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ABSTRACT

Water quality is a major concern, particularly when the water is used for human
consumption. We study the variability of the Ebro River (Spain) water quality through a
global quality index (GQI) using two methods: functional data analysis (FDA) and
Shewhart-type control charts for statistical process control (SPC). The aim of this study is to
identify abnormal values of this quality indicator. We used the data collected in 2008 at the
El Bocal station, which is a strategic location. Temperature, ammonium content, nitrate con-
tent, conductivity, dissolved oxygen, pH, and turbidity were measured every 15 min. These
physical–chemical parameters were used to calculate the GQI. The results obtained using
SPC reflect the causes of specific variation in May, July and October. However, no func-
tional outlier was detected when using FDA. According to our results, we conclude that
Shewhart-type control charts could be used to search for and eliminate abnormal values in
a water quality analysis based on global indicators. The FDA methodology is not appropri-
ate for this case study because of the type of functions obtained from the available data.
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1. Introduction

Water is likely the most valuable natural resource,
and greater efforts are being made at all levels of our
society to achieve an optimal management of both
superficial and underground streams. Water quality is
a main concern for both the environment and human
health because it is fundamental to our nutrition.

In general terms, the following types of water are
distinguished based on their use: public supply,
domestic, irrigation, livestock, aquaculture, industrial,
mining, and thermoelectric power [1]. Maintaining
minimum water quality levels and achieving a proper
control of streams and their uses are essential for the
sustainable management of this natural resource in
accordance with legal requirements. This research
work focuses on domestic water quality, specifically
on drinking and pre-drinking water.
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In the recent past, EU legislation only regulated
water quality, not its quantity. However, the findings
of a ministerial seminar on water policy of the Euro-
pean Community held in Frankfurt in 1988 high-
lighted the need for Community legislation that
would address the ecological quality of water.

Until the adoption of Directive 2000/60/EC [2],
which aims to maintain and improve the aquatic envi-
ronment of the Community, referring primarily to
water quality, the two directives on the quality and
methods of measurement, frequency of sampling, and
analysis of surface water intended for the abstraction
of drinking water that articulated the control of water
quality were as follows:

(1) Directive 75/440/EEC [3], which defined the
quality required of surface water intended for
the abstraction of drinking water in the Mem-
ber States (transposed into Spanish legislation
by Ministerial Order 11/05/88).

(2) Directive 79/869/EEC [4], which defined the
methods of measurement, frequency of sam-
pling, and analysis of surface water intended
for the abstraction of drinking water (trans-
posed into Spanish law by OM 08/02/88).

In Spain, Royal Decree 140/2003 [5] defines the
health criteria with which the water intended for
human consumption must comply. It considers some
basic parameters, including turbidity, conductivity,
hydrogen ion concentration or pH, and ammonium
content, which are also considered as indicator
parameters according to Council Directive 98/83/EC
[6]. The current EU Water Framework Directive [2]
considers biological, hydromorphological, chemical,
physicochemical, and general elements when classify-
ing the ecological status of rivers. Those general
elements include thermal conditions, oxygenation
conditions, salinity, acidification status, and nutrient
conditions.

Any attempt to define water quality must be based
on a set of physicochemical characteristics that are
commonly called quality indicators. Several classifica-
tions can be made from these indicators, but two of
them are the most widely accepted. The United States
Environment Protection Agency distinguishes between
primary indicators (inorganic chemicals, organic
chemicals, radioactive compounds, micro-organisms)
and secondary indicators (color, turbidity, suspended
solids). Conversely, the Organization for Economic
Cooperation and Development proposes that indica-
tors can be classified into two main groups: pressure
indicators (which measure actions that generate

change) and response indicators (which measure
corrective actions arising from the change).

Of the possible potential unit indicators, the most
commonly measured in the literature [7] are pH, water
temperature, conductivity, dissolved oxygen, redox
potential, turbidity, level, flow, total ammonia,
nitrates, phosphates, absorbance, mercury, nitrites,
total nitrogen, total phosphorus, chlorophyll, and
phycocyanin. These indicators have been used in vari-
ous ways to define global quality indexes (GQI). When
selecting the appropriate unit indicators, anywhere
from a minimum of 2 to an infinite number could be
considered. The selection is made according to circum-
stances such as standards, time or location, and
usually follows the criteria derived by experts.

