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ABSTRACT

A three-layered feed-forward artificial neural network (ANN) model has been designed to
predict the adsorption efficiency and adsorption capacity for the adsorptive removal of
chromium (VI) from synthetic wastewater. The adsorbent dose, wastewater pH, initial
pollutant concentration and contact time were used to develop the network. The data used
to train and test the model were obtained from several batch experiments. Various
algorithms and transfer functions for hidden layer were tested to find the most reliable
network. Broyden–Fletcher–Goldfarb–Shanno (BFGS) quasi-Newton backpropagation algo-
rithm gave the most satisfactory results for adsorption efficiency. Resilient and BFGS
quasi-Newton backpropagation were the most suitable algorithm for adsorption capacity.
The best combination of training algorithm and transfer function for adsorption efficiency
was found to be trainrp and poslin, while poslin produced simulated results within 10%
deviation for adsorption capacity. Eight to eleven neurons were found to be optimum using
trial-and-error method. The ANN predicted and experimentally measured values were
compared to test the accuracy of the model.
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1. Introduction

Great efforts have been made in recent years to
develop suitable technologies for efficient removal of
chromium (VI) from wastewater which is reported to
be one of the top 16 toxic pollutants to date [1]. Adsorp-
tion, due to its operational easiness, design simplicity,
cost-effectiveness and robustness [2], has been studied
extensively over other contemporary techniques such

as precipitation, coagulation, flocculation, ion exchange,
photocatalytic degradation, solvent extraction, mem-
brane separation, biological processes, sonochemical
degradation and integrated treatment for the removal
of chromium (VI) from wastewater. Nevertheless,
adsorptive removal of chromium (VI) from wastewater
can further be upgraded through automation, since
automation of wastewater treatment processes is essen-
tial to make their operation easier, saving manpower
and energy [3]. However, the development of an
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automated wastewater treatment plant is very difficult
as the parameters of industrial effluents change
severely thus leading to drastic change in output of
treatment plant. Particularly, talking about adsorption,
its dynamic characteristics are very complicated [4].

This complication leads to poor interpretation and
quantification of interactions between process inputs
and outputs and thus it becomes arduous to describe
non-linear behaviours of a wastewater treatment plant
through linear mathematical models [5,6]. Therefore, a
computer-simulated model is required for interrelating
the input and output parameters. The conventional
analysis using regression technique is not suitable for
adsorption experimental data since the technique fails
to understand the physics of the system [7]. Recently,
response surface methodology has also been imple-
mented to model numerous processes in chemical,
environmental and bioresource engineering; however,
artificial neural network (ANN) has proven to be a
superior and more accurate modelling technique [8].
Neural network-based models provide a better alterna-
tive to statistical models because of their computational
efficiency, generalization ability and capability to han-
dle data having high dimensionality [9]. More specifi-
cally, the ANN model gives better results for predicting
results from adsorption database [10], describe adsorp-
tion systems better than general rate models [11] and
even represent the adsorption isotherms [12]. Thus,
ANN can be used efficiently to develop the model
which can be coupled with model predictive control
system for automotive or online monitoring of effluent
treatment plant containing toxic pollutants.

ANNs have been implemented for modelling
water treatment processes such as ultrafiltration,
anaerobic biological treatment, activated sludge pro-
cess, chlorination, advanced oxidation process, coagu-
lation, flocculation and sedimentation commonly used
in effluent treatment industries. They are also used to
predict optimal alum doses, water-quality index, bio-
chemical oxygen demand, chemical oxygen demand,
colour, biological oxygen demand, suspended solids,
removal of phosphorus, phenolic compounds, etc.
However, there is no model using ANNs aimed at
predicting chromium (VI) removal from wastewater
using adsorption onto powdered activated carbon.
Hence, the aim of this manuscript is to present the
design; execution and assessment of ANN approach
towards the treatment of highly polluted effluents con-
taining chromium (VI). The detailed objectives of this
paper are: to develop ANN models that are capable of
predicting adsorption capacity and adsorption effi-
ciency for removal of chromium (VI) from aqueous
solution; and to implement the ANN models so that
they can be used efficiently for automation of

chromium (VI)-containing effluent treatment plant and
thus can be used easily by operators of such plants.

