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ABSTRACT

The Multilayer Perceptron Model was developed for predicting organic matter removal
from pulp and paper mill wastewater. The original database covered a period of 1,427 con-
secutive days and contained the most frequently measured parameters. Three models were
constructed by applying the technique of Principal Component Analysis, which selected
principal components, discarded original variables and excluded possible outliers. The data
were randomized and divided into training, validation and testing sets. The training algo-
rithm was the Levenberg–Marquardt type, which is an adaptation of the back-propagation
algorithm. The learning rate was 0.05, and the evaluation criteria used were the mean
square error and the linear correlation coefficient. A marked difference was observed in the
predictive performance when the organic matter load was used as an input. The model M4,
which was built by discarding the two variables pH and EC, proved to be the most suitable
and the simplest model obtained. However, choosing the best model cannot be done arbi-
trarily. It will be necessary to use various statistical parameters and perform comparisons of
models with different sizes and structures in order to select the best model.

Keywords: Artificial neural network; Organic matter; Multilayer perceptron model; Pulp and
paper mill wastewater

1. Introduction

Safer operation and control of industrial processes
can be achieved by developing a modeling tool to

predict plant performance, which can be based on past
observations of certain key product quality parame-
ters. Performance assessment and monitoring of bio-
logical wastewater treatment processes are usually
made by collecting samples and conducting physical–
chemical analysis on a daily or weekly basis, which*Corresponding author.
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leads to an increase in the overall cost of the process.
Moreover, the numerical modeling to quantify the effi-
ciency of contaminants removal, e.g. organic matter, is
based on models with kinetic constants usually
obtained from studies of isolated cultures of micro-or-
ganisms fed with specific substrates under the labora-
tory scale. Microbial diversity and variability of
organic substrates supplied to the micro-organisms,
which are associated with the variation in operating
conditions in industrial processes, may limit the use of
specific kinetic models for predicting the performance
of wastewater treatment systems. Therefore, utilizing
a series of monitoring data, predictive statistical tools
are attractive alternatives that can provide information
and correlations among industrial processes, wastewa-
ter characteristics and efficiencies of the wastewater
treatment processes.

Some processes, e.g. industrial wastewater treat-
ment, exhibit nonlinear behaviors which are difficult
to describe using linear mathematical models. There-
fore, the use of predictive models based on Artificial
Neural Networks (ANNs), e.g. Multilayer Perceptron
(MLP), to improve the operational control of wastewa-
ter treatment plants have been suggested in the litera-
ture [1–6]. Grieu et al. [7] presented a procedure based
on a MLP network to predict influent and effluent
ammonia and organic matter concentrations. The
authors showed that neural modeling can be a useful
tool to minimize operation costs and provide stability
to the treatment process. More recent, Levenberg–Mar-
quardt algorithm have been used for ANNs with a lit-
tle or moderate training set (up to several hundred
weights) because it requires a large storage memory
for execution. It has been proven to be fast, convergent
and robust [1].

An ANN normally relies on representative histori-
cal data of the process. Therefore, data preparation is
an essential step for enhanced performance of these
predictive models. This task requires a careful analysis
of the data in order to define which variables best rep-
resent the system. Frequently, researchers encounter a
large set of independent variables for possible inclu-
sion in a multivariate analysis, but, in most cases, the
inclusion of all variables in the model is unnecessary
and can hinder the correct interpretation of the data.

Principal Component Analysis (PCA) is a multi-
variate statistical technique that reduces a complex
system of correlations to a smaller number of dimen-
sions. PCA can be used in three ways: to select princi-
pal components, to discard original variables and to
exclude possible outliers. The main purpose of this
technique is to reduce the dimensionality of a data-set
consisting of a large number of interrelated variables

while retaining as many of the variations present in
the data-set as possible [8,9]. Considering a data
matrix X with n rows (observations) and p columns
(variables), Principal Components (PCs) are obtained
by the diagonalization of the covariance matrix XTX,
where XT is a transposed matrix of X. The elements of
the eigenvectors, called loadings (weights) in PCA ter-
minology, represent the cosine directors. In other
words, they represent a contribution of each original
axis in the new axis called principal components. The
eigenvalues represent the amount of variance
described by the original eigenvectors. PCs are uncor-
related and are ordered so that the first few retain
most of the variations present in the original set.
Therefore, the first PC (PC1) represents an axis in
which the samples have maximum variance, i.e. an
axis along which the samples have greater dispersion.
PC2 represents a second axis with more variance, i.e.
an axis with maximum variance not explained by
PC1. This pattern is then repeated until the last PC.