Despite the importance of controlling water
quality, there is no easy-to-construct index with wide
application [8], although several general quality
indexes are found in the literature (see [7]). These
indexes include some that are used worldwide and
have been validated in several studies, though they
were originally developed for the specific conditions
of a single region or country [9]. This is the case of the
ICA indexes of the National Health Foundation of the
United States (NSF) and Dinius’ ICA [10]. Whereas
the first focuses on water intended for human con-
sumption, the second considers other uses, including
agriculture, fisheries, industry, and recreation.

Abbasi [11] reviews the existing water quality
indexes, including many others aside from those men-
tioned above. A multiplicative weighed index that
ranges from 0 to 100 classifies rivers as very bad, bad,
medium, good or excellent quality [12,13] has been
applied to the study of many rivers [13–16]. This index
uses physicochemical properties such as dissolved
oxygen, biochemical oxygen demand, turbidity, total
solids, nitrates, phosphates, pH, and temperature. A
new subjective quality index WQIsub is presented
in Ref. [17] and incorporates a subjective constant into
an equation that represents the general state of the
water. Pesce and Wunderlin [13] present two other
indexes: WQIobj (which is an objective WQI) and
WQImin (which considers only dissolved oxygen,
conductivity, and turbidity). Other authors have
focused their efforts on defining a fuzzy water quality
index using inference [18–22]. The Environmental
Protection Index of Taiwan has adopted its own
classification system and uses a river pollution index
that is based on only four parameters: dissolved
oxygen, biochemical oxygen demand, suspended
solids, and ammonia nitrogen [23,24]. The index pro-
posed by Lamontagne and Provencher [25] is widely
recognized and was used by most of the Spanish
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Hydrographic Confederations until the implementation
of the Water Framework Directive.

The index used in this study is not presented as a
solution for this issue but as a tool that incorporates
the main parameters available in the control stations
of the Ebro River. In this research work, we study the
GQI proposed in Ref. [8], which is based on the four
levels of water quality for human consumption set by
Directive 75/440/EEC.

Directive 75/440/EEC subdivides the surface
water intended for the abstraction of drinking water
quality into four categories: A1, A2, A3, and +A3.
These four categories correspond to different water
qualities and are characterized by mandatory values
and guide values. They are directly related to the type
of treatment processes for the purification of water:

(1) Category A1: simple physical treatment
and disinfection, e.g. rapid filtration and
disinfection.

(2) Category A2: normal physical treatment,
chemical treatment and disinfection, e.g. pre-
chlorination, coagulation, flocculation, sedi-
mentation, filtration, and disinfection (final
chlorination).

(3) Category A3: intensive physical and chemical
treatment, refining treatment, and disinfection,
e.g. chlorination to “break point”, coagulation,
flocculation, sedimentation, filtration, refining
(activated carbon), and disinfection (ozone,
final chlorination).

(4) Category +A3: surface water whose physical,
chemical, and microbiological indicators are
below the mandatory limit values for type A3.
This lower quality water could be used as an
exception if suitable processes (including mix-
ing) raised all of the characteristics of water
quality to a level that is consistent with the
quality standards of drinking water.

In Spain, inland water quality monitoring is
performed by a total of nine hydrographic confedera-
tions. These organizations have several essential roles,
including hydrographical planning, resource manage-
ment, public hydraulic domain protection, and dam
security plans. The Ebro Hydrographic Confederation
[26] is in charge of managing surface water and
groundwater in the Ebro basin, which is the largest by
discharge volume in Spain. Among its tasks, the
Confederation protects and controls the water quality
of the river through the Automatic Hydrological
Information System (AHIS).

