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ABSTRACT

For recovering the water quality of a river, it is a key factor to improve purifying capacity
of wastewater in wastewater treatment plants (WTPs). The relational model for some key
parameters of WTP processes is important for it can reveal the current situation and han-
dling ability of the WTP and offer managers more useful information to design the pro-
cesses for the optimized operation. The seasonal artificial neural network (ANN) models
were designed for improving purifying ability of wastewater in a WTP of Harbin, northeast
of China. The ANN models revealed the relationship of raw water quality, energy con-
sumption, and effluent water quality. The effluent water quality could be predicted by the
models. The clustering analysis method, an important data mining method, was used to
classify the WTP data for building seasonal models. Meanwhile, an annual model was built
by the whole data. It indicates that the prediction accuracy of seasonal models is better than
the annual model by contrasting the errors. Seasonal models should be a more effective tool
to reveal the relationship of WTP data. So it can offer managers more precise information to
control and design the processes of WTPs, which result in better purifying ability of
wastewater.

Keywords: ANN model; Clustering analysis; Wastewater treatment plant; Water quality
prediction; Optimization; Seasonal model

1. Introduction

Surface water pollution has been a serious problem
due to rapid industrial development, population
growth, and urbanization in the last decades in China
[1]. It is necessary to set up more wastewater
treatment plants (WTPs) to protect surface water.

However, many WTPs are usually inefficient to handle
wastewater. Though the number and scale of Chinese
WTPs are expanding in recent years [2], rivers have
been polluted by point and non-point pollution
sources due to inefficient operation of WTPs, which
has resulted in ecological destruction [3,4].

For recovering the water quality of river, it is a key
factor to improve the purifying capacity of wastewater
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in WTPs. For improving the purifying capacity,
managers must grasp and accurately design all the
processes of WTPs and make them optimally operate.
The relational model for some key parameters of the
processes is important for optimized operation. It can
reveal the current situation and handling ability of
WTPs and offer managers more useful information to
design the processes for the optimized operation. Con-
trasting with the data of other fields, such as finance
and business, the characteristics of WTPs data are [5]:
(1) larger data; (2) more complicated and nonlinear
relationship; and (3) polytrope and variety. It is diffi-
cult to use static mathematic models based on mecha-
nism analysis to handle the WTPs data with such
characteristics. For stronger learning ability and fault
tolerance, artificial neural network (ANN) is well done
in handling data with complicated and nonlinear rela-
tionships. Furthermore, ANN integrated with data
mining methods can be used to address more compli-
cated problems.

In recent years, ANN has been used to design and
optimize the processes of WTPs. The simulation of exter-
nal carbon addition was studied by a back propagation
neural network (BPNN) model in the continuous flow
anoxic/oxic (A/O) nitrogen removal process for domes-
tic wastewater with low carbon nitrogen (C/N) [6]. An
integrated neural-fuzzy process controller was devel-
oped to control aeration in an Aerated Submerged
Biofilm Wastewater Treatment Process [7]. An adaptive
fuzzy neural network controller was proposed to realize
the control of Dissolved Oxygen (DO) in the activated
sludge model, and to adjust the measured factor so as to
reduce static error [8]. On-line pH and oxidation–reduc-
tion potential monitoring and ANN models were
applied to dynamically control the wastewater chlorina-
tion and dechlorination dosages for reuse purposes [8].
An ANN modeling was applied to predict the perfor-
mance of a laboratory-scale batch-fed reactor in terms of
COD removal and TKN reduction from real-life slaugh-
ter house wastewater as output parameters in correspon-
dence to various input functions of initial concentrations,
microbial concentration, contact time, pH, DO, etc. [9].
An ANN was applied for prediction of performances in
competitive adsorption of phenol and resorcinol from
aqueous solution by conventional and low-cost carbona-
ceous adsorbent materials [10]. These studies indicated
that ANN was a robust tool to design and optimize
many key processes of WTPs.