2. Experimental section

2.1. Materials

Resources mainly required to perform the experi-
ments included powdered activated carbon as adsor-
bent and chemical reagents to prepare synthetic
wastewater solution. The powdered activated carbon
(CAS No. 1440-44-0) chosen as adsorbent in this study
was procured from Merck, India. Various characteris-
tics and properties of this activated carbon as provided
by the manufacturer are: molar mass 12.01 g/mol; melt-
ing point 3,550˚C; bulk density 150–440 kg/m3; and
methylene blue adsorption ≥80 mg/g. This adsorbent
also contained chloride ≤0.2%; sulphate ≤0.2%; heavy
metals ≤0.005%; iron ≤0.1%; substances soluble in water
≤1%; and substances soluble in hydrochloric acid (HCl)
≤3%. Chemicals required in preparing synthetic
wastewater and related experimental works comprised
of potassium dichromate (K2Cr2O7), sulphuric acid
(H2SO4), 1, 5-diphinylcarbazide (DPC), HCl, sodium
hydroxide (NaOH) and acetone (C3H6O). All these
chemicals purchased from Merck, India were of
analytical reagent grade and used without further
purification.

2.2. Simulated wastewater preparation

Chromium-containing wastewater for laboratory-
scale experiments is prepared through mixing a chem-
ical compound having the desired oxidation state of
the metal under consideration in the distilled water. A
reserve wastewater feed containing chromium (VI)
1,000 mg/L was prepared by dissolving the necessary
amount of K2Cr2O7 in distilled water. The stock solu-
tion was diluted as required to obtain solutions of
concentrations ranging between 10 and 250 mg/L. The
pH levels of wastewater were adjusted by adding nec-
essary quantity of HCl and NaOH. The ultrapure
deionized water (18.2 MΩ cm resistivity at 25˚C and
<4 ppb total organic carbon) used in this study was
obtained from Arium 611DI ultrapure water system
(Sartorius A.G., Gottingen, Germany). The feed to this
Arium 611DI water purification system was taken
from usual laboratory distillation unit.

2.3. Experimental procedure

The effects of process parameters such as pH, initial
chromium (VI) concentration, contact time, activated
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carbon dose and temperature on the adsorption
efficiency and adsorption capacity were evaluated
using the batch experiments carried out with six differ-
ent concentrations of chromium (20, 50, 100, 150, 200
and 250 ppm), different adsorbent dosage (0.5–2.0 g/L),
six different temperatures (5, 10, 25, 30, 40˚C), pH levels
(1.5–8) and contact time intervals (0–110 min). The solu-
tions were stirred using laboratory-scale magnetic stir-
rer in covered beakers which worked as adsorbers.
Samples during the adsorption experiment were col-
lected with time and concentrations of chromium (VI)
were measured. Significant pH drift was studied by
measuring pH at initiation and termination level of
each experimental run. This magnetic stirrer apparatus
operates on 220/230 V AC. The temperature of the
solution was maintained using a constant temperature
water bath. The speed of the stirrer was maintained at
150 rpm. The slurries were filtered through Whatman
filter papers and the equilibrium concentrations were
determined by Hitachi dual beam a UV–visible spectro-
photometer.

2.4. ANN modelling

ANN is a technique animated by the design of bio-
logical nervous systems whose ith neuron has input
value xi, output value yi= f (xi) and connections with
the other neurons are expressed by weights wij [9].
Advantages of ANN model over traditional mathe-
matical models include: inessential complex mecha-
nism of the process, lesser simulation time for model
development and less-extensive experimentation

[13,14]. The ANN network configuration consists of
three layers, namely input layer, hidden layer and out-
put layer. The input layer collects the input variables,
processes it to the hidden layer and the output layer
delivers the ANN-predicted response. Each layer has
a number of nodes called neurons connected together
by a communication line called connection. Each
neuron takes many input signals and based on an
assigned weight value, produces a single output sig-
nal, which is typically sent as input to another neuron
[15]. The nodes of the hidden layer enhance the ability
of ANN to model complex relationships [16]. The
number of hidden nodes depends on the number of
training patterns, the amount of data noise and the
complexity of the function that ANN is approximating
[17]. The three layers considered in this work are
shown in Fig. 1. The input variables selected to
develop the model are batch time, pH of the solution,
initial solute concentration and adsorbent dose,
whereas adsorption efficiency and adsorption capacity
are the output variables.