AHIS comprises a number of stations distributed
in different Spanish basins that measure several

parameters to control the status of the watershed, alert
in case of flood risk, and instantly make known the
availability of water resources. Taking into account
the several legal requirements involving water quality,
we considered the following seven parameters in
our study: temperature, ammonium content, nitrate
content, conductivity, dissolved oxygen, pH, and
turbidity.

The case study considers a strategic location of
Ebro River, El Bocal, which is located after the conflu-
ence of the Aragón and Ebro Rivers and at the begin-
ning of the Imperial Channel of Aragón (an important
irrigation channel). Thus, the quality of the water
measured at this point is directly related to that of the
drinking water of the city of Zaragoza. The drinking
water supply of Zaragoza city is a mixture of 50%
among which is received from the reservoir of Yesa
that comes from the mountains (the Pyrenees) and the
other 50% comes from the Imperial Channel of
Aragón.

We study the variability of water quality using a
GQI based on European Directive 75/440/CEE [8].
Although Directive 2000/60/EC repealed the above-
mentioned European Directive, the purpose of the
study is unaffected because the proposed methodol-
ogy is valid for any index defined for water quality
monitoring. In other words, the aim of this study is to
develop a methodology that is suitable for detecting
abnormal values of any water quality indicator. These
abnormal values (or outliers) could be noisy data or
indicators of abnormal behaviors in the controlled
system, thus representing useful information that may
lead to significant discoveries [27].

Hence, the variability of the Ebro River water
quality is studied in this work through a GQI using
two methods: functional data analysis (FDA) and
Shewhart-type control charts for statistical process
control (SPC).

We have successfully applied FDA to detect
outliers in different environmental studies [27–31],
occasionally demonstrating many and obvious advan-
tages over SPC [32]. Many other works can be found
in the literature in which FDA has been applied in the
following ways with satisfactory results: to determine
the influence of several biotic and abiotic factors on
marine fish species [33], to characterize microbial
communities [34], and to detect air pollution [30].

SPC has its origin in manufacturing processes and
the need to develop a methodology for efficiently con-
trolling product quality. It is a strategy for production
and process optimization that has been commonly
used for decades [35].

SPC is based on the concept of the variation of
a process and its relationship with quality. According
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to Shewhart, understanding the variability of a
monitored process allows for its correction and reduc-
tion [36,37]. The variability of a process can be natural
(random) or non-natural (assignable to a cause). A
process is said to be under statistical control when the
only variability present is natural, unavoidable, and
inherent to the process itself. Conversely, assignable
causes should be detected and eliminated to improve
the process [36,38]. FDA is used here to study any
variation in the quality of the Ebro River and to deter-
mine the causes of such variation.

For details on the FDA and SPC methodologies,
the reader referred to the works of Refs. [39] and [40],
respectively.

2. Methodology

2.1. Study area and available data

The Ebro basin is located in the northeast of the
Iberian Peninsula and is the largest Spanish water-
shed, with a total area of 85,362 km2. It is drained by
the Ebro River, which runs through the peninsula in a
NW–SE direction and flows into the Mediterranean
Sea. The Ebro River is the largest river in Spain (the
second in the Peninsula after the Douro River) and the
second longest river in the Peninsula, after the Tagus
River. Though it is a large river, its flow is irregular;
at the end of the summer, its drought is so intense
that the flow can be a tenth of the medium annual
flow of the river.

To control the state of this watershed, the Ebro
basin has 41 control stations: 20 are in the upper part

of the basin, and 21 are on the lower Ebro River. This
research work focuses on the data collected at El Bocal
station (Fig. 1), which is located on the upper Ebro
River in the municipality of Fontellas (Navarra),
482 km from the river mouth and 79.5 km from the
city of Zaragoza, one of the most important cities in
Spain; Zaragoza’s 682,000 inhabitants in 2013 make it
the 5th most populous city.