ANN was also used to predict water quality and
other parameters of WTPs. An ANN model was devel-
oped to estimate daily BOD in the inlet of wastewater
biochemical treatment plants [11]. An ANN approach
and a software sensor were proposed for the real-time
estimation of nutrient concentrations and overcoming

the problem of delayed measurements. In order to
improve the neural network performance, a split net-
work structure applied separately for anaerobic and
aerobic conditions was employed with dynamic
modeling methods such as auto-regressive with
exogenous inputs [12]. The BP ANN model was used
to predict the effluent stream quality at a WTP [13].
Three kinds of ANN models were contrasted to get
the best model to predict the effluent COD concentra-
tion of the WTP [14]. A powerful aeration energy con-
sumption monitor model was set up by BPNN in the
WTP [15]. These researches indicated that ANN
models could predict water quality and other parame-
ters of the WTPs.

In these studies, though ANN model was a robust
tool to predict water quality and other parameters of
WTPs, prediction accuracies of the ANN models were
still not satisfied. Furthermore, the ANN models were
trained directly by the data of whole year (annual
model) even if there were obvious changes in the data
of different seasons. So they should be called the
annual models. In fact, detailed seasonal strategies are
necessary for wastewater treatment because many
characteristics of wastewater always change season-
ally. Seasonal ANN models can offer managers more
detailed management strategies in each period result-
ing in better purifying capacity of wastewater in
WTPs. Seasonal models are trained by corresponding
seasonal data, which are relatively concentrated and
less fluctuant resulting in small uncertainty. The
model with small uncertainty usually has a good
structure and prediction performance. So the predic-
tion accuracy of seasonal model should be better than
the annual model. However, seasonal ANN modeling
has seldom been used in WTPs. Data mining, an inter-
disciplinary subfield of computer science [16,17], is the
computational process of discovering patterns in large
data-sets involving methods at the intersection of arti-
ficial intelligence, machine learning, statistics, and
database systems. The overall goal of the data mining
process is to extract information from a data-set and
transform it into an understandable structure for fur-
ther use [16]. It can help us to understand many scien-
tific problems by preprocessing and analysis of raw
data. Data mining is also seldom used in optimizing
in ANN models.

In this paper, seasonal ANN models were built for
improving purifying ability of wastewater in a WTP
of Harbin, northeast of China. The ANN models
revealed the relationship of raw water quality, energy
consumption, and effluent water quality. The effluent
water quality could be predicted by the models.
Furthermore, data mining method was applied to
improve prediction accuracy of the models. All the
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data were analyzed and classified by clustering analy-
sis method, an important data mining method. Firstly,
an annual model was built by the whole data.
Secondly, the whole data was classified into several
classes by clustering analysis method based on sea-
sonal characteristics of the data. Seasonal models were
built, respectively, by the classified data-sets. The pre-
diction accuracies of the seasonal model and annual
model were contrasted to verify the superiority of the
seasonal model. Seasonal ANN model should be a
useful tool for improving purifying ability of wastewa-
ter because effective relational model was used to pre-
dict effluent water quality and control energy
consumption.

2. Materials and methods

2.1. Data analysis

The studied data were collected from a WTP in
Harbin City, Heilongjiang Province, China from 2009
to 2011. The consumption of electricity and reagent
reflect the cost of purifying wastewater. Therefore,
besides raw wastewater and effluent water, energy
consumption (electricity and reagent) was studied.
The relational model of these data can help managers
to operate the WTP optimally based on energy-saving
mechanism. The WTP is located in northeast China
and local climate has distinct seasonal variations. The
difference of average water temperature between sum-
mer and winter exceeds 30˚C, so raw wastewater and
other parameters of the WTP have obvious seasonal
characteristics. For exploring seasonal characteristics
of the data, two ways were discussed: (1) the annual
difference among three years; and (2) the seasonal dif-
ference in one year. Three statistical analysis methods,
including range, mean, and standard deviation, were
used to identify the differences of data among months
or years. In statistics and probability theory, the stan-
dard deviation (SD) (represented by the Greek letter
sigma, σ) measures the amount of variation or disper-
sion from the average [18].

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

ðxi � lÞ2
vuut (1)

where

l ¼ 1

N

XN
i¼1

xi (2)

A low standard deviation indicates that the data
points tend to be very close to the mean (also called
expected value); a high standard deviation indicates
that the data points are spread out over a large range
of values.