The majority of the ANN applications involve the
utilization of feed-forward (FF) and backpropagation
(BP) method to train the neural networks [18,19]. The
performance of the FF is considered to be superior to
conventional statistical and stochastic methods [20,21]
and BP is contemplated as the most effective algo-
rithm for adjusting the weights of a multi-layered neu-
ral network [22]. In this study also, ANN model has
been calibrated using FF-BP method. Six BP algo-
rithms were compared to select the best-fitting BP
algorithm for the gathered data. For all algorithms,

Fig. 1. Schematic diagram of ANN model with four inputs and one output layer.
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different transfer functions, namely tansig, satlin and
poslin at the hidden layer and purelin transfer func-
tion at the output layer, were used. The mathematical
explanations of different transfer functions used are
given in Table 1. The learning rate of the network was
adjusted so that training time was minimized. MAT-
LAB 7 (The MathWorks, Inc) was used to develop
these ANN models.

3. Results and discussion

3.1. Selection of adsorbent

There are numerous activated carbons derived
from agricultural, industrial and municipal wastes
which have been utilized by researchers to study
adsorptive removal of chromium (VI) from wastewa-
ter. Mohan and Pittman Jr. [23] presented a state of
the art review on remediation of chromium (VI) from
water using activated carbons prepared from precur-
sors such as rice bran, saw dust, coir pith, soybean
hulls, sugarcane bagasse, corn stover, saltbush,
groundnut shell, walnut shell, almond shell, Terminalia
arjuna nuts, natural organic wastes, sludge, industrial
wastes, hazelnut shell, T. indica seed, A. flavus, etc.
Though these activated carbons are of low cost and
renewable, however, the greatest problem with these
precursors is their unavailability in the global market
and inability to meet the commercial demand due to
huge consumption of activated carbons; hence, indus-
tries have to depend on the commercial activated car-
bons [24]. Since the aim of this paper is to construct
ANN model for the development of automated chro-
mium (VI)-containing wastewater treatment plant for
which high-removal efficiency and adsorption capacity
is sought, hence commercial activated carbon was cho-
sen for the experimental runs. Various authors have

reported efficient performance of commercial activated
carbons for the removal of chromium (VI) from
wastewater [25–27].

3.2. Selection of input parameters

Selection of input variables from a number of
parameters that affect the process is a significant seg-
ment for configuration and performance of neural net-
work though the selection method may be extremely
protracted [28]. The inputs should be selected in such a
careful manner that they reflect the fundamental of the
process and the model developed from them should
represent the whole ranges of operating conditions
consistently [29]. Batch adsorption experiments were
carried out to select various significant factors influenc-
ing the adsorptive removal of chromium (VI) from
simulated wastewater. Effects of various parameters on
the removal of chromium (VI) from wastewater over
powdered activated carbon have been studied in our
previous work [24]. It was observed that the adsorption
was favourable at acidic condition and adsorption
capacity decreased with increasing pH. The removal of
chromium (VI) increased with increasing adsorbent
concentration and the adsorption capacity increased
with increasing initial chromium (VI) concentration
and as the contact time increased, the rate of adsorption
decreased. However, the effect of temperature was not
prominent. Hence, the network has been modelled
considering four input parameters viz. pH of wastewa-
ter, adsorbent dose, initial chromium (VI) concentration
and contact time, whereas the adsorption capacity and
adsorption efficiency is an output parameter of the
ANN model. The use of simpler models with fewer
numbers of parameters is usually preferable to those
with more parameters whenever feasible [30]. Experi-
mental data-set at different operating conditions were
used to train and test the neural network model.
The ranges of different operating parameters are given
in Table 2. It is worth mentioning that the ranges

