of the SWAT model during calibration (2012–2013) and validation periods (2014) for stream flow and
sediment yield at the Gwangju station in the upper section of the Yeongsan River (Basin), Korea

Weather inputs Evaluation statisticsa

Flow (m3/s)
Sediment (metric
tons/month)

Calibration Validation Calibration Validation

Gauge 2 R2 0.84 0.31 0.83 0.16
ENS 0.82 −0.66 0.80 −0.32

Radar 3 R2 0.83 0.45 0.84 0.25
ENS 0.80 0.10 0.81 0.07

Radar 11 R2 0.80 0.47 0.84 0.27
ENS 0.77 0.07 0.81 0.10

Radar 21 R2 0.81 0.42 0.87 0.26
ENS 0.79 −0.05 0.85 0.21

Radar 34 R2 0.81 0.42 0.86 0.27
ENS 0.79 −0.08 0.83 0.19

aDefinitions: R2 = the coefficient of determination and ENS = the Nash–Sutcliffe efficiency.
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part of the YS River which had no apparent contami-
nation activities and large hydraulic structures was
selected as a target study area to simplify such an
assessment. The SWAT model was calibrated and vali-
dated with respect to daily stream flow and monthly
sediment concentration for two periods of 2012–2013
and 2014, respectively. The following are the main
findings in this study:

(1) During the image processing operation, the res-
olutions of the rainfall products were increased
up to approximately 17 times larger than the
original map. The areal average adjustment fac-
tors A1 and A2 in the selected basin allowed a
good estimate of the rainfall rates to be
obtained from the radar data-sets.

(2) The SWAT model responded differently to the
weather data-sets at various resolutions. The top
four parameters related to stream flow showed
the greatest change in rank when forcing differ-
ent weather data, whereas no significant differ-
ences were observed in the sensitivity and
optimal values for those associated with sedi-
ment concentration. However, this will likely
differ among basins with different environmen-
tal settings as well as output variables such as
total nitrogen and phosphorus.

(3) The SWAT model predicted stream flow and sed-
iment concentration well during the calibration
period than for the validation period performed
in a short period of time, even using different sets
of the optimal parameter values. Although the
radar data-sets are more favorable for water
quantity and quality simulation in the selected
basin than the rain gauge data, further research is
still warranted to fully explore the relationship
between the data quality of various inputs and
output accuracy of different types of the simula-
tion models, from the lumped through semi-dis-
tributed to fully distributed models.
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