2.2. Clustering analysis method

2.2.1. Clustering analysis

Clustering analysis method is an important
method of data mining [19–22]. Variables are classified
based on their similarity by hierarchical cluster
method. The weights of correlation among the param-
eters are obtained by the clustering procedures. In
clustering analysis method, grouping objects (cases)
are divided into several classes (clustering) so that the
objects exhibit high internal (within-clustering) homo-
geneity and high external (between clustering) hetero-
geneity. The objects are grouped by linking
intersample similarities and the outcome illustrates the
overall similarity of variables in the data-set [23]. Hier-
archical agglomerative clustering analysis was carried
out on the normalized data by Ward’s method, an
extremely powerful grouping mechanism, which
yields a larger proportion of correct classified observa-
tions [24], using squared Euclidean distances as a
measure of similarity [23–26]. The distance is com-
puted as:

D x; yð Þ ¼
X
i

xi � yið Þ2 (3)

where D is the distances between x and y, x and y are
two variables in the variable space, and i is the ith
component of x or y.

2.2.2. Classifying WTP data based on clustering
analysis

For building seasonal model, the WTP data must
be classified based on seasonal characteristics. Cluster-
ing analysis method was used to classify the data, and
the results are an important evidence to divide each
period. The data, including raw water quality, effluent
water quality, and energy consumption parameters,
were taken as clustering objects. Since the differences
of data among months were studied by statistical anal-
ysis methods, the monthly raw data of three years
were taken as initial classes. The clustering analysis
was carried out by the software of SPSS. The cluster-
ing results, including clustering schedule and cluster-
ing dendrogram, were given to show the clustering
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sequence and homogeneous classes. The data in
homogeneous classes were used to build seasonal
ANN models.

2.3. ANN modeling

In computer science and related fields, ANNs are
computational models inspired by an animal’s central
nervous systems, in particular, the brain which is capa-
ble of machine learning as well as pattern recognition.
ANNs are generally presented as systems of intercon-
nected neurons which can compute values from
inputs. ANN models are built by the way of learning
from data. ANNs have been used to solve a wide vari-
ety of tasks that are hard to solve using ordinary rule-
based programming. Therefore, the networks are
applicable to a dynamic and unstable wastewater treat-
ment system. ANN models were built to predict efflu-
ent water quality of a WTP by MATLAB.

2.3.1. BPNN and learning algorithm

The back propagation (BP) is the most widely used
algorithm in ANN. BP, an abbreviation for “backward
propagation of errors,” is a common method of train-
ing ANNs used in conjunction with an optimization
method such as gradient descent. The method calcu-
lates the gradient of a loss function with respect to all
the weights in the network. The gradient is fed to the
optimization method which in turn uses it to update
the weights, in an attempt to minimize the loss func-
tion [27]. The convergence of BP with the common
algorithm is linear and slow during training. In order
to improve the disadvantages and decrease error,
some algorithms have been proposed and applied
[28]. Among the improving algorithms, the adaptive
learning rate algorithm brings a better accuracy and
can accelerate convergence of the model. So BP model
and adaptive learning rate algorithm were used to
build the ANN models.

2.3.2. Input and output variables

In the ANN models, the output of the model is the
effluent water quality of the WTP and the inputs are
raw water quality and energy consumption parameters.
According to the comprehensive analysis of available
data, the outputs were identified as Total Phosphorus
(TP), Biochemical Oxygen Demand (BOD), Chemical
Oxygen Demand (COD), Suspended Solids (SS), and
NH3-N of the effluent water. The input variables
included seven raw wastewater and three energy con-
sumption parameters. Raw wastewater parameters

were TP, BOD, COD, SS, NH3-N, pH, and SS, and
energy consumption parameters were electricity con-
sumption, coagulant, and flocculants. Early stopping
method was used to improve generalization ability of
the network, so the data were divided into a training
set, a validation set, and a test set.

2.3.3. ANN parameter selection

The basic structure of an ANN model is usually
comprised of three distinctive layers, the input layer,
where the data are introduced to the model and com-
putation of the weighted sum of the input is per-
formed, the hidden layer or layers, where data are
processed, and the output layer, where the results of

Fig. 1. The parameter design of clustering analysis by SPSS.