Table 1
Mathematical expressions of the transfer functions used
for the hidden layer

Transfer functions Mathematical expression

purelin purelin (n) = n, for all n
tansig tansig (n) = 2(1 + exp(−2n)) − 1
satlin satlin (n) = 0, if n ≤ 0

= n, if 0 ≤ n ≤ 1
= 1, if 1 ≤ n

poslin poslin (n) = n, if n ≥ 0
= 0, if n ≤ 0

logsig logsig (n) = 1(1 + exp(−n))
n is any variable

Table 2
Ranges of different operating parameters used for experi-
mental run

Input parameters Range of parameter value

pH 2–8
PAC dose (mg/L) 0.5–2
Initial Cr(VI) concentration

(mg/L)
50–250

Time (min) 0–110
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considered for the four variables under investigations
were chosen based on the available literature as well
as the experiments previously performed by the
authors.

3.3. Optimization of neural networks

The optimum design of a neural network is central
for its perfect and effective application. There are sev-
eral parameters such as network type, network archi-
tecture, training algorithms, activation functions, input
selection, neural network weight, momentum rate,

number of iterations and data-set partitioning ratio
which influence the ANN model [28]. However, all
algorithms and transfer functions may not be applica-
ble for all the processes. Selecting an appropriate
training algorithm, transfer function and number of
neuron in all layers are very sensitive parameters for
network design as they have a significant impact in
network training performance, training time and its
generalization abilities. Training of the neural net-
works is sensitive to the number of neurons in the
hidden layer. The more the number of neurons, the
better is the performance of the neural network in

Table 3
Trial-and-error results for development of adsorption efficiency ANN model

Algorithm Function

Hidden layer
transfer
function

Output layer
transfer
function

Correlation
coefficient Remark

Conjugate gradient backpropagation with
Polak–Ribiere updates

traincgp tansig purelin Too low Arbitrary
results

satlin Too low Arbitrary
results

poslin Too low Arbitrary
results

Levenberg Marquardt backpropagation trainlm tansig purelin Too low Arbitrary
results

satlin Too low Arbitrary
results

poslin Too low Arbitrary
results

Gradient descent with momentum and
adaptive learning rate backpropagation

traingdx tansig purelin Too low Arbitrary
results

satlin Too low Arbitrary
results

poslin Too low Arbitrary
results

Resilient backpropagation trainrp tansig purelin 0.82 Unsatisfactory
results

satlin Too low Arbitrary
results

poslin 0.78 Unsatisfactory
results

BFGS quasi-Newton backpropagation trainbfg tansig purelin Too low Arbitrary
results

satlin Too low Arbitrary
results

poslin 0.96 Satisfactory
results

Scaled conjugate gradient backpropagation trainscg tansig purelin 0.79 Unsatisfactory
results

satlin Too low Arbitrary
results

poslin Too low Arbitrary
results
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fitting the data. However, it must be taken into
account that presence of numerous neurons in the hid-
den layer may be the cause for over-fitting [31] which
may lead to the loss of generalization capability of net-
work, besides, small number of neurons in hidden
layer may under fit the data, and subsequently the
network may not be able to learn. Thus, if the model
does not comply with the experimental results, then
the output value from water treatment plant will be
haphazard and it will be difficult to control the plant.
Trial-and-error method was followed to find the most
suitable network model, the optimum number of hid-
den layers and the optimum number of neurons in the
hidden layer [32]. The maximum number of hidden
layers considered was one. Inclusion of more hidden
layer will increase the complexity of the system and
consequently the time and cost of simulation.
Researchers have proved that a network with one hid-
den layer can approximate any continuous function if
degrees of freedom are sufficiently provided [33]. To
reach the suitable network architecture, several trials
for each group have been conducted until the suitable
learning rate, number of hidden layers and number of
neurons per each hidden layer was reached. The suit-
able architecture is the one which produced the mini-
mal error term in both training and testing data. The
performance of each network model is evaluated by
computing the MSE for each trial conducted in search
of the suitable architecture. It has been found that FF
network and 8–11 neurons produce minimum value of
MSE, so all models were designed and tested with 10
neurons. Simulated data was comparatively studied
with one low, one medium and one in high-value
range experimental points to test and validate the
network model.