K-Means clustering and PCA have been used to
optimize the MLP learning phase [7]. Together these
are able to minimize the overfitting phenomenon and
help the identification of the strength of the variable
correlations [7–9]. There are several methods for
selecting the variables using PCA [10–13]. For exam-
ple, Jolliffe [14] tested five methods: a multiple corre-
lation method, two principal component methods and
two clustering methods and proposed a method, des-
ignated B4, which discards the original variables
based on the loading vectors of the first PCs. Several
other studies in the literature have also successfully
applied the PCA together with an ANN [15–18].

The purpose of this work is to predict organic mat-
ter removal from a pulp and paper mill wastewater
treatment plant using a MLP Model and to evaluate
the use of PCA as a preprocessing technique for
selecting variables/PCs and identifying outliers.

2. Methods

2.1. Process description

The wastewater treatment plant consists of two
steps: a preliminary physical–chemical treatment com-
posed of two parallel mixing tanks and flocculation
chambers followed by a biological treatment. The bio-
logical treatment is performed in an aerated lagoon
(169,000 cubic meters) supplemented by a set of five
stabilization ponds with a total volume of approxi-
mately 1.5 million cubic meters. The biological sludge
is removed in settlement tanks and goes into a con-
trolled landfill after the drying operation.
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2.2. Data collection for prediction model

The original data base covered a period of 1,427
consecutive days, which represented daily recording
for approximately 4 years. In order to minimize the
loss of information due to exclusion of samples con-
taining high incidence of missing values (>50%), the
data-sets contained only the most frequently measured
variables, i.e. flow rate (Q), influent organic matter
(soluble CODin), pH value, color, temperature, electri-
cal conductivity (EC), wastewater flow coming from
the pulp production (Qpulp) and wastewater flow com-
ing from the paper production (Qpaper). The biochemi-
cal oxygen demand (BOD) was not chosen as an input
variable due to the significant amount of time for mea-
surement (~5 d), which made it impractical to build
the model. After eliminating samples that contain
missing data or BOD and accounting for probable
errors of measurement, the final data-set was reduced
to 786 samples. Table 1 shows the basic statistical
properties for the selected variables.

Five models were constructed to predict the con-
tent of soluble organic matter in the effluent of the
aerated lagoon (CODout). Model 1 (M1) was con-
structed by quantifying the organic matter present in
the wastewater as a concentration of soluble COD
(mg L−1), while Models 2–5 were constructed using
the organic load (CODload) calculated by the multipli-
cation of the COD concentration and flow rate. In
Models 3–5, PCA was applied to reduce the dimen-
sionality of the data-set in order to select PCs, discard
original variables and exclude possible outliers.

2.3. ANN structure

The B4 method was used to discard the original
variables based on the weight vectors of the first prin-
cipal component. MLP was the ANN used for the pre-
diction of the amount of organic matter effluent of the
aerated lagoon (CODout). The training algorithm was

of the Levenberg–Marquardt type, which is an adapta-
tion of the backpropagation algorithm. The neural net-
work parameters can be changed to reach a suitable
network architecture and to find a model with a more
satisfactory result. The network parameters that were
changed on the length of the training were learning
rate, number of hidden layers and number of neurons
per each hidden layer. The data-set was randomized
and divided into the following three sets: training, val-
idation and test sets. The transfer functions were log-
sigmoid and linear for the intermediate and the out-
put layer, respectively.

The linear activation function for the output neu-
ron was appropriate for the continuous-variable tar-
gets. Sigmoidal activation functions for the input and
hidden neurons were needed to introduce nonlinearity
into the network. Without nonlinearity, hidden layers
would not make the nets any more powerful than
plain perceptrons (which do not have any hidden
units and only contain input and output units). Sig-
moidal activation functions are usually preferable to
threshold activation functions [19].