The importance of this gage point is its strategic
location; El Bocal is found just after the confluence of
Aragón (the main tributary of the Ebro) and Ebro
Rivers and at the beginning of the Imperial Channel
of Aragón. This channel is one of the most important
hydraulic works in Europe. It was built in the eigh-
teenth century from Fontellas (Navarra) to Fuentes de
Ebro (Zaragoza) with the aim of improving the irriga-
tion of the old Imperial Irrigation Ditch of Aragón.
The new channel conducted water of Ebro River to
Zaragoza and established a transport service for pas-
sengers and goods. Currently, the Ebro Hydrographic
Confederation is in charge of managing this irrigation
and navigation channel.

The database used in this work contains measure-
ments that were taken every 15 min from January to
December 2008 of the following physical and chemical
properties: temperature, ammonium content, nitrate
content, conductivity, dissolved oxygen, pH, and tur-
bidity. This time period includes the months when the
Expo, a world’s fair focused on “Water and Sustain-
able Development”, occurred in Zaragoza.

The complete database is available on the Ebro
Hydrographic Confederation’s website [26] to any
interested user by means of prior registration.

Fig. 1. Location of the Ebro basin and the automatic measurement station 902 El Bocal, the source of the data in this
study.
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2.2. GQI definition and analysis

The calculation procedure for the physical and
chemical classification is the result of applying the
criteria set out in Art. 5 of Directive 75/440/EEC.

The corresponding tables are used to calculate the
compliance with the mandatory values. The indicator
is in accordance with the appropriate quality group,
i.e. A1, A2, or A3, when:

(1) In at least 95% of the samples, the indicator is
consistent with the corresponding value in
Table 1 of the Directive.

(2) For non-compliant samples (the remaining 5%):

(i) The assessed value of the indicator
should not exceed more than 50% of the
limit set value (temperature is excluded
from this limitation).

(ii) There is no danger to public health
resultant.

(iii) Consecutive water samples taken at
statistically suitable intervals do not dif-
fer from the values of the corresponding
indicators.

Indicators that are identified as mandatory may be
excluded from the calculation if the exception is justi-
fied by exceptional weather or geographical reasons.

To measure water quality with a global index, Bea-
monte et al. [8] defined a vector v = (a, b, c, d) called
the “stewardship quality vector”. This vector shows
the number of indicators that belong to a certain level
of quality (A1, A2, A3, +A3) of a total of k indicators:
a for A1 quality, b for A2, c for A3, and d for +A3.

Given two water samples M1 and M2 defined by
v1 = (a1, b1, c1, d1) and v2 = (a2, b2, c2, d2), the quality of
M1 is better than that of M2 if and only if one of these
constraints is true:

(1) d1 < d2;
(2) d1 = d2 and c1 < c2;
(3) d1 = d2, c1 = c2 and b1 < b2.

Thus, the worst quality possible is given by v =
(0, 0, 0, k), and the best is represented by v = (k, 0, 0, 0).

Furthermore, this stewardship quality vector can
be used to define a GQI [8]:

GQI a; b; c; dð Þ ¼ 1

6
s31 þ 3s21 þ 2s1
� �þ 1

2
s22 þ s2
� �þ aþ 1

(1)

where s1 = a + b + c and s2 = a + b. Unlike other
indexes whose values are from 0 to 100, this index

ranges from 1 to ðkþ3Þðkþ2Þðkþ1Þ
6 .

The procedure for calculating the GQI is the
following:

(1) The administrative quality (A1, A2, A3, +A3) of
every measure is calculated, considering the
maximum and minimum allowed values set by
law for each physical and chemical parameter.

(2) Then, the administrative quality of each day is
established with these criteria: if more than
95% of the measurements of the day are quali-
fied as A1, then the day is A1. If not, the per-
centage of A2 measurements is checked; if it is
greater than 95%, the day is qualified as A2. If
not, the same criterion is applied to A3; if none
of the previous conditions is true, the day is
qualified as +A3. This is done for each parame-
ter (temperature, ammonium content, nitrate
content, conductivity, dissolved oxygen, pH,
and turbidity).

(3) Once the daily quality for each property is
known, the daily index GQI is calculated
according to Eq. (1).

This GQI index was analyzed using two methods,
FDA and Shewhart-type control charts for SPC.