3.4. Adsorption efficiency model

Adsorption efficiency refers to the performance of
adsorption process in removing the pollutant under
consideration for a given set of operating parameters.
It may also be termed as removal efficiency. Our pre-
vious experiments found that under optimum condi-
tions of wastewater pH, adsorbent dose and contact
time 100% removal of chromium (VI) was possible
[24]. Mathematically, the adsorption efficiency is deter-
mined using the following relation: R = [(Co – Cf)/Co]
× 100; where R is the percentage removal of pollutant,
Co is the initial concentration of solute (mg/L) and Cf

is the final concentration of solute (mg/L). This equa-
tion was used to develop the adsorption efficiency
model. Various algorithms and transfer functions used
to construct the adsorption efficiency neural network

were repeated 10 times to train the network and the
values of correlation coefficients were taken into
account from the best of 10 repeated runs [34]. The
outcomes of trial-and-error method adopted to formu-
late the adsorption capacity neural network as dis-
cussed earlier are shown in Table 3. Number of
iteration varied in each run. The maximum termina-
tion criteria were fixed at iteration number 300;
however, it reached the error criteria i.e. 10−2 within
180–250 iterations. Time taken for each run was 3–4 s.

It is apparent from the table that the correlation coef-
ficient associated with “satlin” transfer function for hid-
den layer is too low and gives arbitrary results in each
case. The “tansig” transfer function also exhibited too
low correlation coefficients and gave arbitrary results in
maximum cases. Though with “Resilient” and “Scaled
conjugate gradient” BP algorithm showed correlation
coefficients of 0.82 and 0.79, respectively, the results
were non-satisfactory. The “poslin” transfer function
too gave very low values of correlation coefficients and
arbitrary results in many cases. It showed significant
correlation coefficient with “Resilient” BP algorithm
and “trainrp” function; however, results were not satis-
factory. The best and most suitable combination of
training algorithm and functions for adsorption
efficiency computation was found to be “BFGS quasi-
Newton” backpropagation algorithm, “trainbfg” and
“poslin” with the corresponding correlation coefficient
0.96. Fig. 2 compares experimental adsorption efficien-
cies with the predicted values obtained from the adsorp-
tion efficiency neural network model using the most
appropriate combination that is BFGS quasi-Newton
backpropagation algorithm with poslin transfer func-
tion. The figure demonstrates good agreement between

Fig. 2. Simulated result vs. experimental result for adsorp-
tion efficiency ANN model.
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the experimental and predicted values as R-Squared
value 0.968 for the line is very much close to the unity.

3.5. Adsorption capacity model

Adsorption capacity is a term associated with the
adsorbent which denotes the competence of an adsor-
bent material towards adsorption of a solute at a given
set of operating conditions. It is also an inherent
characteristic of the adsorbent material which depends
on the precursor and conditions used to prepare them.
The capacity of an adsorbent for a given initial
concentration of the adsorbate depends on the adsor-

bent dosage. Mathematically, adsorption capacity is
determined using the relation: Q = [(Co – Ce) V]/W;
where Q is the adsorption capacity (mg/g), Co is the
initial concentration of solute (mg/L), Ce is the equi-
librium concentration of solute (mg/L), W is the
weight of adsorbent (g) and V is the volume of waste-
water taken (L). This equation was used to develop
the adsorption capacity model. The adsorption capac-
ity model was simulated with different algorithms
and transfer functions. The outcomes of trial-and-error
method adopted to formulate the adsorption capacity
neural network as discussed earlier are shown in
Table 4.