2.4. Evaluation of the ANN model performance

The performance of each network model was evalu-
ated by computing the mean square error (MSE), the
linear correlation index (R2) and the adjusted linear cor-
relation index (R2

adjusted). In contrast to R2, the adjusted
R2 increases only if the additional model parameters
significantly improve the regression results, which
compensate for the increase in the regression degrees
of freedom. Therefore, the adjusted R is the only statis-
tical parameter able to perform reliable comparative
analyses of the predictive performances of the ANN
models. Minitab® and Matlab® were used for statistical
analysis as well as for PCA and ANN modeling.

The examination of the adequacy of the model
requires that the errors generated are normally dis-

Table 1
Basic statistical properties of the selected variables

Parameters Mean Standard deviation Minimum Maximum Missing data (%)

Q (m3 d−1) 67,364.0 11,588.0 4,474.0 97,850.0 0
Soluble CODin (mg L−1) 562 104 136 925 6.2
pH 7.5 1.2 1.0 12.5 3.7
Color (units Pt-Co) 464.4 123.6 41 1,317 3.6
Temperature (˚C) 45.5 3.1 28 50.5 32.6
EC (μS cm−1) 1,530.9 378.1 379 5,810 3.9
Qpulp (ton d−1) 886.1 155.2 0 1,112.1 7.9
Qpaper (ton d−1) 1,042.7 94.2 382.4 1,304.8 6.5
Soluble CODout (mg O2 L

−1) 315.5 2.0 105 865 5.8
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tributed. We built normal residuals probability graphs
and also standardized the residuals to estimate the
normal distribution. During standardization, the resi-
dues were scaled to ensure that the values of the stan-
dard deviations were approximately equal to one.
Therefore, large residuals (which may indicate possi-
ble outliers or unusual observations) would stand out
from inspections of the residual plots. The residues
were standardized using Eq. (1):

di ¼ ei=
ffiffiffi

r
p 2

; i ¼ 1; 2; . . . ; n (1)

where ei is the error calculated from the difference
between the value predicted by the ANN and the
desired output value, and σ is the standard deviation
of the sample.

The criterion used to define the normal distribution
of the data was that 95% of the standardized residuals
were within the range (−2.2).

3. Results and discussion

Table 2 shows the variance and the weights of the
principal components. According to the criteria of the
B4 method, the first five components should be pre-
served in building the model because these PCs
express 89.8% of the total preserved variance of the
system. Using selected components, the main original
variables were extracted from the absolute value of
the loadings as proposed by Method B4. The most
important variables (in the order of importance) were
flow rate (Q), soluble CODload, Qpaper, color, Qpulp and

temperature. Because soluble CODload = f(COD, Q)
and the flow rate represent the same loading value,
only soluble CODload was kept as an input variable in
the model. We note that the select variables from the
B4 method were the same when using training, valida-
tion or test data-sets.

To understand how each variable impacts each
component, graphic interpretation of the scores and
loadings can be used. Fig. 1 shows the graph of the
loadings of the components 1 and 2.

Analyzing the graph of the loadings, it can be seen
that Qpaper, Qpulp and temperature, as well as flow
rate and CODload, are correlated, as expected. The pH
and EC may be considered as independent variables.
The graph of the scores was used for identification of
the outliers. We analyzed only the first PCs, as these
individually retain the highest variability data. The
questionable data are circled in Fig. 2.

As previously explained, the M5 model disregards
these data to assess whether the PCA was useful for
excluding outliers. The set of data used to generate
the M5 model is composed of the original 8 variables
and 719 values.