2.2.1. Functional data analysis

FDA focuses on observations of a random
continuous process that are taken at discrete points

Table 1
Faulty indexes per month in 2008

Month Days Faulty GQI values Month Days Faulty GQI values

January 31 18 July 31 24
February 29 21 August 31 24
March 31 22 September 30 12
April 30 18 October 31 28
May 31 5 November 30 17
June 30 15 December 31 12
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(functional data). In this methodology, a functional
outlier is defined as a curve generated by a stochastic
process whose distribution differs from that of the rest
of the curves, which are identically distributed
[29,30,34,41,42].

First, a smoothing process is applied with the aim
of transforming the vector problem into a new func-
tional problem. The initial annual data are divided
into 12 subsets of the new functional data, represent-
ing the measurements of each variable per month.

Then, the functional depth concept is applied: in a
Euclidian space, those points closer to the center have
greater depth. In the case of functional analysis, func-
tional depth is a measure of the centrality of a certain
curve within a set of curves or functions. We use the
H-modal depth concept to calculate this functional
depth [42]:

MDn xi; hð Þ ¼
Xn
k¼1

K
kxi � xkk

h

� �
(2)

where xi and xk are the curves of the managed data-
set, h is the bandwidth parameter, and K:R+ → R+

represents a kernel function. According to the results
of the functional depth, outliers are detected: because
outliers are abnormal values, their depth is consider-
ably lower than that of the other curves, which repre-
sent normal, expectable values.

The detection of outliers is based on the Z-score:

zi ¼ xi � xr
rr

(3)

where xi represents the mean value of the observa-
tions at point i, xr is the mean value for all measures
(used as a reference value), and σr represents the refer-
ence standard deviation. Possible outliers have a
Z-score equal to or greater than two, whereas clear
candidate outliers have a Z-score of three or greater
[43].

For further information on FDA, the depth concept
and the Z-score method, the reader referred to
[27,30,39,42,43].

2.2.2. Statistical process control

The second approach to water quality analysis is
Shewhart-type control charts for SPC. In a controlled
process, there is always a certain variability due to
common (or natural) causes or to special (or assign-
able) causes [36]. Though the first are inherent to the
process, the latter are related to causes outside the
process and can be eliminated if they are correctly
identified. If there is only natural variability in a pro-
cess, then it is said to be under statistical control.

SPC is a technique that allows for monitoring, ana-
lyzing, predicting, controlling, and improving the vari-
ability of a certain characteristic using control charts.
Shewhart control charts [36] define an upper control
limit (UCL) and a lower control limit (LCL), and a
process is under statistical control if all points are
between the UCL and LCL. The central line (CL)
represents the mean value of the studied property.
UCL and LCL would represent the tolerance of the
process for a certain target value CL.

Fig. 2. Daily GQI in January 2008.
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The studied quality characteristic is considered to
follow a normal distribution N(μy,σy), and the control
limits can be calculated as follows:

UCL ¼ ly þ k � ry
LCL ¼ ly � k � ry
CL ¼ ly

(4)

where μy is the mean value, σy is the standard devia-
tion, and k is a measure of the tolerance. Warning and

control limits are usually defined; warning limits are
set at a distance of ±2σ from the CL, and control limits
are set at a distance of ±3σ.

To use Shewhart control charts, the samples should
be grouped according to a criterion related to the
cause of the special variation that is under study if the
cause of variation is suspected to be seasonal; for
example, data must be grouped into rational seasonal
subgroups. In the case study, the special causes of
variation in the quality index pattern are expected to
be monthly.

Fig. 3. Daily GQI in February 2008.

Fig. 4. Daily GQI in March 2008.
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There are many types of control charts, and many
rules can be used to interpret them and analyze the
variability of the process, whether the variation is small
or large. Control charts for attributes allow for control-
ling the qualitative characteristics of quality instead of
measurable magnitudes [44], such as the proportion of
defective units. As in the graphs of the variables, the
control of attributes represents a statistical process vs.
time or the number of the selected samples, where the
CL signifies the expected value for the statistical
control limits and defines the rejection region.