Table 4
Trial-and-error results for development of adsorption capacity ANN model

Algorithm Function

Hidden layer
transfer
function

Output layer
transfer
function

Correlation
coefficient Remark

Conjugate gradient backpropagation with
Polak–Ribiere updates

traincgp tansig purelin Too low Arbitrary
results

satlin Too low Arbitrary
results

poslin 0.76 Unsatisfactory
results

Levenberg Marquardt backpropagation trainlm tansig purelin Too low Arbitrary
results

satlin Too low Arbitrary
results

poslin 0.81 Unsatisfactory
results

Gradient descent with momentum and
adaptive learning rate backpropagation

traingdx tansig purelin Too low Arbitrary
results

satlin Too low Arbitrary
results

poslin 0.78 Unsatisfactory
results

Resilient backpropagation trainrp tansig purelin 0.83 Unsatisfactory
results

satlin Too low Arbitrary
results

poslin 0.96 Satisfactory
results

BFGS quasi-Newton backpropagation trainbfg tansig purelin Too low Arbitrary
results

satlin Too low Arbitrary
results

poslin 0.97 Satisfactory
results

Scaled conjugate gradient backpropagation trainscg tansig purelin 0.83 Unsatisfactory
results

satlin Too low Arbitrary
results

poslin 0.79 Unsatisfactory
results
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It is evident from the table that the correlation
coefficient associated with “satlin” transfer function
for hidden layer is too low and gives arbitrary results
in each case. The “tansig” transfer function also exhib-
ited too low correlation coefficients and gave arbitrary
results in maximum cases. Though with “Resilient”
and “Scaled conjugate gradient” BP algorithm it
showed 0.83 value of correlation coefficient, the results
were non-satisfactory. It is the “poslin” transfer func-
tion that gave the most suitable and satisfactory
results for adsorption capacity model in combination
with Resilient BP and BFGS quasi-Newton BP algo-
rithms with correlation coefficient values 0.96 and
0.97, respectively. Resilient backpropagation algorithm
with transfer function poslin produced simulated
results within 10% deviations during test and valida-
tion similar to that reported in the literature [34].
Fig. 3 compares experimental adsorption capacities
with the predicted values obtained from the adsorp-
tion capacity neural network model using the most
appropriate grouping viz. “Resilient” BP algorithm
with “poslin” transfer function. The figure demon-
strates good agreement between the experimental and
predicted values as R-Squared value 0.979 for the line
is very much close to the unity.

4. Conclusion

An ANN approach was used to delve into the
complicated interactions between the process inputs
and outputs for the removal of chromium (VI) from

wastewater solution applying adsorption. The results
offer an insight into the dependence of adsorption
efficiency and adsorption capacity of the treatment
process on pH of the wastewater, batch time, initial
chromium (VI) concentration and activated carbon
dosage. The most popular FF and BP algorithms
were used to model the neural networks. A three-
layered neural network, with different transfer func-
tions namely “tansig”, “satlin” and “poslin” at the
hidden layer and “purelin” transfer function at the
output layer, was used. The optimal neuron number
is found to be in range of 8–11. Six backpropagation
algorithms were compared to select the best-fitting
backpropagation algorithms for the gathered data.
This study shows that all algorithms and transfer
functions are not suitable for this process. BFGS
quasi-Newton backpropagation algorithm gave the
most satisfactory results for adsorption efficiency
while resilient backpropagation and BFGS quasi-
Newton backpropagation algorithm were found to be
the most suitable for adsorption capacity. The best
combination of training algorithm and transfer func-
tion for adsorption efficiency was found to be trainrp
and poslin, whereas poslin produced simulated
results within 10% deviation during test and valida-
tion for adsorption capacity. The results presented in
this paper confirm that the developed ANN model is
equipped to be used in simulation work for design
and development of automated effluent treatment
plant for removal of chromium (VI). The simulated
and experimental findings must have minimum devi-
ation to a greater extent otherwise the targeted water
quality could not be achieved. The formulated model
can predict adsorption efficiency and adsorption
capacity significantly and become successful for
efficient run of an automated process. The model
simulated in this work can further be implemented
for performance investigation of chromium (VI)
wastewater treatment over a broad spectrum of
operating conditions.
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