Table 3 shows the performance evaluation of each
model. The best models were obtained when the
ANNs were composed of only one hidden layer, the
learning rate was equal to 0.05 and the division of the
data to perform the training sets, validation and test-
ing were equal to 70, 20 and 10%, respectively. By
examining the values of R2 and R2

adjusted, only M1
showed poor performance. A better performance was
found using models M2–M5 because they were built
using the amount of influent organic matter expressed

Table 2
Variance and weights of the principal components

Principal components Variance Explained variance (%) Accumulated variance (%)

PC1 2.7 33.8 33.8
PC2 1.7 20.6 54.4
PC3 1.3 15.7 70.1
PC4 0.8 10.6 80.7
PC5 0.7 9.0 89.7
PC6 0.4 5.5 95.2
PC7 0.4 4.8 100
PC8 0 0 100

Weights
Principal components Q CODload pH Color T EC Qpulp Qpaper

PC1 −0.49 −0.49 0.27 −0.17 −0.28 0.38 −0.37 −0.24
PC2 −0.42 −0.42 −0.35 −0.05 0.37 0.07 0.39 0.48
PC3 0.06 0.06 0.53 0.58 0.32 0.49 0.16 0.10
PC4 −0.11 −0.11 −0.26 0.70 −0.35 −0.22 −0.39 0.31
PC5 −0.15 −0.15 −0.18 0.27 0.58 −0.29 −0.17 −0.64

Notes: Italic values represent the values of the loadings chosen as proposed by B4 Method.
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in load terms (kg d−1) instead of concentration terms.
The Model M1 was built by considering the concentra-
tion of organic matter as COD and the flow rate.
Therefore, the fluctuation of values from these param-
eters may have been the cause of M1’s poor perfor-
mance. Considering the models M2–M5, no significant
differences were identified in the R2 values. Previous
attempts of modeling to predict organic matter uti-
lized the COD concentration as an input variable,
which resulted in R values ranging from 0.4 to 0.7
[1,4,5,7]. The lowest MSE values are obtained in M2
and M4 using the original variables as inputs. The
number of iterations varied from model to model, but
this was not a significant factor in affecting the current
results because it does not take more than 10 s to run
each model.

The adjusted R2 values calculated using the data
from models M2–M5 also showed no significant differ-
ence, which means that the network performance was
unaffected by the reduction in adjustable parameters.
Therefore, the complexity of the models can be
reduced through appropriate data preparation. For
example, M3 resulted in a faster learning (i.e. 18 inter-
actions) when comparing the structure of the variabil-
ity of the ANN models simply by switching from the
original variables (M2) to the corresponding PCs (M3).
This was expected because the M3 model was built
with a smaller number of input data; however, the
results showed no significant loss of information,
which can be considered an advantage of using PCs.
Furthermore, the same performance was repeated
when we selected variables using the B4 method (M4).

Fig. 1. Graph of the loadings of the two first PCs.

Fig. 2. Graph of the scores of the two first PCs.

Table 3
Evaluation of the models to predict the soluble CODout of the aerated lagoon

Models

Comparative parameters M1a M2b M3b M4b M5b

Inputs 8 original
variables

8 original
variables

5 PCs 5 original
variable

8 original
variables

Training data 706 706 706 706 706
Test data 80 80 80 80 80
Number of hidden

neurons
1 1 1 1 1

Number of parameters 9 9 6 6 9
Transfer function Sigmoid Sigmoid Sigmoid Sigmoid Sigmoid
Processing method Back-propagation Back-propagation Back-

propagation
Back-
propagation

Back-propagation

Number of iterations 11 103 18 93 103
MSE test 2.3E-03 4.59E-08 1.9E-05 2.9E-08 4.0E-05
R2 test 0.4508 0.9999 0.9953 0.9999 0.9999
Adjusted R2 0.3753 0.9999 0.9796 0.9999 0.9999

aCOD (mg O2 L
−1).

bCODload (kg d−1).
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Table 4
Results of the synaptic weights of the models

Inputs variable of the MLP

Models CODsoluble Q CODsoluble pH Color T EC QPulp QPaper

M1 mg L−1 −0.1514 −1.0645 0.1975 −0.0483 −0.0391 −0.3931 −0.0707 −0.0647
M2 kg d−1 −0.1243 −0.3201 0.0001 0.0003 0.0001 −0.0003 0.0002 0.0001
M4 kg d−1 – −0.46 – −0.003 0 – −0.0002 −0.0001
M5 kg d−1 −0.1243 −0.3201 0.0001 0.0003 0.0001 −0.0003 0.0002 0.0001

PC1 PC2 PC3 PC4 PC5

M3 kg d−1 −1.2451 −0.6821 0.1027 −0.1672 −0.1703 – – –

Fig. 3. Results of the Anderson–Darling normality test with a confidence level of 95% for (a) Model M1, (b) Model M2,
(c) Model M3, (d) Model M4 and (e) Model M5 for dimensionless COD.
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Therefore, the signal-to-noise ratio does not affect the
PCA application in this case.