Table 2
Clustering schedule of the raw WTP data in different
months

Initial classes (Month) Clustering classes

Case 1 1
Case 2 1
Case 3 1
Case 4 1
Case 5 2
Case 6 1
Case 7 3
Case 8 3
Case 9 3
Case 10 4
Case 11 4
Case 12 1

3458 Y. Zhao et al. / Desalination and Water Treatment 57 (2016) 3452–3465



ANN are produced [28]. Complex neural network
forecast model is susceptible to bad training and
might harm the performance of the network. It has
been proved that BP neural network model with a sin-
gle-hidden layer could approach any nonlinear func-
tions with limited points of discontinuity with any
accuracy, if there were enough neurons in the hidden
layer [29]. Therefore, the BP model with a hidden
layer was chosen in this study. Although the
literatures report several methods for determining the

number of neurons in a hidden layer, they are purely
empirical and cannot be generalized. Thus, the
number of neurons in the hidden layer was chosen
from 11 to 20 by summarizing a lot of literatures
[30–32], and hyperbolic tansig or logsig sigmoid func-
tions were chosen as the neuron transfer function in
the hidden layer. Trial and error method is used to
find the best structure of the model.

The transfer function in the last layer can greatly
influence the output characteristic of the whole neural
network. Sigmoid function in the output layer requires
the estimated output converted back to the real world
using the same sigmoid function. However, linear
function estimates the output in the range from nega-
tive infinity to positive infinity, which avoids remap-
ping of the outputs [33–35]. Therefore, a linear
function was chosen as the transfer function for the
neurons in the output layer.

2.3.4. The improvement of the network generalization
ability

The generalization ability is an important factor to
evaluate the performance of an ANN model [36]. Early

Fig. 2. Clustering dendrogram of the raw WTP data in different months.

Fig. 3. The structure drawing and parameter design of a
BP network model.

Table 3
Classified results of raw WTP data

Class Month

First January–April, December
Second May–June
Third July–September
Fourth October–November
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stopping method was used to improve the generaliza-
tion ability of the network. The data were divided into
a training set, a validation set, and a test set in the
early stopping method. The training set was used to
train the neural network. The validation set was used
to supervise the error of the training set. In the begin-
ning of training, the validation error of the validation
set usually decreased with the drop in training error.
But when the network was excessively trained, the val-
idation error would increase gradually even if the
training error was decreasing. Network training would
be stopped at this time, and the network with the mini-
mum validation error was the best model. Finally, the
test set was used to validate the model.

3. Results and discussion

3.1. Data analysis result

The raw monthly data in the WTP were analyzed
before the application for clustering analysis method
and modeling, using range, mean, and standard devia-
tion. The analysis results showed little difference
among years for each parameter. And there were obvi-
ous differences among seasonal periods for most of
the parameters. The monthly WTP data are given in
Table 1, including raw water quality, effluent water
quality, and energy consumption parameters. Table 1
showed that the monthly data in one seasonal period
were similar, which indicated that seasonal ANN

Table 4
Training results of the annual ANN model

The neuron transfer function in the
hidden layer

The number of neurons in the
hidden layer

Training
error

Validation
error

The actual times of the
training

TANSIG 10 0.0528 0.050664 1,656
11 0.0536 0.048032 1,633
12 0.0527 0.051408 1,627
13 0.0532 0.048065 1,627
14 0.0534 0.052703 1,590
15 0.0529 0.051611 1,589
16 0.0535 0.048603 1,607
17 0.052 0.052232 1,606
18 0.053 0.052936 1,561
19 0.0513 0.051705 1,580
20 0.0539 0.049342 1,539

LOGSIG 10 0.114 0.10965 235
11 0.0534 0.05798 1,797
12 0.12 0.11498 174
13 0.112 0.10659 167
14 0.115 0.11595 169
15 0.0549 0.057379 1,727
16 0.115 0.11275 175
17 0.055 0.051032 1,725
18 0.0548 0.052379 1,816
19 0.0563 0.051934 1,732
20 0.113 0.10322 169

Table 5
The optimized seasonal ANN models

Seasonal ANN
modela

The number of neurons in the
hidden layer

The neuron transfer function in the
hidden layer

Training
error

Validation
error

1 19 TANSIG 0.071 0.0812
2 16 TANSIG 0.066 0.0712
3 14 TANSIG 0.1064 0.1219
4 15 TANSIG 0.0677 0.099

aThe first seasonal model is used in January–April, December; the second seasonal model is used in May and June; the third seasonal

model is used in July–September; the fourth seasonal model is used in October and November.
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models were necessary for effective management of
the WTP.