In general, there are two groups of control charts
for attributes: one is formed by p and np-type control
charts, which compares the attribute with a standard
and classifies it as defective or not defective, and
another includes c and u-type control graphics and is
used for more complex products where the existence
of a defect does not necessarily invalidate the product.
These types of graphs allow for the classification of a
product according to the number of defects it has.

Usually, the election between using control charts
for variables or for attributes is simple. However, both

Fig. 5. Daily GQI in April 2008.

Fig. 6 Daily GQI in May 2008.
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were analyzed in this case study: in addition to
studying the variables, a control chart for attributes
was used based on the proportion of defective ele-
ments (P-chart). Additional information regarding the
variability of the GQI was then obtained.

The type of control chart for attributes, which moni-
tors the fraction of nonconforming observations (in the
case study, ICQ values under 60), has been widely used
in industry because of its suitability for interpreting
and reducing the sources of variability in manufactur-

ing processes [45]. In fact, other fields such as medicine
are also adopting this methodology for continuous
quality control [37]. Furthermore, P-charts allow for a
later capacity analysis based on the defects detected.

A summarized explanation of the SPC process and
the stages that it includes is presented below [46].
Phase 1 is based on the study of historical data to
determine whether it is under control, and phase 2 is
focused on analyzing sequentially taken observations
to detect changes in a process that is under statistical

Fig. 7. Daily GQI in June 2008.

Fig. 8. Daily GQI in July 2008.
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control. Hence, the aim of phase 1 is to determine the
experimental control limits that determine whether the
process is under statistical control and are used to
control the incipient production. Out-of-control points
are detected and studied to determine the assignable
causes of variation. These points are then deleted from
the sample, and the limits are recalculated; this pro-
cess is repeated until all of the points forming the
sample are under control.

Once the appropriate control limits are set, they
are applied to control charts in phase 2 for the real-
time monitoring of the process. In this stage, different
rules are applied to detect deviations and patterns.
Thus, we can say that phase 1 performs a retrospec-
tive analysis and that phase 2 performs a prospective
analysis of the process.

According to the characteristics and objectives of
the phases of SPC, this research work represents the

Fig. 9. Daily GQI in August 2008.

Fig. 10. Daily GQI in September 2008.

2678 C. Iglesias et al. / Desalination and Water Treatment 57 (2016) 2669–2684



first stage of the process: data are analyzed retrospec-
tively with the aim of identifying abnormal observa-
tions (outliers) and determining their assignable
causes.

3. Results and discussion

Following the methodology described above, we
calculated the corresponding GQI for each day of the
year 2008. Seven parameters are considered, so k = 7

and GQI ranges from 1 to 120. The following figures
show the daily GQI values (Figs. 2–13). It is a stepwise
function that does not fit any of the following distribu-
tions: normal, exponential, lognormal, Weibull, and
extreme value.

Normality and control charts are usually linked,
assuming that the data fit a normal distribution. How-
ever, SPC can be applied to study non-normal data,
regardless of whether we know that it fits some other
distribution or whether its fit is simply unknown [46].

Fig. 11. Daily GQI in October 2008.

Fig. 12. Daily GQI in November 2008.
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In this case, normal theory results could be used to
obtain the probability limits for the control charts.

In the following sections, the variability of the GQI
is studied using a control chart for variables, the
Xbar-S (Fig. 14), and a control chart for attributes, the
P-chart (Fig. 16).

The control charts obtained using the above-men-
tioned methodology are shown in Figs. 14 and 16.
These are standard Shewhart control charts, where the
UCL and LCL were calculated as three-sigma limits,
with an in-control ARL (average run length) equal to
370.4 (a false alarm occurs every 370.4 observations).

Fig. 13. Daily GQI in December 2008.

Fig. 14. Resulting Shewhart-type control chart for 2008’s GQI. The upper graph shows the control chart of the mean val-
ues, and the lower graph shows the control chart of the standard deviations.
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The autocorrelation of data, which is likely to
occur in a time series, has been studied using the par-
tial autocorrelation function of GQI (for further details,
the reader referred to Ref. [47]). No evidence of auto-
correlation was found: according to the graphs
obtained for each month, there is no autocorrelation
for GQI values for intervals greater than one day.