The error rate is generally more significant because
it is a supervised neural network type. It should be
noted that the model M3 was built using only five
PCs as predictor variables in the ANN but required
information from eight original variables. The results
obtained using the PCA to exclude possible outliers in
M5 were similar to that of M3, which means that the
exclusion of outliers is unnecessary in this case. How-
ever, this result cannot be generalized. In fact, the
presence of outliers can provide incorrect or mislead-
ing results, mainly during the construction of the
empirical models. The model M4 was built by discard-
ing pH and EC variables; hence, it was the most syn-
thetic and the simplest model obtained. Thus, it can
be concluded that the two variables discarded do not

add information nor influence the performance of the
prediction model.

Table 4 shows the synaptic weights related to each
input variable of the models. The results indicate that
the synaptic weights of the variables, influent flow
rate and COD, were significant in building the models
M2, M4 and M5. In contrast, in models M1 and M3,
the weights of all variables are in the same order of
magnitude. This result indicates that some informa-
tion, such as the COD concentration and the use of
PCs as input variables of the MLP, were satisfactory
for predicting the organic matter effluent of the aer-
ated lagoon. However, for a better understanding of
synaptic weights, it is necessary to perform a sensitiv-
ity analysis, which was not conducted in this work.

Eq. (2) below is obtained from the model M4 and
predicts the removal of the organic matter from pulp

Fig. 4. Time series plot of the measured and predicted soluble CODout of the M4 model.

Fig. 5. Time series plot of the standardized residuals of the M4 model.
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and paper mill wastewater. Since it is a empirical
model, it cannot be used to represent other systems.

CODout

¼ 8:67

1 þ e�0:46CODin�0:003Color�0:0002Qpaper� 0:001Qpulp þ 0:0017
� 4:3

(2)

This model eliminates the temperature (T) variable
and uses four dependent variables to obtain the outgo-
ing organic load of the aerated lagoon. Fig. 3 shows
the graphs of the effluent soluble COD determined in
laboratory tests vs. the predicted values using the
Anderson–Darling normality test with a confidence
level of 95%. It can be seen that the models M4 and
M2 are able to predict the behavior of the bioprocess
perfectly. Furthermore, as explained previously, the
model M4 was built by discarding two variables.
Hence, it can be concluded that M4 is the best model
obtained in the current study.

Fig. 4 shows the comparison between predicted
and measured values of the M4 test set. It is observed
that this model perfectly reproduces the overall varia-
tion observed in the biological treatment. Fig. 5 shows
the time series plots of the standardized residuals of
the M4 model. It is noted here that 95% of the residu-
als fall in the range (−2, +2), confirming the normality
of residuals and the adequacy of the model. Standard-
ization was carried out using the standard deviation
of the validation data-set.

The methodology presented in this work can be
used for other data and processes. The basic regres-
sion procedure using neural networks follows a well-
defined routine. The greatest variation occurs only
with the pre-treatment data.

4. Conclusions

This research investigated the use of PCA as a
data-preprocessing technique to build an ANN model
in order to predict organic matter removal from pulp
and paper mill wastewater. It was concluded that
PCA, which was applied to select input variables, can
be useful in neural network learning processes. The
use of this technique allowed for the reduction of the
number of parameters to be adjusted without chang-
ing the performance of the model. Furthermore, utiliz-
ing the PCA to discard original variables made it
possible to improve neural network performance with-
out any loss of information. The use of an ANN
model may reduce costs by discarding unnecessary
laboratory measurements. However, in this particular

case, the PCA technique proved to be unnecessary for
outlier exclusion.

It is important to note that choosing the best ANN
model should not be done arbitrarily and carelessly. It
is necessary to use various statistical parameters to
compare models of different sizes and structures in
order to determine the best model. In order for the
preprocessing data to be meaningful, it is strongly rec-
ommended that a professional who has expertise in
the process should be available for examination.
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