3.2. Clustering analysis result

The monthly data of Table 1 were taken as initial
classes in clustering analysis method, which formed
12 initial classes. The clustering analysis was
implemented by the software of SPSS (Fig. 1). The
clustering schedule and dendrogram are shown in
Table 2 and Fig. 2.

Table 2 indicated that the data could be divided
into three classes according to their similarity. Janu-
ary–June and December were the first class; the
second class contained July–September; October and
November formed the third class. Considering there

was too much monthly data in the first class, further
classification was done for the first class in Fig. 3. It
indicated that December data had a close relation with
the months from January to April for the early cluster-
ing of them. Relatively, the correlation between the
data of May, June, and other months was weak in this
class, so they were taken out from the first class. Thus,
the raw WTP data are divided into four classes as
shown in Table 3.

The WTP is located in the city of Harbin, north-
eastern China. Winter of Harbin is from December to
February. Summer lasts from June to August. While
spring is from March to May, September–November
comes into autumn [37,38]. Contrasting the classified
results and seasonal change of Harbin, the classified
results obtained by the clustering analysis method

Fig. 4. The comparison curves of prediction values and measured values of seasonal models: (a) the first seasonal model,
(b) the second seasonal model, (c) the third seasonal model, and (d) the fourth seasonal model.
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were basically consistent with the local seasonal
variation.

3.3. Annual ANN model and seasonal ANN model

For offering managers more robust tools to
improve purifying ability of wastewater, four seasonal
ANN models were built to predict the WTP effluent
water quality based on the above-classified data of
Table 3. At the same time, the annual model was built
by the whole data for comparing the prediction accu-
racies of the seasonal models and annual model. The
structure drawing and parameter design of a BP net-
work model are shown as an example in Fig. 3. The
annual model was trained with the whole data from
2009 to 2010 and the training results are shown in
Table 4.

Contrasting the errors, the model with the mini-
mum error is the optimized annual model. The neuron
number of the hidden layer is 19, the transfer function
of the hidden layer is TANSIG, the training error is
0.0513, and the validation error is 0.051705 in the opti-
mized annual model. Most of the training times were
less than 2,000 times in Table 4, which were the tar-
geted training times. It showed that overtraining
appeared before they met the targeted training times.
The models were overtrained earlier resulting in
bigger errors, while the models with more training
times had lower errors. Thus, the study of preventing
overtraining and extending training times is important
for better modeling.

Four seasonal ANN models were built, respec-
tively, and the optimized seasonal models were
selected in a similar manner as shown above (Table 5).

3.4. Prediction accuracy of the two models

The prediction accuracies of the seasonal models
and the annual model were contrasted to verify the
superiority of the seasonal models. The test set of
each seasonal model contained the first three day’s
data of the months in corresponding class, if there
was no valid value on some day, the next day’s
value would be selected. The four test sets were,
respectively, used to verify the prediction perfor-
mance of the seasonal models. The comparison
curves of prediction values and measured values of
the seasonal models and the annual model are,
respectively, shown in Figs. 4 and 5.

The prediction errors of the seasonal models are
calculated, respectively, in Table 6, including maxi-
mum error, minimum error, and average error. At the
same time, the prediction error of the annual model
was also calculated in each seasonal period (class) and
as shown in Table 6. The prediction errors of the
annual model and seasonal models were contrasted to
verify the superiority of the seasonal models.

In general, the errors between the prediction values
and measured values of each parameter were small. It
indicated that the ANN model was a robust tool to sim-
ulate and predict effluent water quality of the WTP.