The results obtained using Shewhart-type control
charts (Fig. 14) reflect causes of specific variation that
may be deleted if they are identified in May, July and
October (represented by red dots). It should be noted
that Fig. 14 contains both the control chart for the
mean values and the control chart for the standard

deviations. This simultaneous monitoring is commonly
performed in SPC because it considers not only the
variability of the process but also the variability of the
different rational subgroups [46]. In other words, both
the variability of the process over time and the
instantaneous variability are considered.

When interpreting these outliers, it is important to
note that 2008 was anomalous from the point of view
of the current flow along the Ebro River for three
main reasons:

(1) May 2008 was a month of heavy rains in the
Ebro River Basin: 178 l/m2, compared with the
average of 70 l/m2 for the period 1971–2007
(Fig. 15). This heavy precipitation during the
spring of 2008 explains the high river flows and
therefore the corresponding outlier in May.

(2) From June 14 to September 14, 2008, Zaragoza
held the Expo. The location of the exhibition
complex in the Ranillas Meander, which
passes through Zaragoza, motivated the
maintenance (by artificial means) of higher
than normal flows during the summer months.
This explains the abnormal value in July.

(3) Finally, the outlier in October is justified by the
first rains of autumn (92 l/m2 during the
month of October 2008, compared with 59 l/m2

for the period from 1971 to 2007) after a very
dry summer (59, 25, 21, and 34 l/m2 during the
months of June, July, August, and September,
compared with 49, 35, 39, and 49 l/m2 on aver-
age during the period of 1971–2007) (Fig. 15).

Fig. 15. Average monthly rainfall in the Ebro River Basin
1971–2008. Year 2008. Data: CHE.

Fig. 16. P-Chart of the rational monthly subgroups of GQI in 2008.
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In this case study, we constructed a P-chart with
rational subgroups representing the 12 months of 2008
and a limit value of 60 for the GQI. According to this
limit, any index lower than 60 is classified as faulty.
The results of the application of this limit are shown
in Table 1, and the corresponding control graph is
shown in Fig. 16.

Two outliers can be observed in the P-chart, one in
May and one in October. The reasons explained above
regarding the outliers detected in the Xbar-S control
diagram are equally applicable to the interpretation of
the outliers detected in this P-chart.

For the FDA, in this case study, no functional
outlier was detected. Here, the functional analysis
methodology proved to be inadequate because the
function is stepwise. The detection of outliers using
this methodology provides good results when the
analyzed functions are complex (see [27–30]), but its
application to this GQI is nonsense because of the
characteristics of the function itself.

4. Conclusions

The quality of the Ebro River in 2008 was
evaluated using a GQI by means of two methods: SPC
and FDA.

SPC usually has limited validity when it is used to
study environmental parameters because of the
non-normality of data distribution, the effect of auto-
correlation in time series data, and the greater vari-
ability between rational subgroups than within the
rational subgroups. However, the results of the case
study suggest that SPC could be successfully used for
the study of water quality based on global indicators.
Abnormal values with assignable variability were
found in the measurements taken in Station No. 902 of
the Ebro River in 2008. After eliminating these outliers
and recalculating the control limits, the control charts
could be used for the real-time monitoring of the
defined GQI.

The functional analysis methodology is a novel
approach that allows treating data as a set of continu-
ous measurements with functional outliers as out-
comes and analyzing trends, regardless of abnormal
data that may represent measurement errors (this
method focuses on the analysis of functions rather
than mean values and detects abnormal patterns
rather than abnormal observations). Additionally,
functional analysis presents another advantage in that
a normal distribution of the measurements is not
required. However, this methodology also has some
drawbacks, such as the time series data not being
sufficiently derivable. In the case study, despite vary-

ing the number of basis functions, the method is
unable to fit the analyzed function, and no outlier is
detected. Hence, in this case, FDA is not appropriate
for the detection of outliers because of the type of
functions obtained from the available data, which are
stepwise.
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