Fig. 5. The comparison curves of prediction values and measured values of the annual model.
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Contrasting the population mean of errors, including
maximum error, minimum error, and average error,
most population means of the seasonal models were
smaller than the annual model. It indicated that the pre-
diction accuracy of seasonal models was better than the
annual model. Seasonal models should be a more effec-
tive tool to reveal the relationship of raw water quality,
energy consumption, and effluent water quality. So it
can offer managers more precise information to control
and design the processes of the WTP, which result in
better purifying ability of wastewater.

4. Conclusions

The raw monthly data in the WTP were analyzed
before the application for clustering analysis method
and modeling, using range, mean, and standard devia-
tion. The analysis results showed little difference
among years for each parameter. And there were
obvious differences among seasonal periods for most

of the parameters. The differences are related to the
local climate of the WTP. Furthermore, it showed that
the monthly data in one seasonal period were similar,
which indicated that seasonal ANN models were nec-
essary for effective management of the WTP.

For building seasonal models, the WTP data must
be classified based on seasonal characteristics of the
data. Clustering analysis method was used to classify
the data and the raw WTP data were divided into four
classes. Contrasting the classified results and seasonal
change of local climate, the classified results obtained
by the clustering analysis method were basically con-
sistent with the local seasonal variation.

The prediction error analysis indicated that the
ANN model was a robust tool to simulate and predict
effluent water quality of the WTP. Contrasting the pop-
ulation mean of errors, it indicated that the prediction
accuracy of seasonal models was better than the annual
model. Seasonal models should be a more effective tool
to reveal the relationship of raw water quality, energy

Table 6
Prediction errors of the annual model and seasonal models

Effluent water quality
parameter

Maximum error Minimum error Average error

Annual
model

Seasonal
model

Annual
model

Seasonal
model

Annual
model

Seasonal
model

(a) The first seasonal period
TP 0.022551 0.02252 0.000282 0.0000661 0.009509 0.007539
Ammonia nitrogen 8.558185 9.053197 0.00549 0.003307 0.317877 0.207683
BOD 0.224012 0.211148 0.000545 0.000671 0.04992 0.059146
COD 0.327459 0.285498 0.000504 0.000169 0.067106 0.054403
SS 0.238789 0.243038 0.002086 0.001298 0.069704 0.07315
Population mean 1.874199 1.96308 0.001781 0.0011 0.1028232 0.0723842
(b) The second seasonal period
TP 0.032197 0.034499 0.000238 0.000523 0.011991 0.011087
Ammonia nitrogen 5.996028 3.798688 0.008183 0.000833 0.74389 0.52463
BOD 0.265947 0.178537 0.006086 0.001624 0.102611 0.080304
COD 0.174997 0.129994 0.006342 0.000169 0.05392 0.042818
SS 2.985375 0.316323 1.669129 0.020298 2.154099 0.082313
Population mean 1.8909088 0.8916082 0.3379956 0.0046894 0.6133022 0.1482304
(c) The third seasonal period
TP 0.0605692 0.056999 0.0000304 0.000824 0.0134451 0.008298
Ammonia nitrogen 0.7819429 0.725893 0.0169381 0.023996 0.3023342 0.116302
BOD 0.3275406 0.28498 0.008669 0.0000613 0.0676843 0.070251
COD 0.298975 0.253782 0.0005557 0.002417 0.0562858 0.034659
SS 0.2883168 0.241647 0.0045567 0.002651 0.0853155 0.046777
Population mean 0.3514689 0.3126602 0.00615 0.0059899 0.105013 0.0532574
(d) The fourth seasonal period
TP 0.061606 0.034899 0.001174 0.004661 0.01348 0.007373
Ammonia nitrogen 0.89073 1.521605 0.008541 0.000417 0.223996 0.151507
BOD 0.311973 0.190663 0.009653 0.006834 0.063533 0.036066
COD 0.315435 0.122256 0.003643 0.005838 0.057136 0.049995
SS 0.251841 0.312979 0.002963 0.001835 0.090115 0.103536
Population mean 0.366317 0.4364804 0.0051948 0.003917 0.089652 0.0656954
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consumption, and effluent water quality. So it can offer
managers more precise information to control and
design the processes of the WTP, which result in better
purifying ability of wastewater.
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